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Abstract

Amphibians inhabiting montane riparian zones in the Neotropics are particularly vulnerable

to decline, but the reasons are poorly understood. Because environmental contaminants,

endocrine disruption, and pathogens often figure prominently in amphibian declines it is

imperative that we understand how these factors are potentially interrelated to affect mon-

tane populations. One possibility is that increased precipitation associated with global warm-

ing promotes the deposition of contaminants in montane regions. Increased exposure to

contaminants, in turn, potentially elicits chronic elevations in circulating stress hormones that

could contribute to montane population declines by compromising resistance to pathogens

and/or production of sex steroids regulating reproduction. Here, we test this hypothesis by

examining contaminant levels, stress and sex steroid levels, and nematode abundances in

male drab treefrogs, Smilisca sordida, from lowland and montane populations in Costa Rica.

We found no evidence that montane populations were more likely to possess contaminants

(i.e., organochlorine, organophosphate and carbamate pesticides or benzidine and chloro-

phenoxy herbicides) than lowland populations. We also found no evidence of elevational

differences in circulating levels of the stress hormone corticosterone, estradiol or progester-

one. However, montane populations possessed lower androgen levels, hosted more nema-

tode species, and had higher nematode abundances than lowland populations. Although

these results suggested that nematodes contributed to lower androgens in montane popula-

tions, we were unable to detect a significant inverse relationship between nematode abun-

dance and androgen level. Our results suggest that montane populations of this species are

not at greater risk of exposure to contaminants or chronic stress, but implicate nematodes

and compromised sex steroid levels as potential threats to montane populations.
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Introduction

Amphibians are declining on a global scale and at an unprecedented rate [1–7]. An especially

puzzling aspect of this phenomenon involves declines of populations in remote, protected

areas [1]. For example, amphibians inhabiting relatively undisturbed montane riparian zones

in the Neotropics appear to be particularly vulnerable to decline, but why these populations

are more severely impacted is unclear [2, 8].

One potential explanation for such “enigmatic” declines [2] integrates global climate

change with contaminant exposure, endocrine physiology, and disease [9–21]. For example,

the worldwide increase in precipitation, stemming from global warming [22–24], potentially

promotes the deposition of environmental contaminants at high elevations via “cold conden-

sation” following volatilization in warm regions [25, 26]. Indeed, alarming levels of contami-

nants (i.e., organochlorine compounds, organophosphates, carbamates) are increasingly

documented in otherwise pristine, high elevation habitats [11, 25, 26]. These effects are of

major conservation concern because increased exposure to contaminants can initiate physio-

logical responses that compromise population viability and the health of ecosystems [27–30].

In particular, exposure to contaminants potentially promotes chronic elevations in circulating

stress hormone levels (i.e., glucocorticoids)[31–33] that can suppress immune responses and/

or sex steroid production [34–37] resulting in increased susceptibility to pathogens and/or

reduced reproduction [13, 17, 20, 38–41].

The threat of contaminants to montane amphibian species is well established from work in

the Sierra Nevada mountains of the western USA [11, 15, 42–45]. Persistent organic pollutants

and “current use pesticides” transported by wind or captured in water evaporating from Cali-

fornia’s Central Valley accumulate in clouds, condense at high elevations, and are deposited

with precipitation [11, 46–48]. Declining amphibian species inhabiting the Sierra Nevada

mountain range possess high concentrations of agricultural pesticides and industrial pollutants

originating from upwind sources and surrounding lowland regions [11, 42–44, 49]. Individual

contaminant levels often exceed those found in water and soil, indicating that they are accu-

mulating in tissues [50]. In addition to the Sierra Nevada mountain range, the European Alps,

the Himalayas, and neotropical montane regions are predicted to be particularly susceptible to

contamination by man-made chemicals because of prevailing wind and rainfall patterns and

close proximity to dense human populations with high agricultural and industrial activity [51,

52].

Exposure to environmental contaminants can severely perturb the endocrine physiology of

wildlife species [28, 31, 53–59] with increasing evidence linking contaminants and endocrine

stress to amphibian declines [13, 17]. The vertebrate endocrine stress response involves the

production of adrenal glucocorticoids that are regulated by hormones produced by the hypo-

thalamus (corticotrophin releasing hormone, CRH) and anterior pituitary gland (adrenocorti-

cotropic hormone, ACTH). The production of glucococorticoids can be triggered by any

environmental perturbation that potentially disrupts homeostasis, including exposure to nox-

ious chemicals [32]. Chronically elevated glucocorticoid levels can repress T and B immune

cell proliferation [60] and inhibit the production of sex steroids regulating reproductive behav-

ior [35, 61–63], suggesting that endocrine stress could contribute to amphibian declines by

increasing susceptibility to pathogens or decreasing reproduction. Consistent with this

hypothesis, exposure to pesticides has been shown to elicit elevations in circulating stress hor-

mones that cause immunosuppression via damage to the thymus gland in African clawed frogs

[13, 17] and glucocorticoid administration rapidly inhibits amplexus (mounting) behavior in

male newts [64] and vocalization in male frogs [65–66]. Hormonal effects on behavior could

also influence the risk of parasitism. For example, testosterone-mediated increases in territorial
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behavior and reductions in feeding behavior potentially increase ectoparasite loads and

decrease endoparasite loads in male mountain spiny lizards, Sceloporus jarrovi [67].

The potential links among environmental contaminants, endocrine stress, and immune

responses have clear implications for emerging infectious diseases that have been increasingly

linked to amphibian declines [68]. While chytridiomycosis, caused by the fungus Batrachochy-
trium dendrobatidis (Bd), has received the most attention [8, 69–73], macroparasites (i.e., nem-

atodes, cestodes and trematodes) can also pose major threats to amphibian populations [19].

For example, the trematode Ribeoroia ondatrae causes severe morphological abnormalities

that have contributed significantly to amphibian population crashes [72, 74]. Several lines of

research link macroparasite infections to environmental contaminants and endocrine disrup-

tion in amphibians. For example, exposure to the widely used herbicide atrazine increases

trematode infection risks in leopard frogs, Rana pipiens [75]. Atrazine has been shown to

increase glucocorticoid production in amphibians [17] and glucocorticoid administration can

increase susceptibility of amphibians to trematode infections [41], suggesting causal links

among contaminants, endocrine stress, and trematode infection risks.

Despite abundant evidence linking declining amphibian populations to contaminants,

endocrine disruption, and pathogens, studies that simultaneously assess these factors and the

links among them in natural populations are generally lacking, even though integrated

approaches may be essential for understanding the complexity of declines [17, 19–21]. Here,

we examine environmental contaminants, circulating stress and sex steroid levels, and nema-

tode parasite abundances in high and low elevation populations of the drab treefrog, Smilisca
sordida, from the Pacific versant of Costa Rica. We focus on a suite of environmental contami-

nants (i.e., organochlorine, organosphosphate and carbamate pesticides, and benzidine and

chlorophenoxy herbicides) that have been implicated in amphibians declines [11, 17]. The

goal was to determine whether these variables are interrelated in a way that is indicative of

increased threats to montane populations. Specifically, we asked whether high elevation popu-

lations were at greater risk of: 1) exposure to environmental contaminants, 2) high circulating

stress hormone levels, 3) compromised sex steroid levels, and 4) nematode infections. We

found that environmental contaminants were not more prevalent in high elevation popula-

tions and that circulating glucocorticoid, estrogen and progesterone levels varied minimally

with elevation. However, high elevation populations possessed greater nematode abundances

and lower androgen levels that could pose threats to montane populations.

Materials and methods

Study species, sites and general procedures

Smilisca sordida is a common hylid species found throughout much of Central America and

Costa Rica [76]. The species breeds during the dry season in streams [77–79] at elevations

ranging from near sea level to 1,525 m [76]. This species is not currently at risk of decline, but

its broad geographic and elevational range makes it an ideal subject in which to investigate the

relationships among elevation, contaminants, hormones, and pathogens.

Populations of S. sordida were studied in two regions of western Costa Rica ranging from

445–1053 m in elevation for high elevation populations and 18–82 m for low elevation popula-

tions (see Fig 1). The northern-most studied region included 6 populations located north of

Jaco in and adjacent to the Parque Nacional Carara in Puntarenas and San Jose Provinces con-

sisting of 3 high elevation populations (>445 m) and 3 low elevation populations (<59 m).

These populations were characterized by inceptisol soils at low elevations and ultisol/inceptisol

soils at high elevations (source: Universidad de Costa Rica, Centro de Investigaciones Agronó-

micas) and consisted of lowland and premontane tropical moist forests [80]. The southern-
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most region included 8 populations located north of Golfito in Puntarenas Province consisting

of 5 high elevation populations (> 784 m, with only one individual collected from Quebrado

Pavo) and 3 low elevation populations (< 82 m)(Fig 1). These populations were characterized

by entisol/inceptisol soils at low elevations and andisol soils at high elevations (source: Univer-

sidad de Costa Rica, Centro de Investigaciones Agronómicas) and consisted of tropical wet

forest and premontane wet forest [80].

Data were collected from male S. sordida over a period of 8 days during the breeding period

from 11–19 March 2016; the narrow time frame of data collection was intended to minimize

seasonal variation in circulating hormone levels [81, 82]. Data collection times ranged from

1900 to 0300 h. To minimize the effects that nightly changes in circulating hormone levels [81,

82] could have on comparisons of hormone levels across study sites, nightly sampling periods

were randomized across sites (e.g., low elevation sites were not sampled earlier in the evening

than high elevations sites or vice versa).

Males were found vocalizing at all sites at similar chorus densities. At each site, calling

males were captured by hand and rapidly bled via cardiac puncture. Of the 123 males captured,

blood was obtained from 119 individuals. Snout-ischial length (SIL) and weight were then

measured with a ruler and portable Ohaus digital scale and males were subsequently placed in

Fig 1. Sampling localities for S. sordida in Costa Rica. (A) Variation in latitude among sampled populations. (B) Magnified view of northern latitude

populations and (C) southern latitude populations. Population elevations and total individuals captured: Bijagual Field Station (449m, n = 10), Bijagual

Creek (445m, n = 12), Bijagualito Creek (446m, n = 10), Quebrada Bonita (59m, n = 7), Quebrada Pita (18m, n = 10), Rio Tarcolitos (22m, n = 10),

Quebrada Cantarrana (1,053m, n = 7), Rio Jaba (964m, n = 10), Rio Sabalito/Rio Sabalito-Juntas (899m/784m, n = 15), Quebrada Pavo (795m, n = 1),

Rio Coto Colorado (76m, n = 16), Quebrada Minas (30m, n = 5), Rio Oro (82m, n = 10).

https://doi.org/10.1371/journal.pone.0191183.g001
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plastic bags with water and leaves to prevent multiple sampling of the same individuals. Blood

samples were immediately transferred to eppendorf tubes and stored on ice until they were

centrifuged in less than 8 h after acquisition at 4,000 rpm for 2 min to separate plasma that was

immediately frozen.

Of the 123 males captured, 53 (representing all sampled sites) were euthanized within 12 h

via rapid decapitation using surgical scissors. The entire liver was then removed and rapidly

placed in a liquid nitrogen dewar in labeled cryovials for contaminant analysis. Dissected spec-

imens were then visually inspected for parasites located throughout the abdominal and tho-

racic cavities and in the gastrointestinal tract. Parasites were removed and placed in ethanol

for genetic analysis and identification. Parasites were examined from 52 of the euthanized

individuals and adequate blood plasma volume for hormone analysis was acquired from 51 of

those individuals. The remaining individuals were released at the point of capture.

Plasma and liver samples were transported back to the United States on ice or in a dry

nitrogen dewar. Specimens that were sacrificed for liver samples and contaminant analyses

were deposited in the Auburn University, AL, USA Herpetology Collection (Accession num-

bers: AUM 42955–43008).

Quantification of contaminants

Contaminant levels in frog liver samples were quantified at the University of Connecticut Cen-

ter for Environmental Sciences and Engineering. Analysis of tissue contaminants included 31

chemicals commonly used either currently or historically in Costa Rica (i.e., organochlorines

and other current use pesticides/herbicides [83]; see S1 Appendix). Each homogenized liver

tissue sample (0.2 g) was placed in a micro centrifuge vial, spiked with a surrogate solution and

vortex mixed. Acetonitrile (500 uL) was then added and samples were sonicated, vortexed, and

centrifuged before being transferred to separate vials. Following extraction, the samples were

analyzed with an Agilent (Norwalk, CT, USA) 6890 gas chromatograph equipped with a Restek

(Bellefonte, PA, USA) Rxi-5Sil MS column (30m) using splitless injection, coupled to a Waters

(Milford, MA, USA) Quattro Micro tandem mass spectrometer (GC/MS/MS). Samples were

analyzed for atrazine, 2–4 D, and acetochlor using a Waters ultra-performance liquid chro-

matograph coupled to a Waters (Milford, MA, USA) Acquity tandem mass spectrometer

(UPLC/MS/MS).

All peaks were quantified against an internal standard and extraction efficiency was evalu-

ated using multiple surrogate standards. Standard quality assurance procedures were

employed, including analysis of duplicate samples, method blanks, matrix spike duplicates,

and laboratory control samples (LCS). Surrogate and LCS percent recovery were all within 85–

115%, calibration verification recoveries were all within 90–100%, matrix spike recovery was

within 50–130%, and all blanks were below reporting limit. Reporting limits corresponded to

the lowest standard on the calibration curve.

Hormone analysis

Hormone separation and quantification of plasma progesterone (P), dihydrotesterone (DHT),

testosterone (T), estradiol (E2), and corticosterone (CORT) concentrations followed the proto-

col described by [84]. Briefly, plasma samples were incubated overnight with tritiated hormone

(PerkinElmer, Inc. Hebron, KY, USA) for determination of recoveries for each sample. Ste-

roids were then extracted from plasma using diethyl ether, dried under nitrogen gas at 40˚C,

and resuspended in 10% ethyl acetate in iso-octane. Samples were then loaded onto diatoma-

ceous earth columns containing a 3:1 diatomaceous earth:distilled water “glycol trap” and a 1:1

propanediol:ethylene glycol mixture. Mixtures of 2%, 10%, 20%, 40% and 50% ethyl acetate in

Contaminants, endocrinology, parasites and amphibian declines

PLOS ONE | https://doi.org/10.1371/journal.pone.0191183 January 11, 2018 5 / 22

https://doi.org/10.1371/journal.pone.0191183


iso-octane were then used to collect P, DHT, T, E2 and CORT, respectively. Fractions were

dried under nitrogen and resuspended in phosphate buffered saline containing 0.3% gelatin

for radioimmunoassay. All samples were assayed in duplicate. Antibodies were purchased

from the following suppliers: P and T, Fitzgerald Industries International Inc, Acton, MA,

USA (#20R-PR053W and #20R-TR018W); E2, ABD Serotec, Raleigh, NC, USA (#7010–2650);

CORT, MP Biomedicals, LLC, Solon, OH, USA (#07120016). T antibody was used for both T

and DHT assays. All samples were assayed in duplicate and randomized with respect to lati-

tude and elevation across 3 assays. Mean intra-assay coefficients of variation for P, DHT, T, E2

and CORT were 12%, 5.7%, 3.5%, 14% and 12%, respectively, based on 4 standards run with

each assay; inter-assay coefficients of variation were 16%, 9%, 6%, 17% and 9%, respectively.

Parasite identification

Parasites were counted and categorized into four types based on morphology, color, and host

tissue location and subsequently preserved in 95% EtOH. We extracted genomic DNA from

one parasite type from 2–5 specimens for each of the four designated morphotypes using a

DNAeasy kit (QIAGEN, Germany) following manufacturer protocols. To confirm our catego-

rization of unique parasite types and assign genus level identification, we generated an ~800

base pair DNA sequence from the 18S small subunit of rRNA using PCR primers and reaction

conditions developed by [85]. The 18S small subunit of rRNA is commonly used as a barcod-

ing gene to aid in the identification of nematode species [86]. Amplification reactions were

performed in 10 μl volumes using the following conditions: 2 μl GoTaq 5X Buffer (Promega,

Madison, WI, USA); 0.8 μl 1 mM dNTP Mix (Promega, Madison, WI, USA); 0.2 μl 10 μM

Nem_18S_F primer (5’-CGCGAATRGCTCATTACAACAGC-3’); 0.2 μl 10 μM Nem_18S_R

primer (5’-GGGCGGTATCTGATCGCC-3’); 0.08 μl GoTaq1 Polymerase (Promega,

Madison, WI, USA); 5.72 μl water; and 1 μl of DNA. Amplification was performed on a

BioRad T100 thermocycler (BioRad, Hercules, CA, USA) using the reaction conditions of [85].

Reactions were cleaned using ExoSapIT (Affymetrix, Santa Clara, CA, USA) and clean PCR

products were cycle-sequenced using BigDye 3.1 (Life Technologies, Carlsbad, CA, USA)

terminator reactions for each sequence direction. Terminator reactions were cleaned with

Sephadex size exclusion media (GE Healthcare Life Sciences, Pittsburgh, PA, USA). Clean ter-

minator reactions were sequenced on an ABI 3130 (Life Technologies, Carlsbad, CA, USA)

capillary sequencer following standard protocols. Sequence chromatograms were assembled

into contigs, edited, and aligned using CLUSTALW in Geneious 8.1.7 (Biomatters Inc., Auck-

land, New Zealand). Gene alignments were exported as FASTA files for subsequent analyses.

Sequences are deposited in Genbank under accession numbers KY856727-KY856739.

We used megaBLAST to compare 18S sequences from collected nematodes to all nucleotide

sequences available in Genbank. We used top BLAST hits together with evidence from the lit-

erature on nematodes from Smilisca [87] to aid in nematode identification. No BLAST hit was

a perfect match, most likely because 18S sequence data from nematodes of Smilisca were not

available in Genbank, and scarce for amphibian hosts in general. Therefore, we regard the

genus level identification used throughout the present manuscript as a way to classify the dif-

ferent taxa.

Body condition

Frogs can lose a significant amount of body mass during the reproductive period [88] and

body condition is highly correlated with circulating hormone levels (i.e., CORT) in some

anuran species [82, 89]. Hence, body condition estimates were calculated by obtaining the

residual values from a linear regression of the cubed root body mass on snout-ischial length
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(SIL) and dividing those values by the SIL [82]. These values were used to examine the rela-

tionships between body condition, hormone levels and nematode abundances.

Statistical procedures

All variables were first examined for homogeneity of variance and normality. Homogeneity of

variance was assessed using Levene’s tests and normality was assessed by determining whether

skewness exceeded ± 2 [90]. Total androgen level (DHT + T) and body condition had a skew-

ness within the range of ± 2 which was sufficient to establish normality for univariate analyses

[90]. Individual levels of each hormone were non-normally distributed and were logarithmi-

cally transformed. A two-way MANOVA was performed to test for latitudinal and elevational

differences in circulating hormone levels. The assumption of multivariate normality was tested

using a Mardia test [91]. Univariate outliers were examined using boxplots and multivariate

outliers were explored using Mahalanobis distances [92]. The assumption of multicollinearity

was tested using variance inflation factors (VIF) with a VIF > 10 indicative of robust multicol-

linearity [93]. Contaminant levels and parasite abundances were non-normally distributed

and also contained an excess of zero values. Thus, there was an issue of heteroscedasticity and

potential for over-dispersion. Zero inflated models (e.g., negative binomial and Poisson) were

inefficient when examining latitudinal and elevational differences in contaminant levels and

parasitic abundances across populations. Hence, we coded the presence and absence of con-

taminant and parasite data with binary values [0 = absent, 1 = present] and ran Fisher’s exact

tests. The premise for running Fisher’s exact tests was to correct for low expected values result-

ing from a bias towards zero. Lastly, we used regression analysis to explore interrelationships

among the measured parameters. All analyses were done using SPSS version 24 (IBM software,

Chicago, IL USA). To control for multiple comparisons in univariate analyses, a Benjamini–

Hochberg correction [94] was implemented using a false discovery rate (FDR) alpha of 0.20.

Ethics statement

This study was carried out in accordance with the Guidelines for the Euthanasia of Animals by

the American Veterinary Medical Association. All procedures were approved by the University

of Mississippi Animal Care and Use Committee (protocol #15–015). Scientific collecting per-

mits were granted through El Ministerio de Ambiente, Energia, El Sistema Nacional de Áreas

de Conservación, Costa Rica (permit #ACOPAC-INV-008-16).

Results

Contaminants

Of the 31 contaminants analyzed (see S1 Appendix), only 9 were detected in the 53 S. sordida
liver samples that were collected. The rank order of the proportion of individuals with detect-

able levels of contaminants was: aldrin (8 individuals), trans(gamma)-chlordane (6 individu-

als), dieldrin (3 individuals), 4,4-DDD (3 individuals), trans-nonachlor (2 individuals), cis

(alpha)-chlordane (1 individual), cis-nonachlor (1 individual), atrazine (1 individual), aceto-

chlor (1 individual). Of the 26 individuals with detectable levels of contaminants (49% of sam-

pled individuals), only 3 possessed more than one contaminant and none possessed more than

two contaminants. Analyses were limited for trans-nonachlor, cis(alpha)-chlordane, cis-nona-

chlor, atrazine, and acetochlor because they were detected in� 2 individuals and, hence, there

were no reliable analyses to test for differences between populations. Results from a Fisher’s

exact test indicated that, for all other detected contaminants, there were no differences in the
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proportions of individuals that tested positive for a particular contaminant in northern versus

southern latitudes or high versus low elevation populations (p� 0.08; Table 1).

Hormone levels

The time of night that blood samples were collected did not differ for northern and southern

latitude populations (t- test, p = 0.77, n = 119) or low and high elevation populations (t- test,

p = 0.73, n = 119) and there was no evidence of a negative relationship between any of the

measured steroid hormone levels and the duration of time that blood samples were stored

on ice before they were centrifuged to separate plasma (p� 0.23, n = 119), indicating that ste-

roids did not degrade over this period of time. Blood acquisition time following capture by

hand ranged from 60 to 430 s (mean = 190 s, SD = 73) and was unrelated to circulating proges-

terone (F1,117 = 0.65, p = 0.42), estradiol (F1,117 = 1.58, p = 0.21), total androgens (F1,117 = 3.28,

p = 0.07), or corticosterone level (F1,117 = 0.028, p = 0.89). Blood acquisition time did not differ

for northern and southern latitude sites (F1,117 = 0.114, p = 0.74) or high and low elevation

sites (F1,117 = 0.004, p = 0.95). Hence, all samples were used in data analysis.

Variation in the five measured hormones from each of the northern and southern latitude

sites and across elevations is provided in S1 Fig. Kendall’s tau-b correlation analysis revealed

strong correlations among unadjusted levels of the measured hormones (see S1 Table). Hence,

a two-way MANOVA was used to test for latitudinal and elevational differences in circulating

hormone levels. Prior to analysis, all hormonal variables were logarithmically transformed to

ensure normality. Despite strong correlations between circulating hormones levels, multicolli-

nearity was not an issue (VIF< 3 for all comparisons). There was an overall main effect of lati-

tude (Wilks’ Lambda: F5, 111 = 11.69, p< 0.0001) and elevation on log-transformed hormone

levels (Wilks’ Lambda: F5, 111 = 3.40, p = 0.007) and a significant interaction between latitude

and elevation on log-transformed hormone levels (Wilks’ Lambda: F5,111 = 5.43, p< 0.0001).

To further examine how levels of the five measured hormones varied with latitude and ele-

vation, we used univariate tests with and without Benjamini-Hochberg correction on log-

transformed and untransformed data. There was no main effect of latitude on log-transformed

levels of P (F1,115 = 0.56, p = 0.45), T (F1,115 = 0.93, p = 0.37), or E2 (F1,115 = 0.03, p = 0.87)

(Table 2). However, there was a significant main effect of latitude on DHT (F1, 115 = 16.80,

p< 0.0001). There was only a significant main effect of latitude on CORT when a Benjamini-

Hochberg correction was not applied (F1,115 = 4.40, p = 0.03). Thus, southern populations had

higher circulating levels of DHT and possibly CORT (Fig 2A). Overall results were the same

for transformed and untransformed data (Table 2) and thus untransformed data are presented

in Fig 2A.

Table 1. Results from Fisher’s exact test examining the proportion of S. sordida possessing contaminants in northern versus southern latitude populations and high

versus low elevation populations.

Contaminant Latitude Elevation

North South p High Low p
(n = 23) (n = 30) (n = 31) (n = 22)

Aldrin 3 5 1.00 5 3 1.00

Dieldrin 0 3 0.25 2 1 1.00

4,DDD 3 0 0.08 2 1 1.00

Trans (gamma) chlordane 2 4 0.69 2 4 0.22

The number of individuals sampled is provided at the top of each column and the number of frogs possessing the specified contaminant is provided in each cell.

Analysis was based on a total of 53 frogs.

https://doi.org/10.1371/journal.pone.0191183.t001
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There was also no main effect of elevation on log-transformed levels of P (F1, 115 = 0.29,

p = 0.58) or E2 (F1,115 = 0.11, p = 0.74)(Table 2). However, there was a significant main effect

of elevation on DHT (F1,115 = 7.93, p = 0.006) and T (F1,115 = 14.53, p< 0.0001)(Table 2).

There was only a main effect of elevation on CORT level when a Benjamini-Hochberg correc-

tion was not applied (F1,115 = 4.93, p = 0.03)(Table 2). Results were highly similar for trans-

formed and untransformed hormone data (Table 2). In summary, low elevation populations

had higher circulating levels of DHT, T, and possibly CORT than high elevation populations

(see Fig 2B for untransformed data). Lastly, the overall interaction effect detected from MAN-

OVA (described above) was attributable to a significant interaction between elevation and lati-

tude on DHT (F1, 115 = 7.69, p = 0.006; Table 2); southern lowland populations had the highest

levels of DHT (see S1 Fig).

To further explore the relationships between hormone levels and elevation, we used linear

regression on log-transformed and untransformed data which yielded the same overall results

and thus, only results for untransformed data are presented. Elevation was not significantly

related to circulating levels of P (r21,117 = 0.004, p = 0.48), E2 (r21,117 = 0.004, p = 0.83), or

CORT (r21,117 = 0.007, p = 0.36)(Fig 3). However, elevation was negatively correlated with T

level whether a Benjamini-Hochberg correction was applied or not (r21,117 = 0.07, p = 0.002).

Elevation was only negatively correlated with DHT level when a Benjamini-Hochberg correc-

tion was not applied (r21,117 = 0.03, p = 0.045; Fig 3).

Parasites

The five top BLAST hits for each parasite sequence are provided in S1 Table. Four nematode

genera were identified: 1) Setaria sp. (Filarioidea, Setariidae), 2) Cosmocercoides sp. (Cosmo-

cercoidea, Cosmocercidae), 3) Oswaldocruzia sp. (Trichostrongyloidea, Molineidae), and 4)

Rhabdias sp. (Rhabditoidea, Rhabdiasidae). Genetic analysis revealed distinct differences in

each of the 4 assigned morphotypes but little evidence of sequence variation within each mor-

photype, indicating that our categorization of nematodes accurately reflected actual nematode

diversity and assignment of taxa.

Nematodes were found in 34 of the 52 male S. sordida (65%) that were examined; males

were infected with an average of 7.2 ± 8.46 nematodes (analysis includes uninfected frogs).

Setaria sp. were the most abundant nematode with an average of 3.69 ± 6.05 individuals found

Table 2. Two-way MANOVA results comparing hormone levels by latitude and elevation in male S. sordida.

Hormone p(latitude) p(elevation) p(elevation x latitude)

Progesterone 0.45 0.58 0.18)

(0.43) (0.62) (0.07)

Dihydrotestosterone <0.0001 0.006 0.006

(<0.0001) (0.004) (0.005)

Testosterone 0.37 <0.0001 0.52

(0.43) (0.001) (0.34)

Estradiol 0.87 0.74 0.95

(0.63) (0.50) (0.54)

Corticosterone 0.03 0.03 0.32

(0.03) (0.09) (0.19)

Results using log-transformed data are provided in top row for each hormone and results using untransformed data are provided in second row in parentheses. Bold

indicates significance under Benjamini and Hochberg correction (FDR alpha = 0.20). Sample sizes: northern latitude n = 58, southern latitude n = 61, low elevation

n = 63, high elevation n = 56.

https://doi.org/10.1371/journal.pone.0191183.t002
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Fig 2. Circulating hormone levels in S. sordida. Levels of progesterone (P), dihydrotestosterone (DHT), testosterone

(T), estradiol (E2) and corticosterone (CORT) in (A) northern and southern latitude populations and (B) high and low

elevations. Two asterisks indicate significance with a Benjamini and Hochberg correction and single asterisk indicates

significance only when the correction was not applied. Bars represent ±1SE.

https://doi.org/10.1371/journal.pone.0191183.g002
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Fig 3. Relationship between log-transformed hormone levels and elevation in S. sordida. (A) progesterone, (B)

dihydrotestosterone, (C) testosterone, (D) estradiol and (E) corticosterone (n = 119).

https://doi.org/10.1371/journal.pone.0191183.g003
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in the body cavity of S. sordida, followed by Cosmocercoides sp. with 2.12 ± 3.82 individuals in

the lower intestine, Rhabdias sp. with 0.77 ± 3.20 individuals in the lungs, and Oswaldocruzia
sp. with 0.63 ± 2.0 individuals in the upper intestine. Results from a Fisher’s exact test indi-

cated that there were no differences in the proportion of individual frogs possessing Setaria
sp., Cosmocercoides sp., or Oswaldocruzia sp. in northern versus southern latitude populations

(p� 0.09; Table 3); however, there was a significantly higher proportion of frogs possessing

Rhabdias sp. in southern latitude populations (p = 0.003; Table 3). The proportion of frogs pos-

sessing Setaria sp., Cosmocercoides sp., and Rhabdias sp. was higher in high elevation popula-

tions (p� 0.01); there was no difference in the proportion of frogs with Oswaldocruzia sp. in

low and high elevation populations (p = 0.07; Table 3). Oswaldocruzia sp. was not found in any

of the frogs sampled at low elevations and Rhabdias sp. was not found in any of the northern

latitude or low elevation populations (Table 3).

Body condition

Body condition estimates were normally distributed and were not transformed for analysis.

Two-way ANOVA indicated that there was a significant interaction between the effect of lati-

tude and elevation on body condition (F1,119 = 6.62, p = 0.01); males from the northern latitude

populations were in poorer body condition (F1, 119 = 7.15, p = 0.009) and low elevation popula-

tions were in poorer condition (F1,119 = 4.65, p = 0.03). Importantly, the difference in body

condition for low and high elevation populations equated to less than 1 g, suggesting that the

greater body condition indices for high elevation populations was attributable to the weight

associated with greater nematode abundances. Consistent with this hypothesis, regression

analysis indicated that individual total nematode abundance was significantly and positively

correlated with body condition estimates (r21, 50 = 0.12, p = 0.01).

Because of the potential effect of nematode abundances on body condition estimates, we

used individual nematode abundances as a covariate in linear regression to examine the rela-

tionship between body condition and circulating hormone levels. Nematode abundance was

not a significant factor in regression analyses for any of the 5 measured hormones whether the

data was log-transformed or not (p� 0.08). Furthermore, body condition was not an accurate

predictor of transformed or untransformed hormone levels (p� 0.13).

Interrelationships among parameters

We first performed simple linear regression analysis to examine the relationships among

the measured parameters, focusing on variables that differed between high and low elevation

populations (total androgen level and total nematode abundance, neither of which were

Table 3. Results from Fisher’s exact test examining the proportion of S. sordida possessing Setaria sp., Cosmocercoides sp., Oswaldocruzia sp., and Rhabdias sp. in

northern versus southern latitudes and high versus low elevation populations.

Parasite Latitude Elevation

North South p High Low p
(n = 23) (n = 29) (n = 31) (n = 21)

Setaria 9 18 0.16 22 5 0.002

Cosmocercoides 6 15 0.09 17 4 0.01

Oswaldocruzia 2 4 0.68 6 0 0.07

Rhabdias 0 9 0.003 9 0 0.007

The number of individuals sampled is provided at the top of each column and the number of frogs possessing the parasite is provided in each cell. The analysis was

based on a total of 52 frogs. All values remained significant after application of Benjamini and Hochberg (FDR alpha = 0.20).

https://doi.org/10.1371/journal.pone.0191183.t003
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transformed because they were normally distributed). Total and individual nematode abun-

dances were tested for heteroscedasticity using the Breusch-Pagan test [95] and for over-dis-

persion using Poisson regression. If heteroscedasticity and/or over-dispersion were present, a

zero-inflated negative binomial regression was implemented and compared to a standard neg-

ative binomial model using the Vuong test [96]. In all cases, the Vuong test found the standard

negative binomial model to be a significant improvement over the zero-inflated model and

thus we report the results from the standard model.

Elevation was negatively related to total androgen (DHT + T) level (r21,117 = 0.07, p = 0.004;

Fig 4A) and positively related to total nematode abundance (z = 4.89, p< 0.0001; Fig 4A).

Thus, there was a significant interaction between total androgens and elevation on total

Fig 4. Androgens, elevation and nematode abundance in S. sordida. Relationships between (A) elevation and total

androgen level, and elevation and total nematode abundance, and (B) total nematode abundance and total androgen

level.

https://doi.org/10.1371/journal.pone.0191183.g004
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nematode abundance (z = 2.90, p = 0.004); high elevation populations had lower androgen lev-

els and higher nematode abundances (Fig 4A) suggesting that high parasite abundances in

high elevation populations negatively affected androgen levels. However, total androgen level

was not inversely related to total nematode abundance (z = -0.041 p = 0.97; Fig 4B). There was

also no evidence that infected and uninfected males in each high elevation population differed

in total androgen level (unpaired t-tests, p� 0.12). Results were similar when DHT and T lev-

els were analyzed separately (data not shown).

Next, we performed regression analyses to examine the relationships among elevation, total

androgen level (untransformed), and nematode species abundances. The abundance of nema-

todes was not significantly related to total androgen level for Setaria sp. (z = -0.45, p = 0.65),

Cosmocercoides sp. (z = 1.17, p = 0.26), Oswaldocruzia sp. (z = 0.06, p = 0.94) or Rhabdias sp.

(z = -0.17, p = 0.86).

While circulating levels of CORT were not significantly predicted by elevation (Fig 3E),

there was some, albeit weak, evidence that CORT differed between high and low elevation pop-

ulations (Fig 2B). Hence, we also examined the relationship between CORT level and nema-

tode abundance. Regression analysis indicated that total nematode abundance did not

significantly predict log-transformed CORT levels (z = 0.35, p = 0.73) or untransformed

CORT values (z = 0.42, p = 0.67).

Discussion

The interrelationships among environmental contaminants, pathogens, and hormones may be

central to understanding amphibian declines [17]. For example, whether the prevalence of dis-

ease associated with amphibian declines is the result of increased pathogen prevalence and/or

virulence, or physiological responses to deteriorating environmental conditions (i.e., exposure

to man-made chemicals) that decrease host resistance and/or behaviors that affect parasitism

is still unclear and presents a major challenge in amphibian decline biology [8, 17, 21, 97]. In

the present study, we assessed the potential links among environmental contaminants, endo-

crine physiology, and nematode abundances in S. sordida along an elevational gradient in

Costa Rica–a region with well-documented cases of amphibian population declines in mon-

tane regions [8] that are at high risk of exposure to environmental contaminants [51, 52]. We

detected at least one of the 31 measured environmental contaminants in approximately half of

the male S. sordida sampled. Our analyses focused on organochlorines, a carbamate (carbaryl),

two organophosphates (malathion and chlorpyriphos), the benzidine herbicide atrazine, and

the chlorophenoxy herbicide 2,4 D (see S1 Appendix). These contaminants have potentially

spread to every region of the globe via precipitation [25], have been used either historically or

currently in Costa Rica [83, 98], and have been linked to amphibian declines [11, 17, 99].

Nonetheless, we found no evidence that montane populations were more likely to possess any

of the measured contaminants than low elevation populations. However, we cannot eliminate

the possibility that other unmeasured contaminants may be more prevalent in montane

regions or act synergistically to affect populations [13, 99].

We also found no evidence that high elevation populations possessed higher circulating glu-

cocorticoid levels than low elevation populations, suggesting that montane S. sordida popula-

tions were not likely to be immunocompromised as a result of chronic stress. Surprisingly,

however, montane populations had lower androgen levels, more species of nematodes, and

higher nematode abundances than low elevation populations. Although these results suggested

that nematodes negatively affected androgen levels in high elevation populations, further anal-

ysis revealed no evidence of an inverse relationship between nematode abundances and circu-

lating androgen levels. The lack of a negative association between these two variables is
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perplexing because nematodes appeared to contribute significantly to the body mass of S. sor-
dida (e.g., nematode abundance was positively related to estimates of body condition) and

often take a toll on the general health of their host (see [19] for review in amphibians). How-

ever, macroparasites can also alter the endocrine physiology of their host, which can include

increased production of sex steroids [100]. Alternatively, hormones can alter behaviors that

influence susceptibility to parasites [67, 101].

Androgen and baseline glucocorticoid concentrations often vary geographically in verte-

brates [102]. In birds, for example, androgen level is often positively correlated with latitude

and/or elevation [103]. In amphibians, testosterone level is generally not related to elevation,

while corticosterone level is often negatively related to elevation [102]. However, both testos-

terone level and corticosterone level are often negatively correlated with the length of the

breeding season in amphibians, and breeding season length is often shorter at high elevations

and latitudes [102]. Populations at higher altitudes and latitudes often have a narrower window

of opportunity for mating because environmental conditions potentially constrain the length

of the breeding period. Presumably, shorter breeding periods increase interactions among

males that drive elevations in circulating androgen and corticosterone levels [102]. We found

little evidence to support these hormonal patterns or predictions in S. sordida. For example,

high elevation populations actually had lower levels of androgens than low elevation popula-

tions and corticosterone level was not significantly correlated with elevation.

Circulating glucocorticoids and androgens are often highly labile and subject to modulation

via environmental and/or social conditions. For example, androgen levels can change dramati-

cally with weather conditions [104], social interactions [105], and seasonally [106]. These fac-

tors may have contributed to lower androgen levels in high elevation populations of S. sordida
if high and low elevation populations were sampled at different stages of the reproductive

period. For example, high elevation populations may have been nearer to the beginning or end

of their reproductive period when androgen levels are expected to be lower than during peaks

in reproductive activity [107]. Temporal patterns of androgen production can vary consider-

ably among anuran species [81, 82,108–110] with peaks in androgen level often corresponding

to periods of rainfall [81, 111]. In the present study, breeding activity of S. sordida and rainfall

patterns were very similar among high and low elevation sites as were developmental stages of

tadpoles and basin building associated with egg deposition [see 77, 79]. We also attempted to

select study sites with similar chorus densities because of its potential effect on circulating hor-

mone levels in anurans [112]. Importantly, if males in low elevation sites with higher androgen

levels were at a peak in their reproductive period and high elevation populations were not,

then we would also expect to see higher glucocorticoid levels in low elevation populations

because the two steroids are often positively correlated in calling males [81, 107, 110]. How-

ever, we found weak evidence for differences in CORT levels for high versus low elevation pop-

ulations despite higher androgen levels in low elevation populations. Nonetheless, we cannot

eliminate the possibility that elevational differences in androgen levels in S. sordida were attrib-

utable to differences in the stage of breeding or other environmental conditions that may have

influenced circulating androgen levels. Further work is needed to determine if androgens are

consistently lower in montane regions and whether such differences pose threats to high eleva-

tion populations.

Conclusions

Because there is increasing evidence linking environmental contaminants, endocrine disrup-

tion, and pathogens to amphibian declines, there is an urgency to understand the interrelation-

ships among these factors, particularly in the context of montane populations that are
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especially prone to decline. While the current study found differences in the endocrinology

(e.g., androgen levels) and nematode parasite abundances in high and low elevation popula-

tions of S. sordida, there was no evidence to suggest that these differences were related to con-

taminants, nor was there evidence linking the prevalence of parasites at high elevations to

endocrine factors that potentially compromise immunity. Nonetheless, lower androgen levels

and higher parasite abundances in montane populations of S. sordida could pose threats to

long-term health and warrants further study.
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S1 Appendix. Contaminants examined from liver samples of S. sordida. Analysis consisted

mostly of organochlorines unless noted otherwise.
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S1 Fig. Circulating hormone levels in S. sordida from northern and southern latitude

populations and high and low elevation sites. A) Progesterone, B) dihydrotestosterone,

C) testosterone, D) estradiol and E) corticosterone. Numbers on abscissa represent sites

depicted in Fig 1: 1) Bijagual Field Station (n = 10), 2) Bijagual Creek (n = 10), 3) Bijagualito

Creek (n = 10), 4) Quebrada Bonita (n = 7), 5) Quebrada Pita (n = 10), 6) Rio Tarcolitos

(n = 11), 7) Quebrada Cantarrana (n = 7), 8) Rio Jaba (n = 11), 9) Rio Sabalito (n = 5), 10) Rio

Sabalito-Juntas (n = 9), 11) Quebrada Pavo (n = 1), 12) Rio Coto Colorado (n = 13), 13) Queb-

rada Minas (n = 5), 14) Rio Oro (n = 10).
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S1 Table. Top 5 megaBLAST matches for each nematode parasite 18S sequence from S.

sordida. Column headers are defined as follows: SMSO Field No. = Collection number;

Morphospecies = Type identified in the field; Locality = Collection site; Site Type = High or

Low elevation site; Region = North or South latitude; Position Found in Smilisca = Location in

body where nematode was found; Bit-score = megaBLAST bit score; % Identical Sites = Percent

of identical sites between query sequence and BLAST hit; % Pairwise Identity = Percent of

identical sites between pairwise alignment between query and subject sequence; E-value =

Expectation value of the probability to obtain score after correction for multiple testing;

Grade = Percentage calculated by combining weighted query, e-value, and identity value hits;

Accession = Genbank accession number of subject sequence; Organism = Organism of subject

sequence; Description = Full description of hit sequence.
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