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1The First Clinical Medical College of Lanzhou University, Lanzhou, China, 2Department of
Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
Target identification is essential for developing novel therapeutic strategies in

diseases. Thioredoxin-interacting protein (TXNIP), also known as thioredoxin-

binding protein-2, is a member of the a-arrestin protein family and is regulated

by several cellular stress factors. TXNIP overexpression coupled with

thioredoxin inhibits its antioxidant functions, thereby increasing oxidative

stress. TXNIP is directly involved in inflammatory activation by interacting

with Nod-like receptor protein 3 inflammasome. Bone metabolic disorders

are associated with aging, oxidative stress, and inflammation. They are

characterized by an imbalance between bone formation involving

osteoblasts and bone resorption by osteoclasts, and by chondrocyte

destruction. The role of TXNIP in bone metabolic diseases has been

extensively investigated. Here, we discuss the roles of TXNIP in the

regulatory mechanisms of transcription and protein levels and summarize its

involvement in bone metabolic disorders such as osteoporosis, osteoarthritis,

and rheumatoid arthritis. TXNIP is expressed in osteoblasts, osteoclasts, and

chondrocytes and affects the differentiation and functioning of skeletal cells

through both redox-dependent and -independent regulatory mechanisms.

Therefore, TXNIP is a potential regulatory and functional factor in bone

metabolism and a possible new target for the treatment of bone

metabolism-related diseases.

KEYWORDS

Thioredoxin-interacting protein, osteoporosis, osteoarthritis, rheumatoid arthritis,
osteoblasts, osteoclasts, chondrocytes
1 Introduction

Bones provide structural support to the body and regulate the hematopoietic system.

Bone metabolism involves two important processes: bone modeling and bone

remodeling. Bone modeling is initiated during fetal development and continues until

bone maturity is reached. Bone shape and structure are optimized by various factors and
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mechanical forces during development (1). Bone modeling helps

to prevent bone damage by adjusting the structure to adapt to

external loads (2). Conversely, bone remodeling maintains the

stability of bone biomechanics, an important physiological bone

renewal process, and includes the quiescent, activation,

resorption, formation, and mineralization stages (3). Bone

renewal is accomplished by a multicellular unit known as the

bone remodeling unit, which includes four types of cells—bone

lining cells, osteocytes, osteoclasts (OCs), and osteoblasts (OBs)

(4). Bone development and growth involve chondrocytes (CCs),

which do not function in isolation but are rather coordinated in

the bone microenvironment (5). Bone remodeling depends on

the coupling between bone formation by OBs and resorption by

OCs (6). In the bone remodeling unit, bones can disappear

owing to OC absorption and be replaced by OBs that synthesize

the bone. Bone reconstruction and balance allow for continuous

bone renewal (7), which can be disrupted by conditions such as

aging and decreased estrogen levels. When bone resorption

exceeds bone formation, it leads to bone loss and the

destruction of bone structure and homeostasis, ultimately

leading to various acquired metabolic bone diseases, such as

osteoporosis (OP) (1, 2, 7). Oxidative stress is involved in bone

metabolic changes and leads to high reactive oxygen species

(ROS) levels. Excessive ROS activity and defects in the cellular

antioxidant system lead to cellular redox imbalances and

abnormal cellular bone metabolism (8). In addition, chronic

inflammation can disrupt bone metabolism; cytokines activated

during the inflammatory response can cause inflammation-

related bone loss, including osteoarthritis (OA) and

rheumatoid arthritis (RA) (9). In OA, CCs and synovial cells

overproduce various inflammatory cytokines, such as

interleukin (IL)-6, IL-1b, and tumor necrosis factor a (TNF-

a), all of which are involved in immune response and mediate

cartilage destruction (10). In RA, mononuclear macrophages

and lymphocytes release numerous inflammatory factors, such

as IL-1, IL-6, IL-17, TNF-a, and matrix metalloproteinases

(MMPs), thereby inducing inflammatory reactions and leading

to joint injury (11). OA, RA, and OP are the most common

chronic diseases in the elderly population and significantly affect

quality of life and life expectancy. They share similar

pathophysiological pathways, including increased bone

remodeling/absorption, age-related phenotypes, and the

accumulation of inflammatory factors in the joints and bone

tissues. The currently avai lable treatments remain

unsatisfactory; therefore, to develop more effective treatments,

it is necessary to determine the key pathological targets

responsible for promoting these diseases.

Thioredoxin-interacting protein (TXNIP) is involved in the

intracellular redox system and is an essential mediator of

oxidative stress and inflammatory response (12). TXNIP is

referred to as a thioredoxin (TRX)-interacting protein because

it interacts with TRX, an important intracellular antioxidant

protein. TXNIP is one of several a-arrestin proteins involved in
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various important cellular processes, such as cell metabolism,

inflammation, and cell death through redox-dependent and

-independent pathways. TXNIP has attracted significant

research interest owing to its involvement in glucose

homeostasis, cancer (13), and neurodegenerative diseases (14).

TXNIP has also been investigated in the context of the

pathogenesis of various bone metabolism-related diseases. In

this review, we discuss the structure and function of TXNIP,

especially its expression in bone metabolic diseases and bone

tissues and its involvement in the pathological processes

associated with bone metabolic abnormalities, including the

regulatory mechanism of TXNIP inflammation, oxidative

stress, and autophagy in different types of bone cells.

Furthermore, we provide evidence for the pathological

contribution of oxidative stress and inflammation induced by

different stress factors in OP, OA, and RA and their association

with TXNIP. Finally, we summarize the application of TXNIP

regulators in bone metabolism-related diseases to further clarify

the mechanism underlying TXNIP involvement in bone

metabolism and outline the provision of targets for the

prevention and treatment of bone metabolism-related diseases.
2 TXNIP

2.1 Gene regulation of TXNIP

TXNIP gene expression is regulated by various regulatory

elements, transcription factors, and receptors. Two E-box repeat

motifs called the carbohydrate response elements (ChoREs), are

located at 400 bp of the coding region of the TXNIP promoter

and are characteristic of human TXNIP (22). ChoREs can be

combined with the carbohydrate response element-binding

protein (ChREBP) to enhance TXNIP responsiveness to

glucose and carbohydrates (23). The ChREBP homologous

protein MondoA can induce TXNIP mRNA expression (24,

25). Several transcription factors regulate TXNIP. Forkhead

boxo1, a transcription factor highly enriched near the ChoREs

promoter, competes with ChREBP for the TXNIP promoter to

inhibit TXNIP transcription, which depends on the E-box repeat

motif of the ChoREs (26). Another vital transcription factor is

the heat shock factor. Its transcriptional activity is increased

under stress; it binds to the heat shock factor element and

mediates the transcription of endogenous TXNIP (27). In

addition, the transcriptional levels of TXNIP are regulated by

several receptors. TXNIP, also known as vitamin D3 upregulated

protein 1, was initially identified in a study on the myeloid

differentiation of HL-60 cells. TXNIP was upregulated in HL-60

cells treated with 1,25-dihydroxyvitamin D-3, and its cDNA was

correspondingly expressed to produce a 46 kDa protein in vitro

(28). However, it remains controversial whether the promoter

region of TXNIP contains classical vitamin D receptor response

elements (29). Evidence suggests that the CCAAT motif in the
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regulatory region of TXNIP is necessary for the vitamin D3

response (30). In addition, the glucocorticoid receptor (31) and

peroxisome proliferator-activated receptor (32) are also

associated with the transcription of TXNIP; thus, the gene

transcription levels of TXNIP are affected by various

regulatory mechanisms, and different response sites determine

the corresponding stress conditions (Figure 1).
2.2 Structure of TXNIP

TXNIP is one of six a-arrestin proteins and is associated

with five other a-arrestin proteins, four visual/b-arrestin
proteins, and four vps26-related proteins, together constituting

the arrestin protein family (33). Arrestin proteins can bind to

photoactivated phosphorylated rhodopsin and inhibit (“arrest”)

i t s ab i l i t y to ac t iva te t ransduc t ion prote ins and

phosphodiesterase (34). The polar core of charged residues in

the N-domain of b-arrestins acts as a phosphate sensor and is

the structural basis for the endocytosis mechanism involving the

phosphorylated G protein-coupled receptor (35). TXNIP and

five other proteins, known as arrestin domain-containing

proteins 1–5 (ARRDC1–5), are referred to as a-arrestins based
on phylogenetic studies. Although the arrestin N and C domains

of a-arrestins are similar to those of b-arrestins, they are
Frontiers in Immunology 03
characterized by a highly conserved PPxY motif at the C-

terminal tail, which can bind to the WW domains of proteins

such as ubiquitin ligase (33). TXNIP has the same arrestin N and

arrestin C domains and PPxY motif observed in other a-
arrestins, enabling it to interact with other proteins and

forming the structural basis for TXNIP to exert redox-

independent functions (Figure 2).
2.3 Functions of TXNIP

2.3.1 TXNIP and oxidative stress
TRX, an important cellular redox protein associated with

cellular redox and energy metabolism, is located in both the

mitochondria and cytoplasm and enables TXNIP to interact

with TRX-1 in the cytoplasm and TRX-2 in the mitochondria.

This suggests that TXNIP plays a role in both these cellular

regions (36). Detailed 3D structural models of TXNIP have been

reported; these include some surface residues and the unique

arrestin structure domain, among which cysteine residue (Cys)

247 is the most widely examined (37). Studies have confirmed

that the Cys247 on TXNIP forms stable mixed disulfide bonds

with the Cys32 on TRX through disulfide bond exchange, and

these characteristics differ from those of other arrestin family

members (38). TRX1 can scavenge ROS, while TXNIP cysteine
FIGURE 1

Transcriptional regulation of the TXNIP gene. TXNIP gene expression is regulated by various regulatory elements, transcription factors, and
receptors. The different stimuli correspond to the respective transcriptional factors and binding sequences. Glucocorticoid-glucocorticoid
responsive element (GRE), heat shock factor 1-heat shock element (HSE), peroxisome proliferator-activated receptor element (PPRE),
carbohydrate-responsive element (ChoRE), and Forkhead Box O binding site (FOXO) are shown.
FIGURE 2

Schematic representation of the TXNIP domain organization. TXNIP contains amino acids 1−391. The a-arrestin TXNIP domain comprises a N-
terminal domain (arrestin-N) and a C-terminal domain (arrestin-C), the C-terminal tail of which contains two PPxY motifs (yellow). Numbers
indicate amino acids.
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residues can directly bind to the active site of reduced TRX to

form the TXNIP–TRX1 complex and inhibit the antioxidant

capacity of TRX1 (39). Therefore, TXNIP is regarded as an

endogenous negative regulator of TRX1 that regulates cellular

redox reactions, exhibiting a TXNIP redox reaction-dependent

function (Figure 3).

Notably, unlike other arrestin protein family members,

TXNIP is the only a-arrestin protein that binds to TRX

through two pivotal cysteines that are conserved (38).

Therefore, TXNIP binds with TRX to form a TXNIP–TRX

complex or interacts with other proteins through the

characteristic a-arrestin protein structure to transmit

intracellular signals. Previous studies have identified the redox-

dependent and -independent functions of TXNIP using wild-

type TXNIP and produced TXNIP C247S (TRX binding site)

mutants that cannot bind TRX (40–42). It has been proposed

that TRX regulates the lipid inhibition function of TXNIP by

enhancing its stability, rather than TXNIP regulating TRX (41).

TXNIP interacts with different cell substrates at different binding

sites; the regulatory relationship between TXNIP and TRX

di ffe r s in di ff e rent ce l l types and under var ious

physiological conditions.

However, TXNIP-deficient mice show little change in

intracellular TRX1 activity following TXNIP deletion (43).

These data suggest that although overexpression of TXNIP

inhibits cytoplasmic TRX1 activation, TXNIP, at the

physiological level, is localized to the nucleus and cannot enter

the cytoplasm and bind to TRX1 to inhibit its activity. Under

oxidative stress, the localization and function of TXNIP change,

and TXNIP shuttles between the nucleus and cytoplasm. Upon

intracellular ROS accumulation, TXNIP shuttles to the

mitochondria, where it binds to and oxidizes TRX2 to form a

TXNIP–TRX2 complex, which in turn inhibits the association of

TRX2 with apoptotic signal-regulated kinase 1 (ASK1). This

mediates the phosphorylation and activation of the ASK1 signal

protein and induces the mitochondrial apoptosis pathway

through cytochrome C release and caspase-3 cleavage,
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ultimately inducing apoptosis (44). Knockdown of TXNIP or

the use of antioxidants significantly reduces TXNIP expression

and oxidative stress levels (45, 46). The ROS/TXNIP pathway is

also involved in the pathogenesis of several metabolic diseases

such as intervertebral disc degeneration (47) and non-alcoholic

fatty liver disease (48).

2.3.2 TXNIP and pyroptosis
In addition, TXNIP is essential for mediating cellular

inflammatory responses, mainly those related to activating the

intracel lular Nod-like receptor protein 3 (NLRP3)

inflammasome. When intracellular ROS levels increase

excessively, TXNIP is separated from TRX, the arrestin-N

domain of TXNIP interacts with the NACHT domain of

NLRP3, and the C-terminus binds to the LRR domain of

NLRP3, thereby activating the NLRP3 inflammasome (12).

These observations illustrate that TXNIP functions through its

a-arrestin protein domain (Figure 4). Formation of the NLRP3

inflammasome complex activates caspase-1, followed by the

maturation and release of the inflammatory cytokines IL-1b
and IL-18. The process can also lead to a rapid form of

proinflammatory cell death named “pyroptosis,” characterized

by cell swelling, membrane rupture, plasma membrane pore

formation, massive leakage of cytoplasmic contents, and high

levels of inflammation (49). Gasdermin D is a crucial executor of

pyroptosis and functions by releasing the N domain cleaved by

caspase-1 (50). Results from in vitro experiments have shown

that TXNIP is involved in the activation of the NLRP3

inflammasome pathway and the induction of inflammatory

responses (51–54).

However, other findings suggest that TXNIP is dispensable

in activating the NLRP3 inflammasome. Compared to wild-type

mice, TXNIP-deficient mice showed no significant differences in

IL-1b secretion from bone marrow derived macrophages in

response to islet amyloid polypeptide or other inflammatory

activators (55). In addition, nuclear factor-kB expression is

strongly promoted by TRX1, but not by TXNIP, to bind to the
FIGURE 3

Proposed molecular mechanism of the negative regulation of TRX by TXNIP. The cellular redox state-dependent disulfide bond switching
mechanism regulates the inhibition of thioredoxin (TRX) by thioredoxin-interacting protein (TXNIP). TXNIP contains an intramolecular disulfide
band between cysteine residue (Cys) 63 and Cys247 that can interact effectively with TRX. Under normoxic conditions, TXNIP forms stable TRX-
mixed disulfide bonds by disulfide exchange with reduced TRX and binds to TRX through the intermolecular disulfide bond formed between
TXNIP Cys247 and TRX Cys32 to inhibit its reducing activity. Cys residues are indicated as dots.
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DNA and activate the NLRP3 inflammasome. One study

reported no defect in the secretion of IL-1b from TXNIP-

deficient bone marrow derived macrophages compared to that

from wild-type macrophages (56). Considering these results, the

relationship between TXNIP and pyroptosis, particularly its

interaction with NLRP3, requires further analysis.

2.3.3 TXNIP and ferroptosis
Iron, an essential trace element in the human body, is

involved in several biochemical processes. Excessive iron levels

can disrupt redox homeostasis and elevate ROS levels, thereby

exacerbating oxidative stress. Oxidative stress can in turn induce

“ferroptosis,” a regulatory cell death that depends on iron and

ROS. It is characterized by the excessive production of ROS

caused by the downregulation of glutathione peroxidase 4

(GPx4) and cystine/glutamate antiporter system Xc
−, and is

mediated by the Fenton reaction (57, 58). Studies have shown

that TXNIP expression is altered under iron overload and may

be associated with ferroptosis. In human breast cancer cells, the

functional destruction of CDGSH iron sulfur domain 2

(privatization of autophagy factor-1) increases the expression

of TXNIP, which is dependent on the accumulation of

mitochondrial labile iron and on mitochondrial ROS levels.

During this process, the expression levels of the ferroptosis

marker GPx4 are reduced, whereas those of transferrin

receptor and lipid peroxidation are increased (59). Meanwhile,

one study showed that the protein expression of TXNIP in the

heart tissue significantly decreased during iron overload

regardless of oxidative stress, which is a possible protective

mechanism during iron overload (60). In addition, TXNIP has

been identified as one of the ferroptosis-related genes associated

with bladder cancer (61). These findings suggest an association

between TXNIP, iron, and ferroptosis, which requires

further investigation.

Increasing evidence suggests a link between iron overload

and bone diseases. In vitro findings have confirmed that iron

overload induces ferroptosis and inhibits osteogenic

differentiation and the mineralization of OBs (62–64). The
Frontiers in Immunology 05
diabetes microenvironment also enhances osteocyte

ferroptosis, which is manifested by high lipid peroxidation,

iron overload, and the abnormal activation of the ferroptosis

pathway (65). Ferroptosis is a risk factor for OP (66, 67) and

excessive iron can accelerate OA by inducing CC ferroptosis

(68). However, an in vivo study showed that ferroptosis was

declined in RA and RA fibroblast-like synoviocytes (69).

Synovial hyperplasia causes cartilage damage during RA. The

induction of ferroptosis in fibroblasts can slow the progression of

arthritis. Ferroptosis reduced the number of synovium

fibroblasts in a collagen-induced arthritis model (70).

Although TXNIP is associated with iron overload and

ferroptosis in other diseases, its role in the association between

iron overload and bone disorders remains unclear.
3 TXNIP pathway in bone
metabolic disorders

Previous studies have shown that the levels of glutathione,

TRX, the major thiol antioxidants, and TRX reductase (the

enzyme responsible for reducing TRX) significantly decrease in

the bone marrow of ovariectomized rodents and rapidly return

to normal upon supplementation with exogenous estrogen. This

suggests that estrogen deficiency leads to bone loss by reducing

thiol antioxidants (71). In vivo findings showed that the

overexpression of TRX in TRX-transgenic mice partially

restored the reduced bone mineral density and prevented

streptozotocin-induced bone formation and osteopenia in

diabetes (72). Recently, TXNIP has been reported to be

associated with OP. Patients with endogenous Cushing’s

syndrome (CS) exhibit serious systemic manifestations,

including acquired OP and fractures, caused by the long-term

administration of glucocorticoids. Lekva et al. (73) analyzed the

whole-genome expression profile of bone biopsy specimens from

patients with CS and detected the upregulation of TXNIP. This

gene is downregulated in patients following surgical

intervention. TXNIP silencing can increase the number of OBs
FIGURE 4

TXNIP binds to NLRP3 under ROS. ROS induces the interaction between the NLRP3 and TXNIP domains. The NLRP3 structural domains include
the nucleotide-binding oligomerization domain (NACHT), pyrin domain (PYD), and leucine-rich repeat domain (LRR). The N-terminal arrestin
(arrestin-N) domain of TXNIP interacts with the NACHT domain of NLRP3. The C-terminal carboxyl extension domain of TXNIP binds to the LRR
domain of NLRP3, thereby activating the NLRP3 inflammasome under ROS.
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and the expression of the bone formation marker osteocalcin

(OCN), suggesting that TXNIP mainly inhibits OBs and bone

formation functions to accelerate glucocorticoid-induced OP. In

vivo studies in glucocorticoid-induced OP rats showed that the

expression of TXNIP in the serum and bone is increased,

suggesting that TXNIP is, to some extent, associated with the

pathogenesis of glucocorticoid-induced OP (74). Goto-Kakizaki

(GK) rats, a model of type 2 diabetes mellitus (T2DM), have

significantly reduced bone mass, although the expression of

TXNIP in the bone tissue is significantly increased.

Simultaneously, in this model, bone formation-related

parameters, such as OCN expression, are significantly reduced,

whereas the levels of bone resorption markers, such as tartrate-

resistant acid phosphatase (TRAP), are significantly increased.

Moreover, calcitriol treatment reduces MDA and TXNIP

expression in GK rats, suggesting that TXNIP-mediated

oxidative stress reduces bone quality in these rats (16). In rats,

oral administration of aluminum for 12 weeks significantly

upregulated the expression of TXNIP protein in the femur,

activated the NLRP3 inflammasome pathway, and increased

the serum levels of IL-1b and IL-18, resulting in bone loss

(20). These findings indicate that TXNIP aggravates bone

destruction by mediating inflammation. TXNIP knockout

(KO) mice have been used to determine the role of TXNIP in

glucocorticoid OP. The experimental data suggested that only

certain indicators differed; the bone formation type I procollagen

amino-terminal peptide and bone absorption type I collagen

carboxyl-terminal peptide indices in the sera of TXNIP KO mice

were lower than those in the sera of wild-type mice. However,

compared with that in the TXNIP KO group treated with

prednisone acetate, the authors observed no significant

difference in the bone biomechanical parameters and

parameters measured via micro-computed tomography in the

untreated TXNIP KO group (74). Therefore, there was not

sufficient evidence to suggest that TXNIP KO rescued the

bone loss caused by glucocorticoid.

OA is a degenerative disease of the joints that causes chronic

pain, cartilage degeneration, synovitis, and even disability. OA

progression is accompanied by cartilage wear, subchondral bone

sclerosis, osteophyte formation, and inflammatory effusion.

Cartilage and bone metabolism are involved in cartilage layer

wear and subchondral osteophyte formation (75). TXNIP affects

the aging process in different tissue types by maintaining the

redox state. In vivo and in vitro evidence has shown that TXNIP

expression is increased in elderly Drosophila senescence and

primary cells (including peripheral blood T cells and non-

hematopoietic cells) and TXNIP overexpression significantly

shortens the lifespan of Drosophila (76). Sirtuin 6 (SIRT6) is

also a key regulator of longevity and drives the aging process.

SIRT6 transgene overexpression has been shown to improve

metabolic function and prolong the lifespan of mice. Increased

TXNIP expression during aging is associated with reduced

SIRT6 activity. Additionally, the number of TXNIP-positive
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CCs in the articular cartilage tissues of the elderly is

significantly higher than that in young individuals (77).

Therefore, TXNIP accelerates CC dysfunction and aging.

TXNIP regulates CC development and affects articular tissue

homeostasis. TXNIP staining was significantly enhanced in the

CCs of mice with surgically induced post-traumatic OA

(instability in the medial meniscus) (78). However, the role of

TXNIP in OA remains unclear. Another study confirmed that

TXNIP mRNA and protein are expressed in the articular

cartilage of normal human donors, but their expression is

significantly reduced in OA (79). This suggests that TXNIP

plays different roles at different ages or stages of the disease,

which warrants further investigation.

RA is a heterogeneous systemic autoimmune disease

characterized by chronic synovial inflammation and joint

structural damage. In addition, bone complications, which are

the main extra-articular complications in patients with RA,

include three main types: periarticular bone loss, bone erosion,

and systemic OP (80). Several factors lead to bone destruction

and OP in patients with RA, such as inflammation, the

deterioration of cortical bone quality, adverse reactions to

drugs used to treat RA (such as glucocorticoids), hypokinesia,

and nutritional effects (such as vitamin D deficiency) (81).

Genome-wide expression analysis has shown that TXNIP is

one of 110 RA-related genes in human CCs (82). Stimulating

human CCs with supernatant from the synovial fibroblasts of

patients with RA reduced their TXNIP gene levels. These levels

were increased following treatment with methotrexate,

diclofenac, and prednisolone; however, the degree of increase

differed (82). In contrast, in fibroblast-like synovial cells from

adjuvant arthritis, the expression of NLRP3 inflammasome

(including NLRP3, ASC, and caspase-1) was significantly

upregulated in vitro. Silencing TXNIP RNA significantly

inhibited the formation of the NLRP3 inflammasome and the

secretion of IL-1b and MMP-1 (83). Furthermore, miRNAs

targeted TXNIP. In fibroblast-like synovial cells, luciferase

analysis showed that the 3′UTR of TXNIP mRNA in rats was

targeted by miR-20a, while miR-20a overexpression reduced the

expression of TXNIP, thereby inhibiting the formation of

NLRP3 inflammasome and MMP-1 (83). Another animal

study confirmed that the expression levels of TXNIP, NLRP3,

ASC, and caspase-1 in the synovia of adjuvant arthritis rats were

s ign ificant ly increased (18) . Macrophages secre te

proinflammatory cytokines and chemokines such as TNF and

IL-1b, leading to joint pain and injury. In contrast, macrophages

absorb anti-inflammatory cytokines to negatively regulate

autoimmune activities and protect the joint tissue. The

plasticity of macrophages in RA pathogenesis is known as

“polarization.” TXNIP in macrophages from patients with RA

is regulated by miR497 and CDKN2B antisense RNA1, a long

non-coding RNA that targets miR-497. This regulatory axis

promotes M1 polarization but inhibits M2 polarization,

resulting in the inflammatory activity of macrophages. In
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other words , TXNIP promotes the express ion of

proinflammatory factors such as TNF and IL-1b but inhibits

the expression of anti-inflammatory factors by affecting

macrophage polarization, ultimately leading to RA (84).

Therefore, TXNIP mediates bone destruction in RA by

controlling the secretion of inflammatory factors. Further

investigations are warranted to determine the exact role of

TXNIP in RA.
4 Mechanisms underlying TXNIP
involvement in bone metabolism

4.1 TXNIP and osteoblasts

TXNIP is activated via glucocorticoid stimulation and

contains a classical glucocorticoid binding site. In vitro

experiments have shown that TXNIP mRNA and protein

levels can be overactivated by dexamethasone and trigger bone

loss by upregula t ing the mitochondria l oxidat ive

phosphorylation pathway in MG63 cells (74). In vivo

experiments also found that glucocorticoids tightly regulate

TXNIP expression in bones in CS, while the TXNIP gene in

bone tissue is downregulated following surgical treatment for

CS. In addition, in vivo data indicate a correlation between TRX

and TXNIP, while in vitro data showed that TXNIP mRNA and

protein levels were upregulated during human fetal OB

maturation and induced by dexamethasone stimulation.

Silencing TXNIP in OBs increases OCN and alkaline

phosphatase (ALP) activities, illustrating the adverse effect of

TXNIP-mediated glucocorticoid on OB differentiation (73).

Lekva et al. (85) further verified that TXNIP in human fetal

OB may affect glucose metabolism and insulin resistance by

influencing insulin signaling in OBs. TXNIP siRNA enhances

OCN secretion and increases the expression of insulin receptors

in OBs. An TXNIP siRNA-treated conditioned medium from

OBs also promoted insulin secretion and reduced inflammatory

responses in human islet cells. These findings indicate that

TXNIP expression is regulated by glucocorticoids and affects

glucose metabolism. In addition, TXNIP adversely affects OBs

by inducing the inflammasome pathways . NLRP3

inflammasome activation has been confirmed in abnormal

bone development, and inhibiting NLRP3 inflammasome

activation can reduce bone loss (86). Aluminum stimulates

activation of the NLRP3 inflammatory pathway and increases

TXNIP expression in MC3T3-E1 osteoblastic cells. However,

TXNIP siRNA reduces the aluminum-induced expression of

NLRP3 and the inflammatory cytokines IL-1b and IL-18 and

increases OCN and ALP levels. This suggests that TXNIP

improves aluminum-induced bone loss and formation by

inhibiting inflammation (20). TXNIP is regulated by

endogenous non-coding RNA and plays a key role in OBs.
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The long non-coding RNAs MEG3 and TXNIP are significantly

upregulated in OP rats, whereas microRNA (miRNA-214)

expression is downregulated. Dual-luciferase reporter gene

detection results have confirmed that TXNIP is the

downstream target gene of miRNA-214, and MEG3 silencing

and miRNA-214 overexpression promote OB proliferation and

differentiation by downregulating TXNIP and increasing

osteoprotegerin (OPG) expression (87).
4.2 TXNIP and osteoclasts

TXNIP is a crucial regulator of OC proliferation and

differentiation. TXNIP expression is reduced during human

OC differentiation induced by soluble nuclear factor-kB
ligand-receptor activator (sRANKL) and macrophage colony-

stimulating factor (M-CSF). However, the activity of TRX-1

increases, while the antioxidant N-acetylcysteine reverses this

pattern and significantly inhibits OCs (88). Interestingly, in vitro

findings have shown that TXNIP silencing increases the

RANKL/OPG ratio. Specifically, TXNIP upregulation increases

OPG and reduces RANKL expression, thereby suppressing OC

formation under the indirect effect of OBs during bone

conversion. Moreover, conditioned media derived from OBs in

which TXNIP was silenced were treated with human OC

precursors, and the results showed that the activity of TRAP, a

marker of OC differentiation, was significantly increased

following treatment (73). Another study showed that TXNIP

protein expression did not differ with or without RANKL

stimulation, whereas the expression of TXNIP in OCs was

significantly increased when combined with D-allose during

the differentiation of the rat Raw264 OC cell line, as was the

expression of TRX. Moreover, TXNIP overexpression inhibited

the formation of TRAP-positive cells and OCs, suggesting that

the rare sugar D-allose negatively regulates OC differentiation

through TXNIP upregulation (89). Therefore, TXNIP

overexpression negatively affects OC differentiation, which is

associated with the molecular regulatory mechanisms between

TXNIP and TRX induced by RANKL. This requires

further study.
4.3 TXNIP and chondrocytes

Aging is associated with OA and mainly involves defects in

autophagy. Under physiological stress, TXNIP is upregulated to

promote autophagosome maturation (90). In vitro studies have

shown that the combined deletion of TXNIP and Redd1 in

human primary CCs leads to autophagy defects, suggesting that

the Redd1/TXNIP complex is necessary for inducing autophagy

in CCs (79). Mammalian target of rapamycin (mTOR) is a

highly conserved serine-threonine kinase overexpressed in

cancer. TXNIP interacts with Redd1 at the N-terminus to
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stabilize it, thereby inhibiting mTOR activity (91). However, in

myocardial ischemia/reperfusion injury, myocardial-specific

TXNIP is overexpressed and directly interacts with the

autophagy regulatory factor Redd to inhibit mTOR, thereby

aggravating cardiac ischemia/reperfusion injury (92). Notably,

TXNIP may play an inhibitory role in regulating autophagy in

metabolic and degenerative diseases. For example, in the

pathogenesis of Parkinson’s disease, TXNIP inhibits the

autophagy flux-induced accumulation of alpha-synuclein (93).

Animal studies have also confirmed that the expression of TRX

family members and anti-aging protein Klotho is reduced and

induces apoptosis and IL-1b release in the articular cartilage of

OA mice. These effects are reversed by the overexpression of

Klotho via blockade of TXNIP and pyroptosis-related molecules,

such as NLRP3 and caspase-1 (94). In an OA CC model, IL-1b
induced the expression of the proinflammatory factors TNF-a,
IL-1b, and IL-6 in the human chondrosarcoma cell line SW1353

and normal human CCs (C28/I2), which was partially reversed

by TXNIP overexpression (95). The expression of SIRT6, a key

regulator of aging, was significantly reduced in CCs isolated

from samples obtained from elderly individuals, but

overexpression of SIRT6 specifically increased the basal levels
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of the antioxidant protein TRX, whereas TXNIP levels were

downregulated. In contrast, Sirt6 deletion reversed these effects,

and TXNIP levels were upregulated in CCs derived from SIRT6

KO mice (77). These studies indicate that TXNIP participates in

the normal metabolism of CCs by regulating autophagy.

However, abnormal TXNIP expression, or that driven by

various aging factors, disturbs the metabolism of CCs and

degenerates articular cartilage in specific body stages, especially

during the processes of aging and inflammation, eventually

influencing the pathogenesis of OA.

In conclusion, the relationship between TXNIP and bone cell

differentiation processes is complex. The normal maturation and

differentiation of OBs and OCs require the basic regulation of

TXNIP in their physiological processes, demonstrating the

importance of TXNIP in bone metabolism. However, existing

data show that TXNIP is closely related to bone metabolism and

that abnormal TXNIP expression affects the differentiation of

OBs, OCs, and CCs by affecting intracellular redox homeostasis

and inflammation. Finally, TXNIP overexpression or loss affects

the normal metabolism and function of these cells which are

associated with bone metabolism disorders (Figure 5). Although

TXNIP has a limiting effect on OCs through indirect effects
FIGURE 5

Summary of TXNIP regulation and functions. Several factors, such as glucose, glucocorticoids, metals, and aging, are known to regulate the
expression of TXNIP. In contrast, TXNIP induces the emergence of oxidative stress, leading to the release of a large amount of ROS and
amplifying the body’s oxidative stress response. However, owing to changes in the expression of TXNIP, three main effects can be noted: (1) The
formation and function of the TXNIP–TRX complex. (2) TXNIP functions as a potential binding partner of NLRP3. TXNIP dissociates from TRX
and binds to NLRP3, resulting in activation of the NLRP3 inflammasome pathway under ROS. Thus, caspase-1 is activated and promotes the
maturation and release of the inflammatory factors IL-1b and IL-18, which eventually leads to cellular inflammation. (3) The mechanism by
which TXNIP and NLRP3 form a complex to induce the pyroptosis-related factor Gasdermin D remains to be determined. Changes in these
three mechanisms are the possible underlying mechanisms of TXNIP causing the abnormal metabolism of bone cells, mainly osteoblasts,
osteoclasts, and chondrocytes, ultimately leading to bone metabolism disorders.
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caused by intercellular paracrine signaling, this effect is limited

and does not suggest that TXNIP is entirely beneficial in bone

resorption. Under most pathological conditions, the direct

influence of disease and stress on OCs is dominant, while

TXNIP can only be regarded as one of the factors involved in

the metabolic process. In addition, studies are needed to

determine the role of TXNIP and other regulatory factors in

bone metabolism.
5 TXNIP is a potential
therapeutic target for bone
metabolism disorders

5.1 Proposed TXNIP inhibitors

TXNIP has attracted attention in drug development owing

to its multiple functions and involvement in metabolic disorders,

inflammatory diseases, neurodegenerative diseases, and cancer.

TXNIP plays a tumor inhibitory role as an apoptosis inducer;

thus, TXNIP agonists may contribute to anticancer treatment

(96, 97). In contrast, a large amount of data strongly supports

that TXNIP inhibition can be used to treat metabolic disorders

and related diseases (13, 98). Currently, there are no TXNIP

inhibitors available, and only a few specific TXNIP inhibitors are

in the clinical stage. TXNIP expression is regulated by a unique

E-box motif in the TXNIP promoter, especially in the case of

high glucose levels and diabetes. The small-molecule compound

SRI-37330 inhibits the expression of TXNIP in human islets

through this element. Unlike TXNIP, TRX and other arrestin

genes such as ARRB1 and ARRDC3 are not affected by SRI-

37330, whereas inflammasome NLRP1 is downregulated (99).

Ahn et al. (100) used high-throughput chemical and biological

screening to identify a small molecular probe, SBI-477, that can

cooperate with triglycerides to enhance basal glucose uptake in

skeletal muscle cells. SBI-477 stimulates the insulin pathway by

inactivating the MondoA transcription factor. Thus, the protein

expression of the insulin pathway inhibitors TXNIP and

ARRDC4 decreased and improved insulin resistance and

lipotoxicity (100). The two proposed TXNIP small-molecule

inhibitors exert their effects mainly via the transcription of
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TXNIP, and SRI-37330 has a specific role in inhibiting

TXNIP. However, these inhibitors may be cell- or tissue-

dependent. For example, in hepatocytes, SRI-37330 affects the

function of glucagon in various ways unrelated to its expression

(99). In addition, some inhibitors regulate the TXNIP effect

through intermolecular interactions. Peptides derived from the

TXNIP–p38 interaction motif, 13 amino acid-containing

peptides (TN13), inhibit the TXNIP–p38 interaction and

significantly restore aging hematopoietic stem cells (101).

Some phytochemicals can exert powerful anti-oxidation and

anti-inflammatory effects by inhibiting the combination of

TXNIP and NLRP3 and have significant beneficial effects on

inflammation, cancer, diabetes, and other diseases. For example,

ruscogenin reduces the blood-brain barrier dysfunction caused

by cerebral ischemia by inhibiting TXNIP/NLRP3 inflammatory

corpuscle activation and the mitogen-activated protein kinase K

pathway (102). Resveratrol reduced the expression of the

TXNIP/TRX/NLRP3 signaling pathway, suppressing amyloid-

b-induced microglia inflammation (103). Doxofylline, a

theophylline derivative, can also inhibit the production of

mitochondrial ROS induced by lipopolysaccharides and

alleviate epithelial inflammation by improving various cellular

pathways, including TXNIP–NLRP3 inflammatory activation

(104). However, the exact regulatory mechanisms of TXNIP in

these phytochemicals are not well understood.
5.2 Application and mechanism of TXNIP
regulators in bone metabolism disease

The role of TXNIP in bone metabolism has been confirmed,

hence TXNIP inhibitors in bone metabolism have been

developed as a treatment strategy as shown in (Table 1). As

described above, TN13, a TXNIP inhibitor, targets the TXNIP–

p38 docking motif. Binding of TN13 to the human

immunodeficiency virus TAT transduction domain sequence

at the N domain, known as TAT-TN1, decreases RANKL-

stimulated osteoclastogenesis and bone resorption by

inhibiting the p38/NF-kB/NFATc1 signaling pathway and

reducing bone loss in ovariectomized mice (15). T2DM

induces bone loss in GK rats. Treatment with 1,25-dihydroxy
TABLE 1 Application of TXNIP regulators in bone metabolic diseases.

Drug name Mechanism Disease Status Reference

TAT-TN13 TXNIP–p38 Postmenopausal OP In vivo (15)

1,25-Dihydroxy vitamin D3 TXNIP Type II diabetes-induced OP In vivo (16)

Tanshinol TXNIP, Wnt Glucocorticoid- induced OP In vivo (17)

Atorvastatin/Quercetin TXNIP/NLRP3 RA In vivo (18)

“Sanse Powder” essential oil nanoemulsion ERS/TXNIP/NLRP3 OA In vivo (19)

Nicotinamide mononucleotide TXNIP/NLRP3 Aluminum-induced OP In vivo (20)

Loratadine TXNIP/NLRP3, ROS, Nrf2 OA In vitro (21)
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vitamin D3 significantly reduces T2DM-induced bone loss,

improves bone microstructure and biomechanical properties,

and reduces serum glucose and glycosylated serum protein

levels. Meanwhile, TXNIP expression in the bone decreases,

whereas bone formation biomarkers increase significantly (16).

A previous study showed that tanshinol improved

microcirculation disorder and damaged bone formation in rats

by inhibiting the activation of the TXNIP signaling pathway in

glucocorticoid-induced OP rats and human OB-like cells

(MG63), reversing the downregulation of the Wnt and

vascular endothelia l growth factor pathways (17) .

Nicotinamide mononucleotide, a biosynthetic intermediate of

nicotinamide adenine dinucleotide, improved aluminum-

induced bone injury by inhibiting the TXNIP–NLRP3

inflammasome pathway (20). Another in vivo study showed

that a “Sanse Powder” essential oil nanoemulsion reduced the

expression of the ERS/TXNIP/NLRP3 signaling pathway and the

levels of the inflammatory mediators IL-1b and IL-18, reducing

anti-synovial inflammation and treating OA (19). Loratadine

inhibits the expression of TXNIP and NLRP3 inflammasome

and related components, including NLRP3, ASC, and cleaved

caspase-1, by inhibiting the production of mitochondrial ROS

and NADPH oxidase subunit NOX4 to alleviate SW1353 CC

injury induced by advanced glycation end products. In addition,

loratadine inhibits the expression of Nrf2. The silencing of Nrf2

expression eliminates the inhibitory effect of loratadine on

NLRP3 inflammasome activation. Therefore, loratadine

pro t e c t s CCs f rom AGE- induced TXNIP /NLRP3

inflammasome activation by regulating the expression of the

transcription factor Nrf2, thereby alleviating OA (21). The

expression levels of TXNIP, NLRP3, ASC, caspase-1, and NF-

kB significantly increased in the synovium of an adjuvant

arthritis rat model but significantly decreased after combined

treatment with atorvastatin and quercetin. Simultaneously,

arthritis-related inflammation and oxidative stress parameters

in the serum were reduced (18). In conclusion, the application of

specific TXNIP inhibitors in bone metabolic diseases has not

been reported, although some traditional Chinese medicines and

approved drugs have been used. The mechanisms underlying the

specific effects between these drugs and TXNIP require

further exploration.
6 Summary and prospects

We described the direct role of TXNIP, an a-arrestin
protein that specifically binds to TRX, in several bone

metabolic diseases and the underlying mechanisms. TXNIP

affects OBs, OCs, and CCs by influencing intracellular redox

homeostasis and regulating inflammation. Moreover, TXNIP

can be used to predict several bone metabolic diseases,

including OP, OA, and RA. TXNIP affects bone metabolism

through redox-dependent and -independent pathways, which
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should be distinguished as this may help to explain the specific

metabolic functions and regulatory mechanisms of TXNIP in

more detail. Finally, TXNIP-targeted therapy for OP may be

an effective treatment strategy for preventing OP by increasing

OB proliferation and differentiation or OC function and

integrity. Other chronic inflammatory bone diseases, such as

OA and RA, require the specific targeting of bone cells.

However, as the role of TXNIP in the bone metabolism of

these cells is complex, it is necessary to conduct TXNIP KO

animal experiments for further insights. TXNIP is not only an

inhibitor of TRX but also an important factor in glucose

metabolism; TXNIP mutation in mice leads to impaired

glucose homeostasis (105). Additionally, the expression of

TXNIP in cancer is low and TXNIP overexpression inhibits

the proliferation of cancer cells; therefore, it is regarded as a

potential tumor suppressor. The risk of cancer development is

high in TXNIP-deficient mice (106), which should be

considered when knocking out TXNIP in bone research.

Considering the necessity and multiple roles of TXNIP in

bone cells, targeting molecules or signaling pathways that

interact with TXNIP is a potential strategy for treating and

preventing bone metabolic disorders. Thus, further preclinical

and clinical investigations are essential for understanding

TXNIP-specific inhibitors and developing new promising

treatments to mitigate the health problems associated with

bone metabolic disorders.
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