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Abstract

Cap Analysis of Gene Expression (CAGE) is one of the most popular 5'-end
sequencing methods. In a single experiment, CAGE can be used to locate
and quantify the expression of both Transcription Start Sites (TSSs) and
enhancers. This is workflow is a case study on how to use the CAGEfightR
package to orchestrate analysis of CAGE data within the Bioconductor
project. This workflow starts from BigWig-files and covers both basic CAGE
analyses such as identifying, quantifying and annotating TSSs and
enhancers, advanced analysis such as finding interacting TSS-enhancer
pairs and enhancer clusters, to differential expression analysis and
alternative TSS usage. R-code, discussion and references are intertwined
to help provide guidelines for future CAGE studies of the same kind.
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Background

Transcriptional regulation is one of the most important aspects of gene expression. Transcription Start Sites (TSSs)
are focal points of this process: The TSS act as an integration point for a wide range of molecular cues from
surrounding genomic areas to determine transcription and ultimately expression levels. These include proximal
factors such as chromatin accessibility, chromatin modification, DNA methylation and transcription factor binding,
and distal factors such as enhancer activity and chromatin confirmation'~.

Cap Analysis of Gene Expression (CAGE) has emerged as one of the dominant high-throughput assays for stud-
ying TSSs’. CAGE is based on “cap trapping”: capturing capped full-length RNAs and sequencing only the
first 20-30 nucleotides from the 5’-end, so-called CAGE tags®. When mapped to a reference genome, the 5’-ends
of CAGE tag identify the actual TSS for respective RNA with basepair-level accuracy. Basepair-accurate TSSs
identified this way are referred to as CAGE Transcription Start Sites (CTSSs). RNA polymerase rarely initiates
from just a single nucleotide: this is manifested in CAGE data by the fact that CTSSs are mostly found in tightly
spaced groups on the same strand. The majority of CAGE studies have merged such CTSSs into genomic blocks
typically referred to as Tag Clusters (TCs), using a variety of clustering methods (see below). TCs are often inter-
preted as TSSs in the more general sense, given that most genes have many CTSSs, but only a few TCs that represent
a few major transcripts with highly similar CTSSs’*. Since the number of mapped CAGE tags in a given TC is
indicative of the number of RNAs from that region, the number of CAGE tags falling in given TC can be seen
as a measure of expression’.

As CAGE tags can be mapped to a reference genome without the need for transcript annotations, it can detect
TSSs of known mRNAs, but also mRNA from novel alternative TSSs (that might be condition or tissue
dependent)”'". Since CAGE captures all capped RNAs, it can also identify long non-coding RNA (lincRNA)'' and
enhancers RNA (eRNA). It was previously shown that active enhancers are characterized by balanced bidirec-
tional transcription, making it possible to predict enhancer regions and quantify their expression levels from CAGE
data alone'>". Thus, CAGE data can predict the locations and activity of mRNAs, 1lincRNAs and enhancers in
a single assay, providing a comprehensive view of transcriptional regulation across both inter- and intragenic regions.

Bioconductor contains a vast collection of tools for analyzing transcriptomics datasets, in particular the widely
used RNA-Seq and microarray assays'*. Only a few packages are dedicated to analyzing 5’-end data in general
and CAGE data in particular: TSRchitect”, icetea'*, CAGEr'" and CAGEfightR'®, see Table 1.

CAGEr was the first package solely dedicated to the analysis of CAGE data and was recently updated to more
closely adhere to Bioconductor S4-class standards. CAGEr takes as input aligned reads in the form of BAM-files and
can identify, quantify, characterize and annotate TSSs. TSSs are found in individual samples using either simple
clustering of CTSSs (greedy or distance-based clustering) or the more advanced density-based paraclu clustering
method", and can be aggregated across samples to a set of consensus clusters. Several specialized routines for CAGE
data is available, such as power law normalization of CTSS counts and fine-grained TSS shifts. Finally, CAGEr
offers easy interface to the large collection of CAGE data from the FANTOM consortium'. TSRchitect and

Table 1. Comparison of Bioconductor packages for CAGE data analysis.

Analysis icetea TSRchitect CAGEr CAGEfightR

Simplest input FASTQ BAM BAM BigWig

TSS calling  sliding window X-means distance or paraclu  slice-reduce

TSS shapes - + + +

Differential Expression + + + -
Enhancer calling - - - +
TSS-enhancer correlation - = - +
Super enhancers - - - +
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icetea are two more recent additions to Bioconductor. While being less comprehensive, they aim to be more
general and handle more types of 5’-end methods that are conceptually similar to CAGE (RAMPAGE, PEAT,
PRO-Cap, etc.’). Both packages can identify, quantify and annotate TSSs, with TSRchitect using an X-means
algorithm and icetea using a sliding window approach. icetea offers the unique feature of mapping reads
to a reference genome by interfacing with Rsubread. Both CAGEr, TSRchictet and icetea offers built-in
capabilities for differential expression (DE) analysis via the popular DESeq2 or edgeR packages™'.

CAGEfightR is a recent addition to Bioconductor focused on analyzing CAGE data, but applicable to most 5’-end
data. It aims to be general and flexible to allow for easy interfacing with the wealth of other Bioconductor
packages. CAGEfightR takes CTSSs stored in BigWig-files as input and uses only standard Bioconductor
Sd-classes (GenomicRanges, SummarizedExperiment, InteractionSer”>¥) making it easy for users to learn and
combine CAGEf ightR with functions from other Bioconductor packages (e.g. instead of providing custom wrap-
pers around other packages such as differential expression analysis). In addition to TSS analysis, CAGEfightR is
the only package on Bioconductor to also offer functions for enhancer analysis based on CAGE (and similarly
scoped) data. This includes enhancer identification and quantification, linking enhancers to TSSs via correlation
of expression and finding enhancer clusters, often referred to as stretch- or super enhancers.

In this workflow, we illustrate how the CAGEfightR package can be used to orchestrate an end-to-end analysis
of CAGE data by making it easy to interface with a wide range of different Bioconductor packages. Highlights
include TSS and enhancer candidate identification, differential expression, alternative TSS usage, enrichment of
motifs, GO/KEGG terms and calculating TSS-enhancer correlations.

Methods

Dataset

This workflow uses data from “Identification of Gene Transcription Start Sites and Enhancers Responding to
Pulmonary Carbon Nanotube Exposure in Vivo” by Bornholdt et al**. This study uses mouse as a model system
to investigate how nanotubes affect lung tissue when inhaled. Inhaled nanotubes were previously found to produce
a similar response to asbestos, potentially triggering an inflammatory response in the lung tissue leading to
drastic changes in gene expression.

The dataset consists of CAGE data from mouse lung biopsies: 5 mice whose lungs were instilled with water (Ctrl)
and 6 mice wholes lungs were instilled with nanotubes (Nano), with CTSSs for each sample stored in
BigWig-files, shown in Table 2:

Table 2. Overview of samples
in the nanotube exposure
experiment.

Group Biological Replicates
Ctrl 5 mice

Nano 6 mice

The data is acquired via the nanotubes data package:

library (nanotubes)

R-packages

This workflow uses a large number of R-packages: Bioconductor packages are primarily used for data analysis
while packages from the tidyverse are used to wrangle and plot the results. All these packages are loaded prior to
beginning the workflow:
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# CRAN packages for data manipulation and plotting
library(knitr)

library (kableExtra)
library (pheatmap)
library (ggseglogo)
library(viridis)
library (magrittr)
library(ggforce)
library (ggthemes)
library (tidyverse)

# CAGEfightR and related packages
library (CAGEfightR)

library (GenomicRanges)

library (SummarizedExperiment)
library (GenomicFeatures)

library (BiocParallel)

library (InteractionSet)
library(Gviz)

# Bioconductor packages for differential expression
library (DESeqg2)

library (limma)

library (edgeR)

library(sva)

# Bioconductor packages for enrichment analyses
library (TFBSTools)

library (motifmatchr)

library (pathview)

# Bioconductor data packages

library (BSgenome.Mmusculus.UCSC.mm9)
library (TxDb.Mmusculus.UCSC.mm9. knownGene)
library(org.Mm.eg.db)

library (JASPAR2016)

We also set some script-wide settings for later convenience:

# Rename these for easier access

bsg <- BSgenome.Mmusculus.UCSC.mm9

txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene
odb <- org.Mm.eg.db

# Script wide settings
register (MulticoreParam(3)) # Parallel execution when possible
theme set (theme light()) # White theme for ggplot2 figures

Workflow
The workflow is divided into 3 parts covering different parts of a typical CAGE data analysis:

1. Shows how to use CAGEf ightR to import CTSSs and find and quantify TSS and enhancer candidates.

2. Shows examples of how to perform genomic analyses of CAGE dusters using core Bioconductor packages
such as GenomicRanges and Biostrings. This part covers typical analyses made from CAGE data, from
summarizing cluster annotation, TSS shapes and core promoter sequence analysis to more advanced
spatial analyses (finding TSS-enhancer correlation links and clusters of enhancers).

Page 5 of 49


https://bioconductor.org/packages/3.9/bioc/html/GenomicRanges.html
https://bioconductor.org/packages/3.9/bioc/html/Biostrings.html

F1000Research 2019, 8:886 Last updated: 10 JUL 2019

3. Shows how CAGEfightR can be used to prepare data for differential expression analysis with popular
R packages, including DESeq2, limma and edgeR* . Borrowing from RNA-Seq terminology, differential
expression can be assessed at multiple different levels: Tag cluster- and enhancer-level, gene-level and
differential TSS usage™. Once differential expression results have been obtained, they can be combined
with other sources of information such as motifs from JASPAR?” and GO/KEGG terms”****",

Part 1: Locating, quantifying and annotating TSSs and enhancers

CAGEfightR starts analysis from CTSSs, which is the number of CAGE tag 5’-ends mapping to each
basepair (bp) in the genome. CTSSs are normally stored as either BED-files or BigWig-files. CAGEf i ghtR works
on BigWig-files, since these can be efficiently imported and allow for random access.

Before starting the analysis, we recommend gathering all information (Filenames, groups, batches, preparation
data, etc.) about the samples to be analyzed in a single data.frame, sometimes called the design matrix.
CAGEf ightR can keep track of the design matrix throughout the analysis:

data (nanotubes)
kable (nanotubes,
caption = "The initial design matrix for the nanotubes experiment") %>%
kable styling(latex options = "hold position")

Table 3. The initial design matrix for the nanotubes experiment.

Class Name BigWigPlus BigWigMinus
C547  Ctrl C547  mm9.CAGE_7J7P_NANO_KON_547.plus. mm9.CAGE_7J7P_NANO_KON_547.minus.
bw bw
C548 Citrl C548 mm9.CAGE_ULAC_NANO_KON_548. mm9.CAGE_ULAC_NANO_KON_548.minus.
plus.bw bw
C549 Ctrl C549 mm9.CAGE_YM4F_Nano_KON_549.plus. mm9.CAGE_YM4F_Nano_KON_549.minus.
bw bw

C559 Cirl C559 mm9.CAGE_RSAM_NANO_559.plus.bw mm9.CAGE_RSAM_NANO_559.minus.bw
C560 Ctrl C560 mm9.CAGE_CCLF_NANO_560.plus.bw mm9.CAGE_CCLF_NANO_560.minus.bw

N13 Nano N13 mm9.CAGE_KTRA_Nano_13.plus.bw mm9.CAGE_KTRA_Nano_13.minus.bw
N14  Nano N14 mm9.CAGE_RSAM_NANO_14.plus.bw mm9.CAGE_RSAM_NANQO_14.minus.bw
N15 Nano N15 mm9.CAGE_RFQS_Nano_15.plus.bw mm9.CAGE_RFQS_Nano_15.minus.bw

N16 Nano N16 mm9.CAGE_CCLF_NANQO_16.plus.bw mm9.CAGE_CCLF_NANO_16.minus.bw
N17  Nano N17 mm9.CAGE_RSAM_NANO_17.plus.bw mm9.CAGE_RSAM_NANO_17.minus.bw
N18  Nano N18 mm9.CAGE_CCLF_NANO_18.plus.bw mm9.CAGE_CCLF_NANO_18.minus.bw

Importing CTSSs. We need to tell CAGEf 1 ghtR where to find the BigWig-files containing CTSSs on the hard drive.
Normally, one would supply the paths to each file (e.g. /CAGEdata/BigWigFiles/Samplel plus.bw),
but here we will use data from the nanotubes data package:

# Setup paths to file on hard drive

bw plus <- system.file("extdata", nanotubes$BigWigPlus,
package = "nanotubes",
mustWork = TRUE)

bw minus <- system.file("extdata", nanotubes$BigWigMinus,
package = "nanotubes",
mustWork = TRUE)

# Save as named BigWigFileList

bw plus <- BigWigFileList (bw_plus)

bw minus <- BigWigFileList (bw minus)

names (bw_plus) <- names (bw_minus) <- nanotubesS$Name

Page 6 of 49


https://bioconductor.org/packages/3.9/bioc/html/DESeq2.html
https://bioconductor.org/packages/3.9/bioc/html/limma.html
https://bioconductor.org/packages/3.9/bioc/html/edgeR.html

F1000Research 2019, 8:886 Last updated: 10 JUL 2019

The first step is quantifying CTSS usage across all samples. This is often one of the most time consuming
step in a CAGEfightR analysis, but it can be speed up by using multiple cores (if available, see Materials and
Methods). We also need to specify the genome, which we can get from the BSgenome.Mmusculus.UCSC.mm9
genome package:

CTSSs <- quantifyCTSSs (plusStrand = bw plus,
minusStrand = ba_minus,
genome = seqginfo (bsg),
design = nanotubes)

#> Checking supplied genome compatibility...

#> Iterating over 28 genomic tiles in 11 samples using 3 worker(s)...

#> Importing CTSSs from plus strand...

#> Registered S3 method overwritten by ’'pryr’:

#> method from

#+> print.bytes Rcpp

#> Importing CTSSs from minus strand...

#> Merging strands...

#> ### CTSS summary ###

#> Number of samples: 11

#> Number of CTSSs: 9.339 millions

#> Sparsity: 81.68 %

#> Final object size: 282 MB

The circa 9 million CTSSs are stored as RangedSummarizedExperiment, which is the standard representation of
high-throughput experiments in Bioconductor. We can inspect both the ranges and the CTSS counts:

# Get a summary

CTSSs

#> class: RangedSummarizedExperiment

#> dim: 9338802 11

#> metadata (0) :

#> assays (1) : counts

#> rownames: NULL

#> rowData names (0) :

#> colnames (11): C547 C548 ... N17 N18

#> colData names (4): Class Name BigWigPlus BigWigMinus

# Extract CTSS positions
rowRanges (CTSSs)
#> GPos object with 9338802 positions and 0 metadata columns:

#> segnames pos strand
#> <Rle> <integer> <Rle>
#> [1] chrl 3024556 +
#> [2] chrl 3025704 +
#> [3] chrl 3025705 +
#> [4] chrl 3028283 +
#> [5] chrl 3146133 +
#> ..
#> [9338798] chrUn random 5810899 -
#> [9338799] chrUn random 5813784 -
#> [9338800] chrUn random 5880838 -
#> [9338801] chrUn random 5893536 =
#> [9338802] chrUn random 5894263 -
S e

#> seqginfo: 35 sequences (1 circular) from mm9 genome
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# Extract CTSS counts

assay (CTSSs, "counts") %$>%
head
#> 6 x 11 sparse Matrix of class "dgCMatrix"
#> [[ suppressing 11 column names ’C547’, ’C548’, ’'C549’ ... ]]
#>
#> [1,1 . 1.
#> (2,1 . 1 .
#> [3,]1 . 1
#> [4,] . 1 .
#> [5,]1 . . 1
#> [6,] . 1

Unidirectional and bidirectional clustering for finding TSS and enhancer candidates. CAGEfightR finds
clusters by calculating the pooled CTSS signal across all samples: We first normalize CTSSs count in each sample
to Tags-Per-Million (TPM) values, and them sum TPM values across samples:

CTSSs <- CTSSs %
calcTPM() %>%
calcPooled ()

#> Calculating library sizes...

#> Calculating TPM...

This will add several new pieces of information to CTSSs: The total number of tags in each library, a new assay
called TPV, and the pooled signal for each CTSS.

We can use unidirectional clustering to locate unidirectional clusters, often simply called Tag Clusters (TCs),
which are candidates for TSSs. The quickTSSs will both locate and quantify TCs in a single function call:

TCs <- quickTSSs (CTSSs)

#> Using existing score column!

#>

#> - Running clusterUnidirectionally:
#> Splitting by strand...

#> Slice-reduce to find clusters...

#> Calculating statistics...

#> Preparing output...

#> Tag clustering summary:

#> Width Count Percent

#> Total 3602099 le+02 %

#> >=1 2983433 8e+01 %

#> >=10 577786 2e+01 %

#> >=100 40842 1le+00 %

#> >=1000 38 1e-03 %

#>

#> - Running quantifyClusters:

#> Finding overlaps...
#> Aggregating within clusters...

Note: quickTSSs runs CAGEfightR with default settings. If you have larger or more noisy datasets you most
likely want to do a more robust analysis with different settings. See the CAGE £ 1 ghtR vignette for more information.

Many of the identified TCs will only be very lowly expressed. To obtain likely biologically relevant TSSs,
we keep only TSSs expressed at more than 1 TPM in at least 5 samples (5 samples being the size of the
smallest experimental group):
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TSSs <- TCs %>%
calcTPM () %>%
subsetBySupport (inputAssay="TPM",
unexpressed=1,
minSamples=4)
#> Calculating library sizes...
#> Warning in calcTotalTags (object = object, inputAssay = inputAssay,
#> outputColumn = outputColumn): object already has a column named totalTags
#> in colData: It will be overwritten!
#> Calculating TPM...
#> Calculating support...
#> Subsetting...
#> Removed 3573214 out of 3602099 regions (99.2%)

This removed a large number of very lowly expressed TCs, leaving us with almost 30.000 TSSs candidates for
analysis.

Then we turn to bidirectional clustering for identifying bidirectional clusters (BCs), which are candidate for
enhancers. Similarly, we can use quickEnhancers to locate and quantify BCs:

BCs <- quickEnhancers (CTSSs)

#> Using existing score column!

#>

#> - Running clusterBidirectionally:

#> Pre-filtering bidirectional candidate regions...
#> Retaining for analysis: 68.3%

#> Splitting by strand...

#> Calculating windowed coverage on plus strand...
#> Calculating windowed coverage on minus strand...
#> Calculating balance score...

#> Slice-reduce to find bidirectional clusters...
#> Calculating statistics...

#> Preparing output...

#> # Bidirectional clustering summary:

#> Number of bidirectional clusters: 106779

#> Maximum balance score: 1

#> Minimum balance score: 0.950001090872574

#> Maximum width: 1866

#> Minimum width: 401

#>

#> - Running subsetByBidirectionality:

#> Calculating bidirectionality...

#> Subsetting...

#> Removed 73250 out of 106779 regions (68.6%)

#>

#> - Running quantifyClusters:

#> Finding overlaps...

#> Aggregating within clusters...

Note: quickEnhancers runs CAGEfightR with default settings. If you have larger or more noisy datasets
you most likely want to do a more robust analysis with different settings. See the CAGEfightR vignette for
more information.

Again, we are not usually interested in very lowly expressed BCs. As they are overall lowly expressed, we will
simply filter out BCs without at least 1 count in 5 samples:
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BCs <- subsetBySupport (BCs, inputAssay="counts", unexpressed=0, minSamples=4)
#> Calculating support...

#> Subsetting...

#> Removed 20017 out of 33529 regions (59.7%)

Annotating clusters with transcript models. After having located unidirectional and bidirectional clusters, we
can annotate them according to known transcript and gene models. These types of annotation are store via TxDb-
objects in Bioconductor. Here we will simply use UCSC transcripts included in the 7xDb.Mmusculus. UCSC.mm?9.
knownGene package, but the CAGEfightR vignette includes examples of how to obtain a TxDb object from
other sources (GFF/GTF files, AnnotationHub, etc.).

Starting with the TSS candidates, we can not only annotate a TSS with overlapping transcripts, but also in what
part of a transcript a TSS lies by using a hierarchical annotation scheme. As some TSSs might be very wide, we
only use the TSS peak for annotation purposes:

# Annotate with transcript IDs

TSSs <- assignTxID(TSSs, txModels = txdb, swap="thick")
#> Extracting transcripts...

#> Finding hierachical overlaps...

#> ### Overlap Summary: ###

#> Features overlapping transcripts: 87.65 %
#> Number of unique transcripts: 31898

# Annotate with transcript context

TSSs <- assignTxType (TSSs, txModels = txdb, swap="thick")
#> Finding hierachical overlaps with swapped ranges...
#> ### Overlap summary: ###

#> txType count percentage
#> 1 promoter 13395 46.4
#> 2 proximal 2246 7.8
#> 3 fiveUTR 2112 7.3
#> 4 threeUTR 1200 4.2
#> 5 CDS 3356 11.6
#> 6 exon 161 0.6
#> 7 intron 2810 9.7
#> 8 antisense 1294 4.5
#> 9 intergenic 2311 8.0

Almost half of TSSs were found at annotated promoters, while the other half is novel compared to the UCSC
known transcripts.

Transcript annotation is particularly useful for enhancer candidates, as bidirectional clustering might also
detect bidirectional promoters. Therefore, a commonly used filtering approached is to only consider BCs in
intergenic or intronic regions as enhancer candidates:

# Annotate with transcript context

BCs <- assignTxType (BCs, txModels = txdb, swap="thick")
#> Finding hierachical overlaps with swapped ranges...
#> ### Overlap summary: ###

#> txType count percentage
#> 1 promoter 766 5.7
#> 2 proximal 1649 12.2
#> 3 fiveUTR 67 0.5
#> 4 threeUTR 596 4.4
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#> 5 CDS 420 3.1
#> 6 exon 71 0.5
#> 7 intron 6815 50.4
#> 8 antisense 0 0.0
#> 9 intergenic 3128 23.1

# Keep only non-exonic BCs as enhancer candidates
Enhancers <- subset (BCs, txType %in% c("intergenic", "intron"))

This leaves almost 10000 enhancer candidates for analysis.

Merging into a single dataset. For many downstream analyses, in particular normalization and differential
expression, it is useful to combine both TSS and enhancers candidates into a single dataset. This ensures that TSSs
and enhancers do not overlap, so each CAGE tag is only counted once.

We must first ensure that the enhancer and TSS candidates have the same information attached to them, since
CAGEf ightR will only allow merging of clusters if they have the same sample and cluster information:

# Clean colData
TSSs$totalTags <- NULL
Enhancers$totalTags <- NULL

# Clean rowData
rowData (TSSs) $balance <- NA

rowData (TSSs) Sbidirectionality <- NA
rowData (Enhancers) $txID <- NA

# Add labels for making later retrieval easy
rowData (TSSs) SclusterType <- "TSS"
rowData (Enhancers) SclusterType <- "Enhancer"

Then the clusters can be merged: As enhancers are the most complicated type, we keep only enhancers if a TSS
and enhancer overlaps:

RSE <- combineClusters (objectl=TSSs,
object2 = Enhancers,
removeIfOverlapping="objectl")

#> Removing overlapping features from objectl: 374

#> Keeping assays: counts

#> Keeping columns: score, thick, support, txID, txType, balance,

bidirectionality, clusterType

#> Merging metadata...

#> Stackinag and re-sortinag...

We finally calculate the total number of tags and TPM-scaled counts for the final merged dataset:

RSE <- calcTPM(RSE)
#> Calculating library sizes...
#> Calculatinag TPM...

Part 2: Genomic analysis of TSSs and enhancers

Genome-browser figures of TSSs and enhancers. First we can simply plot some examples of TSSs and enhancers
in a genome browser style figure using the Gviz package’'. It takes a bit of code to setup, but the resulting tracks
can be reused for later examples:
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# Genome track
axis track <- GenomeAxisTrack()

# Annotation track
tx track <- GeneRegionTrack (txdb,

name = "Gene Models",
col = NA,

£fill = "bisqued",
shape = "arrow",

showId = TRUE)

A good general strategy for quickly generating genome browser plots is
then only plotting data within that region using subsetByOverlaps
using the first TSS:

# Extract 100 bp around the first TSS.
plot region <- RSE %>%
rowRanges %>%
subset (clusterType == "TSS") %>%
L[] %>%
add (100) %>%
unstrand ()

# CTSSs track

ctss_track <- CTSSs %>%
rowRanges %$>%
subsetByOverlaps (plot region) %>%
trackCTSS (name = "CTSSs")

#> Splitting pooled signal by strand...

#> Preparing track...

# Cluster track
cluster track <- RSE %>%
subsetByOverlaps (plot region) 3%>%
trackClusters (name = "Clusters",
col = NA,
showId=TRUE)
#> Setting thick and thin features...
#> Merging and sorting...
#> Preparing track...

# Plot at tracks together
plotTracks (list (axis_track,
ctss track,
cluster track,
tx track),
from = start(plot region),
to=end (plot region),
chromosome = segnames (plot region))

F1000Research 2019, 8:886 Last updated: 10 JUL 2019

to first define a region of interest, and
. The following code demonstrates this
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Figure 1. Genome browser example of TSS candidate.
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The top track shows the pooled CTSS signal and the middle track shows the identified TC with the thick bar
indicating the TSS peak (the overall most used CTSSs within the TC). The bottom track shows the known transcript
model at this genomic location. In this case, the CAGE-defined TSS corresponds well to the annotation.

We can also plot the first enhancer:

# Make plotting region
plot region <- RSE %>%
rowRanges %>%
subset (clusterType == "Enhancer")
(1] %>%
add (100) %>%
unstrand ()

# CTSSs track

ctss track <- CTSSs %>%
rowRanges $%$>%
subsetByOverlaps (plot region) 3%>%
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trackCTSS (name = "CTSSs")
#> Splitting pooled signal by strand...
#> Preparing track...

# Cluster track
cluster track <- RSE %>%
rowRanges $%>%
subsetByOverlaps (plot region) %>%
trackClusters (name = "Clusters",
col = NA,
showId=TRUE)
#> Setting thick and thin features...
#> Merging and sorting...
#> Preparing track...

# Plot at tracks together
plotTracks (list (axis_ track,
ctss track,
cluster track,
tx track),
from = start (plot region),
to=end(plot region),
chromosome = as.character (segnames (plot region)))

4.5617 mb 4.5619 mb 4.5621 mb
1 1 1

>

T T T
4.5618 mb 4.562 mb 4.5622 mb

B minus @ plus

35-4562164

Figure 2. Genome browser example of enhancer candidate.
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Here we see the bidirectional pattern characteristic of active enhancers. The bidirectional cluster is seen in
the middle track, with the midpoint in thick marking the maximally balanced point within the bidirectional cluster.

Location and expression of TSSs and enhancers. In addition to looking at single examples of TSSs and enhancers,
we also want to get an overview of the number and expression of clusters in relation to transcript annotation. First
we extract all of the necessary data from the RangedSummarizedExperiment into an ordinary data . frame:

cluster info <- RSE $>%
rowData () %>%
as.data.frame ()

Then we use ggplor2 to plot the number and expression levels of clusters in each annotation category:

# Number of clusters

ggplot (cluster info, aes(x=txType, fill=clusterType)) +
geom bar (alpha=0.75, position="dodge", color="black") +
scale fill colorblind("Cluster type") +
labs (x="Cluster annotation", y="Frequency") +
theme (axis.text.x = element text (angle = 90, hjust = 1))

10000
¢C>>” Cluster type
% . Enhancer
()
£ 5000 |:| TSS

|
|

promoter
proximal
fiveUTR
hreeUTR
CDS
exon
intron
antisense
intergenic

Cluster annotation

Figure 3. Number of clusters within each annotation category.

# Expression of clusters
ggplot (cluster info, aes (x=txType,
y=1lo0g2 (score/ncol (RSE) ),
fill=clusterType)) +
geom violin (alpha=0.75, draw quantiles = c(0.25, 0.50, 0.75)) +
scale fill colorblind("Cluster type") +
labs (x="Cluster annotation", y="log2 (TPM)") +
theme (axis.text.x = element text(angle = 90, hjust = 1))
#> Warning in regularize.values(x, y, ties, missing(ties)
#> unique ’'x’ values

: collapsing to

Page 15 of 49


https://cran.r-project.org/web/packages/ggplot2/index.html

F1000Research 2019, 8:886 Last updated: 10 JUL 2019

15
—~ 10
S Cluster type
o
= . Enhancer
< 5
o2 || 7ss

0

-5

promoter
proximal
fiveUTR
hreeUTR
CDS
exon
intron
antisense
intergenic

Cluster annotation

Figure 4. Expression of clusters within each annotation category.

We find that TSSs at annotated promoters are generally highly expressed. Most novel TSSs are expresse d at lower
levels, except for some TSSs in 5’-UTRs. Enhancers are expressed at much lower levels than TSSs.

Analysing TSS shapes and sequences. A classic analysis of CAGE data is to divide TSSs into Sharp and
Broad classes, which show different core promoter regions and different expression patterns across tissues’.

CAGEfightR can calculate several shape statistics that summarizes the shape of a TSS. The Interquartile Range
(IQR) can be used to find sharp and broad TSSs. As lowly expressed TSSs cannot show much variation in shape
due to their low width and number of tags, we here focused on highly expressed TSSs (average TPM >= 10):

# Select highly expressed TSSs
highTSSs <- subset (RSE, clusterType == 'TSS' & score / ncol (RSE) >= 10)

# Calculate IQR as 10%-90% interval

highTSSs <- calcShape (highTSSs,
pooled=CTSSs,
shapeFunction=shapeIQR,
lower = 0.10,
upper = 0.90)

#> Splitting by strand...

#> Applying function to each cluster...

#> Preparing output output...

We can then plot the bimodal distribution of IQRs. We use a zoom-in panel to highlight the distinction between
the two classes:

highTSSs %>%
rowData $>%
as.data.frame %>%
ggplot (aes (x=IQR)) +
geom_histogram(binwidth=1, fill="hotpink", alpha=0.75) +
geom vline (xintercept = 10, linetype="dashed", alpha=0.75, color="black") +
facet zoom(xlim = c(0,100)) +
labs (x="10-90% IQR", y="Frequency")
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Figure 5. Bimodal distribution of Interquartile Ranges (IQRs) of highly expressed TSSs.

We see most TSSs are either below or above 10 bp IQR (dashed line), so we use this cutoff to classify TSSs into
Sharp and Broad:

# Divide into groups

rowData (highTSSs) $shape <- ifelse (rowData (highTSSs)$IQR < 10, "Sharp", "Broad")

# Count group sizes

table (rowData (highTSSs) $Sshape)
#>

#> Broad Sharp

#> 9555 812

We can now investigate the core promoters sequences of the two classes of TSSs. We first need to extract the
sequences for each TSS: We define this as the TSS peak -40/+10 bp and extract them from using the BSgenome.

Mmusculus. UCSC.mm10 genome package:

promoter seqgs <- highTSSs $>%
rongnges () %>%
swapRanges () %>%
promoters (upstream=40, downstream=10) $%$>%
getSeqg(bsg, .)

This returns a DNAStringSet-object which we can plot as a sequence logo*” via the ggseqlogo package™:

promoter segs $>%

as.character %>3%

split (rowData (highTSSs) $shape) $%>%

ggseqlogo (data=., ncol=2, nrow=l) +

theme logo() +

theme (axis.title.x=element blank(),
axis.text.x=element blank(),
axis.ticks.x=element blank())
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Figure 6. Sequence logos of core promoter regions of Sharp and Broad classes of TSSs.
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As expected, we observe that Sharp TSSs tend to have a stronger TATA-box upstream of the TSS compared to

Broad TSSs.

Finding candidates for interacting TSSs and enhancers. In addition to simply identifying enhancers, it is also
interesting to try infer what genes they might be regulating. CAGE data can itself not provide direct evidence that
an enhancer is physically interacting with a TSSs, which would requires specialized chromatin confirmation
capture assays such as HiC, 4C, 5C, etc. However, previous studies have shown that TSSs and enhancers that are
close to each other and have highly correlated expression are more likely to be interacting. We can therefore use

distance and correlation of expression between TSSs and enhancers to identify TSSs-enhancer links as candidate
for physical interactions'”.

To do this with CAGEfightR, we first need to indicate the two types of clusters as a factor with two levels:

rowData (RSE) SclusterType <- RSE %>%
rowData () %>%
use series ("clusterType") $>%
as factor () 3%>%
fct relevel ("TSS")

S

We can then calculate all pairwise correlations between TSSs and enhancer within a distance of 50 bp. Here we use
the non-parametric Kendall’s tau as a measure of correlation, but other functions for calculating correlation can
be supplied (e.g. one could calculate Pearson’s r on log-transformed TPM values to only capture linear relationships):

all links <- RSE %>%
_swapRanges >%
findLinks (maxDist = 5e4l,
directional="clusterType",
inputAssay="TPM",
method="kendall")
#> Finding directional links from TSS to Enhancer...
#> Calculating 41311 pairwise correlations...
#> Preparing output...
#> # Link summary:
#> Number of links: 41311
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#> Summary of pairwise distance:

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 205 8832 21307 22341 35060 50000

all links

#> GInteractions object with 41311 interactions and 4 metadata columns:

#> seqgnamesl rangesl segnames?2 ranges2 | orientation
#> <Rle> <IRanges> <Rle> <IRanges> | <character>
#> [11] chrl 6204746 --- chrl 6226837 | downstream
#> [2] chrl 7079251 --- chrl 7083527 | downstream
#> [3] chrl 953551Y === chrl 9554735 | downstream
#> [4] chrl 9538162 ——- chrl 9554735 | downstream
#> [5] chrl 20941781 --- chrl 20990601 | downstream
#> [41307] chr9 random 193165 --- chr9 random 217926 | upstream
#> [41308] chr9 random 193165 --- chr9 random 242951 | upstream
#> [41309] chr9 random 223641 --- chr9 random 217926 | downstream
#> [41310] chr9 random 223641 --- chr9 random 242951 | upstream
#> [41311] chrUn random 3714359 --- chrUn_ random 3718258 | upstream
#> distance estimate p.value

#> <integer> <numeric> <numeric>

#> [1] 22090 -0.0603022689155527 0.805433562909099

#> [2] 4275 0.365994211051474 0.128612838399956

#> [3] 19215 -0.21320071635561 0.392330339776564

#> [4] 16572 0.341121146168977 0.17111237306132

#> [5] 48819 0.14070529413629 0.565460671338501

#> .

#> [41307] 24760 0.477084298221423 0.0423302291213607

#> [41308] 49785 0.180906806746658 0.459929012970529

#> [41309] 5714 -0.0366987921708787 0.875896057922941

#> [41310] 19309 -0.261309831967395 0.28579482541369

#> [41311] 3898 -0.170560573084488 0.493773664508106

> oooosos

#> regions: 38454 ranges and 8 metadata columns
#> seginfo: 35 sequences (1 circular) from mm9 genome

The output is a GInteractions-object from the InferactionSet package®: For each TSS-enhancer both the
distance and orientation (upstream/downstream relative to TSS) is calculated in addition to the correlation estimate
and p-value. For now, we are only interested in positive correlations, so we subset and sort the links:

# Subset to only positive correlation
cor links <- subset(all links, estimate > 0)

# Sort based on correlation
cor links <- cor links[order (cor linksSestimate, decreasing = TRUE) ]

We can then visualize the correlation patterns across a genomic region, here using the most correlated TSS-
enhancer link:

# Make plotting region

plot region <- cor links[1l] %>%
anchors %>%
GRangesList () %>%
unlist () %>%
reduce (ignore.strand=TRUE,

min.gapwidth=1e5) %$>%

add (1000)
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# Cluster track
cluster track <- RSE %>%
subsetByOverlaps (plot region) %>%
trackClusters (name = "Clusters",
col = NA,
showId=TRUE)
#> Setting thick and thin features...
#> Merging and sorting...
#> Preparing track...

# Cluster track
link track <- cor links %>%
subsetByOverlaps (plot region) %>%
trackLinks (name="Links",
interaction.measure = "p.value",
interaction.dimension.transform = "log",
col.outside="grey",
plot.anchors=FALSE,
col.interactions="black")

# Plot at tracks together
plotTracks (list (axis_track,
link track,
cluster track,
tx track),
from = start (plot region),
to=end(plot region),
chromosome = as.character (segnames (plot region)))

166.389 mb 166.391 mb
1 1

T T
166.39 mb 166.392 mb

chr1:166391008-166391468

56388725;+ chr1:166391849-166392322

3-166389004;-

chr1:166389597-166390100

Figure 7. Genome browser example of TSS-enhancer link candidates.
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The top track shows the strength of correlations between 3 TSSs around the Atplbl gene. The highest correlation
is seen between the upstream TSS and the most distal enhancer.

Finding stretches of enhancers. Several studies have found that groups or stretches of closely spaced enhancers
tend to show different chromatin characteristics and functions compared to singleton enhancers. Such groups of
are often referred to as “super enhancers” or “stretch enhancers”.

CAGEfightR can detect such enhancer stretches based on CAGE data. CAGEfightR groups nearby enhancers
into groups and calculates the average pairwise correlation between them, shown below (again using Kendall’s tau):

# Subset to only enhancers
Enhancers <- subset (RSE, clusterType == "Enhancer")

# Find stretches
stretches <- findStretches (Enhancers,
inputAssay = "TPM",
mergeDist = 12500L,
minSize = 5,
method = "kendall")
#> Finding stretches...
#> Calculating correlations...
#> # Stretch summary:
#> Number of stretches: 95
#> Total number of clusters inside stretches: 587 / 9943
#> Minimum clusters: 5
#> Maximum clusters: 15
#> Minimum width: 7147
#> Maximum width: 92531
#> Summary of average pairwise correlations:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.10038 0.01351 0.08107 0.09097 0.16171 0.37105

Similarly to TSSs and enhancers, we can also annotate stretches based on their relation with known transcripts:

# Annotate

stretches <- assignTxType (stretches, txModels=txdb)
#> Finding hierachical overlaps...

#> ### Overlap summary: ###

#> txType count percentage
#> 1 promoter 50 52.6
#> 2 proximal 0 0.0
#> 3 fiveUTR 6 6.3
#> 4 threeUTR 5 5.3
#> 5 CDS 3 3.2
#> 6 exon 2 2.1
#> 7 intron 15 15.8
#> 8 antisense 0 0.0
#> 9 intergenic 14 14.7

# Sort by correlation
stretches <- stretches[order (stretches$aveCor, decreasing=TRUE) ]

# Inspect
stretches
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and 4 metadata columns:

#> segnames ranges strand |
#> <Rle> <IRanges> <Rle> |
#> chrl1:98628005-98647506 chrll 98628005-98647506 =
#> chr7:139979437-140003112 chr7 139979437-140003112 G
#> chrl15:31261340-31279984 chrl5 31261340-31279984 =
#> chr11:117733009-117752208 chrll 117733009-117752208 =
#> chr7:97167988-97188451 chr7 97167988-97188451 =
#> R
#> chrl5:101076561-101093429 chrl5 101076561-101093429 =
#> chrl16:91373912-91399202 chrlé 91373912-91399202 G
#> chr7:132619265-132644381 chr7 132619265-132644381 =
#> chr15:79181690-79208915 chrlb 79181690-79208915 =
#> chr10:94708643-94729408 chrl0 94708643-94729408 =
#> revmap nClusters

#> <IntegerList> <integer>

#> chrl1:98628005-98647506 6600, 6601,6602, ... 6

#> chr7:139979437-140003112 4220,4221,4222, ... 5

#> chrl15:31261340-31279984 7962,7963,7964, ... 5

#> chr11:117733009-117752208 6785,6786,6787, ... 6

#> chr7:97167988-97188451 4022,4023,4024, ... 6

#> o

#> chr15:101076561-101093429 8320,8321,8322, ... 5

#> chrl16:91373912-91399202 8643,8644,8645, ... 7

#> chr7:132619265-132644381 4160,4161,4162, ... 5

#> chr15:79181690-79208915 8144,8145,8146, ... 5

#> chr10:94708643-94729408 5823,5824,5825, ... 5

#> aveCor txType

#> <numeric> <factor>

#> chrl11:98628005-98647506 0.371052840516797 promoter

#> chr7:139979437-140003112 0.328630841442886 promoter

#> chr15:31261340-31279984 0.301603791540209 intron

#> chr11:117733009-117752208 0.284399425439616 promoter

#> chr7:97167988-97188451 0.262199740521045 promoter

#>

#> chr15:101076561-101093429 -0.0549688493223916 intergenic

#> chrl16:91373912-91399202 -0.0598361076236999 fiveUTR

#> chr7:132619265-132644381 -0.0626248504104628 promoter

#> chr15:79181690-79208915 -0.0981772309926707 promoter

#> chr10:94708643-94729408 -0.100380656957041 intron

#> -

#> seginfo: 35 sequences (1 circular) from mm9 genome

The returned GRanges contains the the location, number of enhancers and average correlation for each stretch.
Stretches are found in a variety of context, some being intergenic and other spanning various parts of genes. Let us
plot one of the top intergenic stretches:

# Make plotting region
plot region <- stretches["chrl7:26666593-26675486"] + 1000
# Cluster track
cluster track <- RSE %>%
subsetByOverlaps (plot region) %>%
trackClusters (name = "Clusters",
col = NA,
showId=TRUE)
#> Setting thick and thin features...
#> Merging and sorting...
#> Preparing track...
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# CTSS track

ctss track <- CTSSs %>%
subsetByOverlaps (plot region) %>%
trackCTSS (name="CTSSs")

#> Splitting pooled signal by strand...

#> Preparing track...

# SE track
stretch track <- stretches %>%
subsetByOverlaps (plot region) 3%>%
AnnotationTrack (name="Stretches", fill="hotpink", col=NULL)

# Plot at tracks together
plotTracks (list (axis_track,
stretch track,
cluster track,
ctss track),
from = start (plot region),
to=end (plot region),
chromosome = as.character (seqnames (plot region)))

26.667 mb 26.669 mb 26.671 mb 26.673 mb 26.675 mb
1 1 1 1 1

>
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667029 * chr17:26674968-26675486 *
r17:26668611-26669043 *

chr17:26669470-26669928 *

chr17:26670652-26671202 *
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Figure 8. Genome browser example of enhancer stretch.
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This stretch is composed of at least 5 enhancers, each of which shows bidirectional transcription.

Part 3: Differential Expression analysis of TSSs, enhancers and genes

Normalization of expression and EDA. Before performing statistical tests for various measures of Differential
Expression (DE), it is important to first conduct a thorough Exploratory Data Analysis (EDA) to identify what
factor we need to include in the final model.

Here we will use DESeq2” for normalization and EDA since it offers easy to use functions for performing basic
analyses. Other popular tools such as edgeR’ and limma*™ offer similar functionality, as well as more specialized
packages for EDA such as £EDASeq.

DESeq?2 offers sophisticated normalization and transformation of count data in the form of the variance stabi-
lized transformation: this adds a dynamic pseudo-count to normalized expression values before log transforming to
dampen the inherent mean-variance relationship of count data. This is particularly useful for CAGE data, as
CAGE can detect even very lowly expressed TSSs and enhancers.

First, we fit a “blind” version of the variance-stabilizing transformation, since we do not yet know what design
is appropriate for this particular study:

# Create DESeqg2 object with blank design
dds blind <- DESegDataSet (RSE, design = " 1)

# Normalize and log transform
vst blind <- vst(dds blind, blind = TRUE)

A very useful first representation is a Principal Components Analysis (PCA) plot summarizing variance across
the entire experiment:

plotPCA(vst blind, "Class")
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Figure 9. PCA-plot of variance stabilized expression.
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We observe that PC2 separates the samples according to the experimental group (control vs nano). However,
PC1 also separates samples into two groups. This is suggestive of an unwanted yet systematic effect on expres-
sion, often referred as a batch effect. We do not want to mistake this unwanted variation for biological variation
when we test for differential expression. To prevent this, we can include the batch information as a factor in the

final model. Let first define the batch variable:

# Extract pca results
pca res <- plotPCA(vst blind, "Class", returnData=TRUE)

# Define a new variable using PC1l
batch var <- ifelse(pca resSpCl > 0, "A", "B")

# Attach the batch variable as a factor to the experiment
RSESBatch <- factor (batch var)

# Show the new design

RSE $>%
colData () %>%
subset (select=c(Class, Batch)) %>%
kable (caption = "Design matrix after adding new batch covariate.")
kable styling(latex options = "hold position")

Table 4. Design matrix
after adding new batch

covariate.
Class Batch
Ch547  Ctrl B
Cb548 Citrl B
C549 Citrl B
C559 Citrl A
C560 Citrl A
N13 Nano B
N14 Nano A
N15 Nano B
N16 Nano A
N17 Nano A
N18 Nano A

oso
5>%

An alternative to manually defining the batch variable, tools such as sva and RUVSeq can be used to estimate

unknown batch effects from the data.

Cluster-level differential expression. Following our short EDA above, we are ready to specify the final design for

the experiment: We want to take into account both the Class and Batch of samples:

# Specify design
dds <- DESegDataSet (RSE, design = ~ Batch + Class)

# Fit DESeg2 model

dds <- DESeq (dds)

#> estimating size factors

#> estimating dispersions

#> gene-wise dispersion estimates
#> mean-dispersion relationship
#> final dispersion estimates

#> fitting model and testing
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We can now extract estimated effects (log fold changes) and statistical significance (p-values) for the Nanovs-Ctrl
comparison, implicitly correcting for the batch effect:

# Extract results
res <- results (dds,
contrast=c("Class", "Nano", "Ctrl"),
alpha=0.05,
independentFiltering=TRUE,
tidy = TRUE) %>%
bind cols(as.data.frame (rowData (RSE))) %>%
as_tibble

# Show the top hits
res %>%
top n(-10, padj) $>%
dplyr: :select (cluster=row,
clusterType,
txType,
baseMean,
log2FoldChange,
padj) %>%
kable (caption = "Top differentially expressed TSS and enhancer candidates") $%>%
kable styling(latex options = "hold position")

Table 5. Top differentially expressed TSS and enhancer candidates.

cluster clusterType txType baseMean log2FoldChange padj
chr1:73977049-73977548;- TSS intron 1183.3740 2.838367 0
chr2:32243097-32243468;- TSS promoter 30799.5953 3.741789 0
chr3:144423689-144423778;- TSS promoter 191.0431 3.709530 0
chr4:125840648-125840820;- TSS proximal 1063.4328 3.867574 0
chr4:137325466-137325712;- TSS intron 176.7636 3.912592 0
chr7:53971039-53971170;- TSS promoter  8720.5204 6.696838 0
chr9:120212846-120213294; + TSS promoter 316.0582 2.404706 0
chr11:83222553-83222887;+ TSS proximal 228.5560 6.098838 0
chr12:105649334-105649472;+ TSS CDS 175.1364 3.345412 0
chr19:56668148-56668332;+ TSS CDS 103.8795 -2.254371 0

It always a good idea to inspect a few diagnostics plot to make sure the DESeqg2 analysis was successful. One
such example is an MA-plot (another useful plot is p-value histogram):

ggplot (res, aes(x=log2 (baseMean), y=log2FoldChange, color=padj < 0.05)) +
geom point (alpha=0.25) +
geom hline(yintercept = 0, linetype="dashed", alpha=0.75) +
facet grid(clusterType™.)
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Figure 10. Diagnostic MA plot of the differential expression analysis.

We can see that we overall find more differentially expressed TSSs compared to enhancers, which is expected
since they are also more highly expressed. Many enhancers are filtered away for the final DESeq2 analysis (The
“Independent Filtering” Step), as their expression level is too low to detect any DE: This increases power for

detecting DE at higher expression levels.

‘We can tabulate the total number of DE TSSs and enhancers:

table (clusterType=rowRanges (RSE) SclusterType, DE=resS$padj<0.05)

#> DE
#> clusterType FALSE TRUE
#> TSS 22071 6385

#> Enhancer 3034 199

Correcting expression estimates for batch effects. In addition to looking at estimates and significance for each
cluster, we might also want to look at individual expression values for some top hits. However, we then need to
also correct the expression estimates themselves for batch effects, just like we did for log fold changes and p-values

(using the same model of course).
Here we use ComBat® from the sva package which is suitable for removing simple batch effects from small

experiments. For more advanced setups, removeBatchEffect from limma can remove arbitrarily complex
batch effects. The RUVSeq package and £sva from sva can be used to remove unknown batch effects.

Page 27 of 49


https://bioconductor.org/packages/3.9/bioc/html/sva.html
https://bioconductor.org/packages/3.9/bioc/html/RUVSeq.html

F1000Research 2019, 8:886 Last updated: 10 JUL 2019

We again use the variance-stabilizing transformation to prepare the data for ComBat (this makes count data
resemble expression estimates obtained from microarrays, as ComBat was originally developed for microarrays).

# Guided variance stabilizing transformation
vst guided <- varianceStabilizingTransformation (dds, blind=FALSE)

To run ComBat we need two additional pieces of information: i) A design matrix describing the biological or
wanted effects and ii) the known but unwanted batch effect. We first specify the design matrix, and then run
ComBat:

# Design matrix of wanted effects
bio effects <- model.matrix (" Class, data=colData (RSE))

# Run ComBat =

assay (RSE, "ComBat") <- ComBat (dat=assay(vst guided),
batch=RSES$Batch, # Unwanted batch
mod=bio effects)

#> Found2batches

#> Adjusting forlcovariate(s) or covariate level (s)
#> Standardizing Data across genes

#> Fitting L/S model and finding priors

#> Finding parametric adjustments

#> Adjusting the Data

Let us redo the PCA-plot, to see the global effect of the batch effect correction:

# Overwrite assay
assay(vst guided) <- assay(RSE, "ComBat")

# Plot as before
plotPCA (vst guided, "Class")
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Figure 11. PCA-plot of batch corrected expression.
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Now Nano and Ctrl are separated along the first principal component (compared to the second principle component
before correction).

Then we extract the top 10 DE enhancers using the following tidyverse code:

# Find top 10 DE enhancers
topl0 <- res %>%

filter (clusterType == "Enhancer", padj < 0.05)
group_ by (log2FoldChange >= 0)
top n(5, wt=abs(log2FoldChange))

pull (row)

o o
3>%

oS
$>%

o o
5>%

# Extract expression values in tidy format

tidyEnhancers <- assay (RSE,

t $>%

as.data.frame
rownames to column ("Sample")
mutate (Class=RSESClass)

oo
3>%

o o
$>%

gather (key="Enhancer",

value="Expression",
-Sample, -Class,
factor key=TRUE)

o o
5>%

"ComBat") [topl0,] %$>%

Finally, we can plot the batch-corrected expression profiles of each individual enhancer:

ggplot (tidyEnhancers,
geom dotplot (stackdir="center", binaxis="y",
facet wrap (“Enhancer, ncol=2,
#> ‘stat_bindot()‘ using ‘bins =

Expression

*®
¢chr10:127033653-127034066

aes (x=Class,

30°.

chr1:74213750-74214180

y=Expression,

fill=Class))
dotsize=3) +
scales="free y")
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Figure 12. Expression profile of top 10 differentially expressed enhancer candidates.
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Enrichment of DNA-binding motifs. A typical question following identification of differentially expressed TSSs
and enhancers, is what TFs might be involved in their regulation. To shed light on this question we can annotate
TSSs and enhancers with DNA-binding motifs from the JASPAR database”’.

First we extract the sequences around TSSs and enhancers. Here we simply define it as +/- 500 bp around TSS peak
or enhancer midpoint:

cluster segs <- RSE $%>%
rowRanges %>
swapRanges () %>%
unstrand () %>%
add (500) $>%

getSeq(bsg, .)

Secondly, we use the TFBSTools* package to obtain motifs as Position Frequency Matrices (PFMs) from the
JASPAR2016 database:

# Extract motifs as Position
motif pfms <- getMatrixSet (JASPAR2016, opts = list (species="10090"))

# Look at the IDs and names of the first few motifs:

head (name (motif pfms))

#> MAQOOO4.1 MA0006.1 MA0029.1 MA0063.1 MA0067.1 MAQOO078.1
#> "Arnt" "Ahr::Arnt" "Mecom" "Nkx2-5" "Pax2" "Sox17"

Thirdly, we use the morifmatchr package® to find hits in the sequences:

# Find matches
motif hits <- matchMotifs (motif pfms, subject=cluster seqgs)

# Matches are returned as a sparse matrix:
motifMatches (motif hits) [1:5, 1:5]

#> 5 x 5 sparse Matrix of class "1lgCMatrix"

#> MA0004.1 MAOOO6.1 MA0029.1 MA0063.1 MAO067.1
#> |
#>
#>
#>
#>

~

~

g s W N
~ 0~

~

Finally we can do a simple Fisher’s Exact test to see if a motif co-occurs more with DE TSSs and enhancer than
we would expect be chance. Here we will look at the FOS::JUN motif (MA0099.2):

# 2x2 table for fishers
table (FOSJUN = motifMatches (motif hits) [, "MA0099.2"],
DE = res$padj < 0.05) %>%

print () %>%
fisher.test ()
#> DE

#> FOSJUN FALSE TRUE

#> FALSE 22144 5596

#> TRUE 2961 988

#>

#> Fisher’s Exact Test for Count Data
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#>

#> data:

#> p-value = 5.839%e-12

#> alternative hypothesis: true odds ratio is not equal to 1
#> 95 percent confidence interval:

#> 1.220330 1.427821

#> sample estimates:

#> odds ratio

#> 1.320361

A significant odds ratio above 1 indicate that FOS::JUN is a candidate transcription factor (or, more technically
correct, a candidate transcription factor dimer) in regulation of the nanotube response. This is not surprising given
that FOS::JUN is part of the TNF-alpha inflammatory pathway (see more below).

Of course, this is a just a very quick and simple analysis of motif enrichment. One could easily have used
different regions around TSSs and enhancers and/or split the enrichment analysis between TSSs and enhancers.
Other Bioconductor packages like PWMEnrich, rGADEM and motifcounter implements more advanced statistical
methods for calculating enrichment of known motifs. *GADEM, BCRANK and motifRG can also be used to
calculate enrichment of novel motifs, sometimes referred to as motif discovery.

Gene-level differential expression. While CAGE data is naturally analyzed at the level of clusters (TSSs and
enhancers) it is in many cases interesting to also look at gene-level expression estimates. A prime example of
this is looking at enrichment of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
terms*** which are only defined at gene-level. CAGEfightR includes functions for annotating clusters with
gene models and summarizing expression to gene-level.

We can annotate clusters with gene IDs in the same manner as Transcript IDs:

RSE <- assignGenelD (RSE, geneModels=txdb)

#> Extracting genes...

#> Overlapping while taking distance to nearest TSS into account...
#> Finding hierachical overlaps...

#> ### Overlap Summary: ###

#> Features overlapping genes: 81.34 %

#> Number of unicque genes: 13761

And then use CAGEf i ghtR to sum counts of TSSs within genes:

GSE <- RSE %>%
subset (clusterType == "TSS") %>%
quantifyGenes (genes="geneID", inputAssay="counts")

The result is RangedSummarizedExperiment where the ranges are a GRangesList holding the TSSs that
were summed within each gene:

rowRanges (GSE["100038347", 1)
#> GRangesList object of length 1:
#> $100038347
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#> GRanges object with 2 ranges and 9 metadata columns:

#> segnames ranges strand |

#> <Rle> <IRanges> <Rle> |

#> chr7:80884953-80885056; + chr7 80884953-80885056 + |

#> chr7:80885120-80885677; + chr7 80885120-80885677 +

#> score thick support txID
#> <numeric> <IRanges> <integer> <character>
#> chr7:80884953-80885056; + 11.058474477 80885000 5 uc009%hrf.2
#> chr7:80885120-80885677;+ 1162.344739622 80885256 11 uc009%hrf.2
#> txType balance bidirectionality clusterType
#> <factor> <numeric> <numeric> <factor>
#> chr7:80884953-80885056;+ proximal <NA> <NA> TSS
#> chr7:80885120-80885677;+ promoter <NA> <NA> TSS
#> genelD

#> <character>

#> chr7:80884953-80885056; + 100038347

#> chr7:80885120-80885677; + 100038347

#>

#> ——————-

#> seginfo: 35 sequences (1 circular) from mm9 genome

The gene IDs in this case is Entrez ID (which is widely used by Bioconductor packages). We can translate these
systematic IDs into more human-readable symbols using the org.Mm.eg.db annotation package:

# Translate symbols

rowData (GSE) $symbol <- mapIds (odb,
keys=rownames (GSE) ,
column="SYMBOL",
keytype="ENTREZID")

#> ’select ()’ returned 1:1 mapping between keys and columns

Having obtained a gene-level count matrix we can now perform gene-level DE analysis. Here we use limma-voom,
since 1imma makes it easy to perform a subsequent enrichment analysis. Other tools such as DESeq2 (above)
or edgeR (see below) could also have been used.

Note: limma is a powerful tool for DE analysis of count-based data. However, since it depends on log
transforming counts, it is not always suitable for analyzing datasets where features have very low counts. This is
usually not a problem for gene-level analysis, but can be a problem for enhancers, which are generally very lowly
expressed.

Similarly to the DESeqg2 analysis, we first build the necessary object and then normalize the expression values:

# Create DGElist object
dge <- DGEList (counts=assay(GSE, "counts"),
genes=as.data.frame (rowData (GSE)))

# Calculate normalization factors
dge <- calcNormFactors (dge)

Then we apply the voom-transformation to model the mean-variance trend, for which we also need to specify the
design matrix (in this case the design must contain both wanted and unwanted effects!). The same design matrix
is then used for fitting the gene-wise models:

# Design matrix
mod <- model.matrix(~ Batch + Class, data = colData (GSE))

# Model mean-variance using voom
v <- voom(dge, design=mod)
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# Fit and shrink DE model
fit <- 1lmFit (v, design=mod)
eb <- eBayes(fit, robust=TRUE)

# Summarize the results
dt <- decideTests (eb)

‘We can the both report the overall summary of differential gene expression, and look at the first few top hits:
# Global summary

dt %>%
summary $>%

oo
\
o\

kable (caption="Global summary of differentially expressed genes.")
kable styling(latex options = "hold position")

Table 6. Global summary of differentially
expressed genes.

(Intercept) BatchB ClassNano

Down 51 2572 1505
NotSig 463 8278 10373
Up 13053 2717 1689

# Inspect top htis

topTable (eb, coef="ClassNano") %>%
dplyr::select (symbol, nClusters, AveExpr, logFC, adj.P.Val) %>%
kable (caption="Top differentially expressed genes.") $>%
kable styling(latex options = "hold position")

Table 7. Top differentially expressed genes.

symbol nClusters AveExpr logFC adj.P.Val
66938  Sh3d21 3 5.871004 3.075745 0.0e+00
245049 Myrip 2 4371325 2.414055  7.0e-07
12722  Clca3a1l 1 3.020528 3.692198  7.0e-07
382864 Colg 3 2770158 -3.426911 1.1e-06
20716  Serpina3n 5 6.384175 1.872782  3.0e-06
72275  2200002D01Rik 2 7.208031 1.693257  5.5e-06
381813 Prmt8 4 4553612 1.409006  5.8e-06
170706 Tmem37 2 5503908 1.679690 5.8e-06
18654  Pdf 1 4862055 2.337045  5.8e-06
20361  Sema7a 1 7.612236 1.473680  5.9e-06
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Enrichment of GO- and KEGG-terms. In addition to looking at individual top genes, we can look at how the
differentially expressed genes relate to known databases of gene function to gain insight in what biological
processes might be affected in the experiment.

limma makes it easy to perform such an enrichment analysis following a DE analysis. As we have gene indexed
by Entrez IDs, we can directly use goana to find enriched GO-terms: goana uses a biased urn-model to
estimate enrichment of GO-terms, while taking into account the expression levels of DE genes:

# Find enriched GO-terms

GO <- goana(eb, coef = "ClassNano", species = "Mm", trend = TRUE)
# Show top hits
topGO (GO, ontology = "BP", number = 10) $>%
kable (caption="Top enriched or depleted GO-terms.") $>%
kable styling(latex options = "hold position")
Table 8. Top enriched or depleted GO-terms.
Term Ont N Up Down PUp P.Down
G0:0006954  inflammatory response BP 556 142 51 0 0.9562685
GO:0006952 defense response BP 1072 224 99 0 0.9878373
GO:0097529 myeloid leukocyte migration BP 170 61 14 0 0.9359984
GO:0010033 response to organic substance  BP 2074 370 196 0 0.9987104
GO:0006950 response to stress BP 2755 464 246 0 0.9999946
GO:0006955 immune response BP 1034 210 96 0 0.9833226
G0:0042221  response to chemical BP 2762 467 292 0 009178712
GO:0050900 leukocyte migration BP 288 83 23 0 0.9792828
G0:0001816  cytokine production BP 634 143 45 0 0.9998658
G0:0001817 regulation of cytokine production BP 570 132 39 0 0.9998856
And similarly for KEGG terms:
# Find enriched KEGG-terms
KEGG <- kegga (eb, coef="ClassNano", species = "Mm", trend = TRUE)
# Show top hits
topKEGG (KEGG, number = 10) $>%
knitr::kable (caption="Top enriched of depleted KEGG-terms.") %$>%
kable styling(latex options = "hold position")
Table 9. Top enriched of depleted KEGG-terms.
Pathway N Up Down P.Up P.Down
path:mmu04060 Cytokine-cytokine receptor interaction 173 56 13 0.0000000 0.9579351
path:mmu04668 TNF signaling pathway 105 31 8 0.0000037 0.9186628
path:mmu00600 Sphingolipid metabolism 41 17 2 0.0000051 0.9583011
path:mmu00980 Metabolism of xenobiotics by cytochrome P450 48 4 17 0.8857194 0.0000137
path:mmu03010 Ribosome 122 32 2 0.0000226 0.9999900
path:mmu04064 NF-kappa B signaling pathway 85 24 5 0.0000704 0.9655534
path:mmu04657 1L-17 signaling pathway 74 22 2 0.0000806 0.9985563
path:mmu00982 Drug metabolism - cytochrome P450 46 5 15 0.7266916 0.0001238
path:mmu04630 JAK-STAT signaling pathway 112 29 7 0.0001453 0.9785951
path:mmu04512 ECM-receptor interaction 69 21 13 0.0001488 0.0577601
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Both analyses indicate that genes related to the inflammatory response and defense response are upregulated
following nanotube exposure. This supports the hypothesis that nanotube induces a response similar to

asbestos.

KEGG-terms represents well defined pathways. We can use the pathview package™ to investigate in more detail
the genes in a given enriched pathway. For example, we can look at regulation of gene in the TNF- signalling

pathway:

# Visualize a KEGG

DE genes <- Filter (function(x) x != 0, dt[, "ClassNano"])

# This will save a png file to a temporary directory
pathview (DE genes, species="mmu", pathway.id="mmu04668", kegg.dir = tempdir())

# Show the png file
grid.newpage ()

grid.raster (png: :readPNG ("mmu04668.pathview.png"))
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Figure 13. Detailed view of differentially expressed gene in the KEGG TNF-signalling pathway.
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Differential TSS Usage. In the above two analyses we looked at whether an individual TSSs or an individual
gene was changing expression between experimental groups. However, we might also want to look at whether
a gene show differential TSS usage: whether a gene uses different TSSs under different conditions. This problem
is similar to differential splicing in RNA-Seq, but looking at TSSs rather than isoforms®. Here we will use the
edgeR diffSpliceDGE method to find differential TSS usage, although many other packages could have
been used, for example diffSplice from 1limma, DEXSeq, DRIMSeq, etc..

Intuitively, diffSpliceDGE tests whether a given TSSs show the same change as other TSSs in the same
gene, indicating that TSSs are differentially regulated across the gene. This does however not take into account
the relative composition of a given TSSs, e.g. whether a TSS increases from 1%-2% of gene output or
25%-50%. A useful preprocessing step is therefore to filter out TSSs making only a small contribution to total
gene expression before analyses.

We use CAGEfightR to remove TSSs that are not expressed as more than 10% of total gene expression in more
than 5 samples (We first remove TSSs not assigned to genes):

# Filter away lowly expressed
RSE filtered <- RSE %>%
subset (clusterType == "TSS" & !is.na(genelD)) $>%
subsetByComposition (inputAssay="counts",
genes="genelD",
unexpressed=0.1,
minSamples=5)
#> Calculating composition...
#> Subsetting...
#> Removed 8001 out of 24500 regions (32.7%)

We can only do differential TSS usage analysis of genes with multiple TSSs. A useful first visualization is
therefore to see how many genes use more than one TSS:

RSE filtered %>%
“rowData %>%
as.data.frame %>%
as _tibble $>%
dplyr::count (geneID) %>%
ggplot (aes(x = n, £ill = n >= 2)) +
geom bar (alpha=0.75) +
scale fill colorblind("Multi-TSsS") +
labs (x = "Number of TSSs per gene", y = "Frequency")
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Figure 14. Overview of alternative TSS usage within genes.
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While most genes utilize only a single TSSs, many genes use two or more TSSs.

Again, we build the necessary R-objects for running edgeR:

# Annotate with symbols like before:

rowData (RSE_filtered) Ssymbol <- mapIds (odb,
keys=rowData (RSE_filtered) SgenelD,
column="SYMBOL",
keytype="ENTREZID")

#> ’select ()’ returned 1:1 mapping between keys and columns

# Extract gene info

TSS info <- RSE filtered %>%
rowData %>%
subset (select=c (score, txType, genelD, symbol)) S$>%
as.data.frame

# Build DGEList
dge <- DGEList (counts=assay (RSE filtered, "counts"),
genes=TSS info)

Then we normalize and fit models using the Quasi-likelihood approach, including the dif£SpliceDGE step:

# Estimate normalization factors
dge <- calcNormFactors (dge)

# Estimate dispersion and fit GLMs
disp <- estimateDisp(dge, design = mod, tagwise = FALSE)
QLfit <- glmQLFit (disp, design=mod, robust = TRUE)

# Apply diffSpliceDGE

ds <- diffSpliceDGE (QLfit, coef = "ClassNano", geneid = "genelID")
#> Total number of exons: 16499

#> Total number of genes: 13563

#> Number of genes with 1 exon: 11098

#> Mean number of exons in a gene: 1

#> Max number of exons in a gene: 5

Now we can look at differential TSS usage at two-levels: Whether an individual TSS shows differential TSS
usage (TSS-level) or whether a gene show differential TSS usage in any way (gene-level). First we can look at

individual TSSs (TSS-level differential TSS usage):

dtu TSSs <- topSpliceDGE (ds, test = "exon")
dpl§r::select(dtu_TSSs, txType, genelD, symbol, logFC, FDR) %>%
kable (caption = "Top differentially used TSSs") %$>%
kable styling(latex options = "hold position")
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Table 10. Top differentially used TSSs.

txType genelD symbol logFC FDR
chr17:13840650-13840851;- intron 21646  Tcte2 1.7889344  0e+00
chr10:57857044-57857314;+ promoter 110829 Lims1 -1.0651946  0e+00
chr14:70215678-70215876;- intron 246710 Rhobtb2 = 2.4933979 0e+00

chr4:141154044-141154185;- intron 74202  Fblim1 1.7018062 0e+00
chr17:33966135-33966308;+ intron 66416  Ndufa7 2.1612127 0e+00

chr15:76428030-76428201;- intron 94230  Cpsfi 1.4598815 0e+00
chr19:57271818-57272125;- promoter 226251  Ablim1 1.1456163 0e+00
chr9:77788968-77789200;+ intron 68801  Elovl5 0.9810692  1e-07
chr11:116395161-116395462;+ proximal 20698  Sphki 1.7471930  1e-07
chr2:91496305-91496449; + intron 228359 Arhgap1  0.9809491  3e-07

The interpretation of log fold changes here is slightly different from before: These log fold changes are relative to
the overall log fold change for all TSSs in that gene.

Then we can look at results for each gene (Gene-level differential TSS usage):

dtu genes <- topSpliceDGE (ds, test = "Simes")
dplyr::select (dtu genes, genelD, symbol, NExons, FDR) %>%
kable (row.names = FALSE,
caption = "Top genes showing any differential TSS usage.")
kable styling(latex options = "hold position")

oe
\
oe

Table 11.Top genes showing any
differential TSS usage.

genelD symbol NExons FDR

21646  Tcte2 4  0e+00
110829 Lims1 3 0e+00
246710 Rhobtb2 3 0e+00
74202  Fblim1 3 0e+00
66416  Ndufa7 3 0e+00
94230  Cpsft 2 0e+00
226251  Ablim1 3 0e+00
68801  Elovl5 2 1e-07
20698  Sphki 3 1e-07
228359 Arhgapi 2 2e-07

We see that the two lists agree, which is not surprising given that the gene-level results are obtained by
aggregating TSS-level p-values across genes.

We can look at closer at the TSS usage in on of the top hits: We can visualize the batch-corrected expression
(See above) of each TSS in the Fblim1 gene via a heatmap:

RSE filtered %>%

subset (geneID == "74202") %>%
assay ("ComBat") %>%
t $>%

pheatmap (color = magma (100),
cluster cols = FALSE,
main="Fbliml")
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Figure 15. Heatmap showing expression of TSSs within Fblim1.

Fbliml has 3 TSSs, with 2 of them being used in the Ctrl samples, while the Nano samples also uses the
chr4:141154044-141154185;- TSS, as also seen in the TSS-level table above. While a heatmap is useful for

seeing expression changes, a genome browser view is better to inspect the genomic context of each TSSs:

# Define plot area
plot region <- subset (RSE filtered, geneID == "74202") $>%
rowRanges %>%
reduce (min.gapwidth=1e6) %>%
unstrand () %>%
add (5e3L)

# Create cluster track

cluster track <- subsetByOverlaps (RSE filtered, plot region) %>%
trackClusters (name = "Clusters", col = NA, showId=TRUE)

#> Setting thick and thin features...

#> Merging and sorting...

#> Preparing track...
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# CTSS tracks for each group
ctrl track <- subset (CTSSs, select=Class == "Ctrl") %>%
calcPooled () %>%
subsetByOverlaps (plot region) %>%
trackCTSS (name="Ctrl")
#> Warning in calcPooled(.): object already has a column named score in
#> rowData: It will be overwritten!
#> Splitting pooled signal by strand...
#> Preparing track...

nano track <- subset (CTSSs, select=Class == "Nano") $%>%
calcPooled () %>%
subsetByOverlaps (plot region) 3%>%
trackCTSS (name="Nano")
#> Warning in calcPooled(.): object already has a column named score in
#> rowData: It will be overwritten!
#> Splitting pooled signal by strand...
#> Preparing track...

# Plot at tracks together
plotTracks (list (axis_track,
tx track,
cluster track,
Ctrl=ctrl track,
nano_track),
from = start (plot region),
to=end (plot region),
chromosome = segnames (plot region))

141.15 mb 141.16 mb
1 1

>

T T
141.155 mb 141.165 mb

P
-

‘ t 1

141154044-141154185;- ' chr4:141161872-141162070;- i

chr4:141155731-141155996;- h

l [ o

H minus M plus

B minus M plus

Figure 16. Genome-browser example of differential TSS usage within Fblim1.
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The Fblim1 gene uses two annotated TSSs, but the Nano samples also uses a novel intronic TSS.

Discussion

This workflow is intended as providing an outline of the basic building blocks of CAGE data analysis, going
from clustering, to spatial analyses to differential expression. More advanced analyses can be strung together
from these basic elements: Finding enhancers linked to DE TSSs, enhancer stretches composed of DE enhancer,
comparing DNA binding motif enrichments between DE enhancers and TSSs, etc.

One aspect not covered in this workflow is the utility of CAGE data (and 5’-end data in general) in providing
accurate TSSs for studying other types of data. For example, having accurate TSSs is highly beneficial in chroma-
tin research, since the location and nucleosome and TSSs are closely related****". CAGE can be combined with
chromatin confirmation assays such as HiC to find new enhancers that are both co-expressed and physically interact-
ing with TSSs. Many genome-wide association studies are finding that disease-related genetic variants are found in
intergenic regions, that are often poorly annotated. The accurate enhancer locations provided by CAGE can greatly
aid interpretation of such variants*'. The adherence of CAGEfightR to standard Bioconductor classes facili-
tates these inter-assay analyses by making it easy to mix-and-match multiple packages developed for different
experimental assays.

Software and data availability
The following software versions were used in this article:

e R version: R version 3.6.0 (2019-04-26)
. Bioconductor version: 3.9

*  CAGEfightR version: 1.4.0

CAGEWorkflow: https://doi.org/10.18129/B9.bioc. CAGEWorkflow*?
License: GPL-3

Mouse nanotube CAGE data: https://doi.org/10.18129/B9.bioc.nanotubes™
License: GPL-3
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Thodberg and Sandelin present CAGEfightR, a new Bioconductor package suited for analysis of 5'end
oriented datasets, derived from CAGE-seq and similar techniques.

Although similar Bioconductor packages exist (icetea, CAGEr, TSRchitect), the greatest strength of
CAGEfightR is unique in its ability to call or predict putative enhancers based on the bidirectional
transcription initiation signature, thus filling the gap in the current R-based toolkit for CAGE-like data
analysis.

In addition, using CAGEfightR, hypotheses of enhancer-promoter interactions based on co-expression
levels can be easily set and visualised.

The package is well-documented, and the step-by-step protocol well written and easy to follow. | only
have a few minor comments which could benefit the general reader:

1. The introduction and abstract could state more clearly that CAGE allows TSS mapping of only
RNA polymerase Il transcripts. Though this is implied through usage of cap-trapping, | would keep
in mind that this workflow might be used by general readers not so familiar with TSS-mapping
techniques. Considering the advent of technologies that capture RNA poll-RNApollll transcripts,
expected to be much noisier, it would be better to make it as clear as possible. If the authors
believe CAGEfightR could be of use on noisier data, from experimental methods based on
negative selection (such as TSS-seq), it would be worth testing this and including a few sentences,
as this would promote CAGEfightR usage on any TSS mapping technique.

2. | support comparison of existing packages in the form of Table 1; however, | would expand this
comparison to include unique features that perhaps CAGEfightR does not have - e.g. icetea and
TSRchitect support paired-end data, CAGEr has TSS-shifting discovery function and implemented
G-correction function to remove mismatching G’s from 5’ends of reads.

3. Common problem with CAGE and CAGE-like data which is obtained through reverse transcription,
is the addition of a G, or so called G-bias upstream of the true transcription start site.
It would be beneficial for general readers as this is a step-by-step protocol to discuss how to
generate BigWig files from fastq files, and how to address the G-bias problem/i.e. remove the
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mismatching G’s at the 5’end of the reads.

4. The authors prefer to use the term TSS regions or TSSs in place of tag clusters as aggregated
CTSSs, and even TSSs as a broader term for CTSS while CTSS is just a CAGE-supported TSS.
This becomes very confusing for a general reader, especially page 36:

“Now we look at differential TSS usage at two-levels: Whether an individual TSS shows differential
TSS usage (TSS-level) or whether a gene show differential TSS usage in any way (gene-level).
First we can look at individual TSSs (TSS-level differential TSS usage).”

| would suggest usage of CTSS for individual CAGE-supported TSSs, tag cluster - for an
aggregate of individual CTSSs based on distance based clustering or whatever methodology, and
tag cluster can be interchangeably used with promoter where needed.

5. Interquartile range should probably be interquantile range as it spans middle 10-90th percentile of
the signal. It would also be beneficial to explain why is it used instead of all signal (more robust
measure that excludes outliers and is less sensitive to sequencing depth etc).

6. | am a bit surprised the authors use such harsh filtering step before plotting distributions of IQR
(Figure 5, TPM >=10), | would assume that the problem is in tag clusters which seem sharp - single
bp, and therefore it would perhaps be beneficial to add a more stringent filtering step only to single
bp tag clusters to be retained only if highly expressed (>= 5 TPM), while a lower threshold can be
applied on broad tag clusters as multiple CTSS within a tag cluster give more certainty that it is not
just noise.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Computational and experimental genomics

| confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.
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Kenta Nakai

Department of Computational Biology and Medical Science, The University of Tokyo, Tokyo, Japan
Luis Augusto Eijy Nagai

Institute of Medical Science, University of Tokyo, Tokyo, Japan

In this paper, the authors present a cookbook for analyzing CAGE data mainly through their own
Bioconductor package, CAGEfightR, applied to sample data, which were analyzed and published by their
group previously. By following the given source codes, readers will be able to learn how they can obtain
various kinds of information rather easily. Thus, | feel that this publication will be useful for those who want
to learn how to analyze CAGE data quickly. On the other hand, it will not tell us how to solve our deeper
problems in research. | know that this is out of the scope of this tutorial but | can’t help but feeling, for
example, how the given procedure for reducing batch effects can be justified (see below). Thus, here are
some of my suggestions for its further improvement:

1. In our realistic situations, the EDA approach is quite important. In this sense, | appreciate their
demonstration on how to remove batch effects from the expression data between various samples,
using ComBat (Figs. 9 and 11). However, most researchers will not be satisfied with just seeing
that the PC1 has become to separate positive and negative groups; it is natural that they would like
to confirm if the correction was enough or not; they would also wish to see what the new PC2 as
well as the old PC1 represent. Therefore, | recommend the authors to extend Table 2 for
characterizing each sample from various features (e.g., experimental conditions and data size) and
to use such features for the interpretation. More discussion and/or additional attempts to clarify the
most probable main reason for the initial batch effects would be desirable.

2. Similarly, since the first author does not seem to have been a member of the previous analysis, it is
interesting to see the consistency between the two studies. For example, the observation that
inflammation-related genes were activated seems to be the same in both analyses. Then, are the
genes with differential TSSs likely to explain the phenomenon? How much are the detected
enhancers contributing to the differential expression? Do these enhancers (or newly activated
TSSs) share any over-represented motifs? From the same reason, | recommend the authors to
avoid using (ugly) chromosomal coordinates to represent genes/promoters/enhancers, wherever
possible. It would be great if the authors can show that they could perform deeper analyses this
time.

3. For the convenience of wider readers, it might be useful to show the way how to obtain BigWig files
from rawer data (BAM or fastq, if possible).

4. Similarly, a summary table of used tools (except CAGEfightR), containing their input file information
as well as their main purposes might be useful.

5. Also, it might be useful if there is a summary on what CAGEfightR can do/cannot do. For example,
is it possible to combine different sources of CAGE data with this workflow?

6. One of my students tried to follow the workflow. At first, she failed to install some of the packages.
It was because the version of R she used was R3.5. Thus, this point should be clearly noted. In
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addition, she reports that to run the code “Fit and shrink DE model”, the installation of “statmod”
and “BiasedUrn” was necessary. Perhaps, some additional information on how to setup initial
environment would be useful for beginners.

7. As a cookbook, it is desirable that users can find their necessary items more easily (via a table of
contents with clearer headers, perhaps?).

8. There seems to be some confusion on the versions used:

As for the mouse genome sequence, (1) both mm9 and mm10 are used. (2) Why didn’t they use
the latest version of JASPAR (Jaspar2018)?

9. The manuscript seems to contain many typos. Here are some that we found (there are likely to be
more): (1)This is workflow is a case study on (2) CAGE dusters (3) can be speed up (4) novel
TSSs are expresse d (5) to try infer (6 )this is a just a very quick (7) The returned GRanges
contains the the location (8) going from clustering, to spatial analyses to differential expression.

Is the rationale for developing the new software tool clearly explained?
Partly

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes
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Aaron Lun
Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK

Thodberg and Sandelin describe a comprehensive workflow for the basic analysis of CAGE data. The
workflow is simple, well-presented and the code mostly runs without problems. | only have a few minor
comments to improve its usefulness for the general reader:

There should be a general overview on how the CTSS BigWig files are generated from raw FASTQ
files.

Consider using ExperimentHub for the nanotubes package. This provides greater control over
which files are downloaded, rather than forcing the user to obtain all files at installation. This
is especially useful if you have multiple data sets - see, for example, the chipseqDBData package. '

Explain what a BigWigFileList is, and why it needs to be used instead of having a simple character
vector.

Consider not having string'ified intervals as the row names in the output of quickTSSs(). In some
situations, generation of the strings can use more RAM than the actual data itself. It definitely slows
down any attempt to 'show' the output. | would suggest that this be deferred as late as possible,
e.g., until someone needs the strings as row names of a data frame to save to file.

More details are required on how quantification is performed. For example, | assume counts are
summed directly from single strands for TSSs. For enhancers, are counts summed from both
strands?

"As enhancers are the most complicated type, we keep only enhancers if a TSS and enhancer
overlaps:" The complexity of the enhancers doesn't really provide a motivation for only keeping
enhancers in cases of overlaps. The better reason is that all enhancers would be detected as two
TSSs if the strandedness was ignored; if they do overlap, it would be more appropriate to interpret
them as a single enhancer rather than as two distinct TSS events.

The Interquartile Range (IQR)... of what? | assume that the range refers to the length of the interval
that contains 10 to 90% of a TSS's counts. Incidentally, the IQR is no longer an IQR if it's redefined
from 10-90%.

The single quotes in the highTSSs call are malformed, which prevents copy-pasting.

One could consider using a 2-component mixture model to classify elements into sharp/broad in a
more automated manner.

| presume that the pairwise correlations for the TSS-enhancer interactions are computed across
samples for each TSS/enhancer pair. If so, is this done after blocking on the design? Otherwise it is
possible to obtain strong positive correlations simply because a TSS and the enhancer happen to
respond in the same direction to a given treatment. If there is a genuine physical interaction, it
should manifest as correlations within each treatment condition, where stochastic differences in
RNA polymerase activity affect both the TSS and its interacting enhancer.
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® There is no correction for multiple testing in the p-values from the links. While | recognise that this
is a limitation of the small sample size, it should still be pointed out as a caveat of the analysis.

® All normalization steps in the DE analyses assume that most of the input features are not
differentially expressed between conditions. This is usually not a concern, but if aggressive feature
selection is performed, it may become a problem. For example, if one were to perform the DE
analysis on superenhancers only, it would give incorrect results in situations where the
superenhancer activity increases globally upon treatment.
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