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ABSTRACT: While aluminum alkyls are often considered to be exemplary compounds of main-group organometallics and an in-
depth understanding of their multifaceted chemistry is continually vital, the controlled oxygenation of organoaluminum complexes
still remains a largely undeveloped area. In the course of our systematic studies on the relationship between the Lewis acidity of
metal centers and noncovalent interactions in the secondary coordination sphere, we report the oxygenation of dialkylaluminum
complexes incorporating a pyrrole−ester ligand, as purposefully selected dormant Lewis acidic octet-compliant model compounds,
and the isolation and characterization of a new, dimeric aluminum tert-butylperoxide and an unique example of an aluminum
oxoethoxide cluster. Our studies provide a more in-depth look at the diversity and complexity of the oxygenation chemistry of
aluminum alkyls.

The controlled oxygenation of non-redox-active metal
alkyls (NRMR) has been one of the key challenges since

the beginning of organometallic chemistry.1−3 Despite decades
of extensive research in the field, factors controlling their
outcomes are still not sufficiently understood, which has
significantly prevented the more rapid design and implementa-
tion of dioxygen (O2)-based reaction systems in various areas
of chemistry, e.g., as radical initiators for organic reactions,4−8

efficient catalysts for asymmetric epoxidation of electron-
deficient olefins,9−13 and a platform for the controlled
preparation of metal oxides.14−16 It has commonly been
postulated that the oxygenation of NRMR proceeds via radical
intermediates and thus predominantly leads to an intractable
mixture of products.17 Moreover, the widely accepted radical-
chain mechanism is usually completed by the σ-bond
metathesis reaction between a highly reactive metal alkylper-
oxide NRMOOR and the parent NRMR moiety, which affords a
metal alkoxide (Scheme 1, path 1).17,18

While the formation of NRMOOR species was already
postulated at the end of 19th century, compounds of this type
have been elusive for over 100 years.2 Only the isolation and
structural characterization of the first group 13 metal
alkylperoxides by Barron and co-workers (for Ga and

In),19,20 as well as our group (for Al)21 in the 1990s seemed
to be a cornerstone, demonstrating that the controlled reaction
of the metal−carbon bond with O2 is viable. Next, our
systematic studies on the O2 activation by NRMR compounds
incorporating Al,22,23 Zn,24−27 and Mg11,28 centers provided
valuable insight into the mechanism of these reactions as well
as the character of their outcomes. Very recently, we also shed
new light on the above-mentioned autoxidation reaction of
NRMOOR species and demonstrated that the well-defined
ZnOOR compound reacts neither with a parent alkyl complex
nor even with a homoleptic metal alkyl compound with
formation of the respective metal alkoxides.29 In fact, our
investigations strongly indicate that formation of the metal
alkoxides may be rationalized in terms of an intramolecular
rearrangement of nonredox metal alkylperoxides (Scheme 1,
path 2).11,27,28 Moreover, considering the chemistry of
NRMOOR species, particular mention should be made of the
O−O bond scissions. Although regularly overlooked, homol-
ysis of the O−O bond appears to be the critical factor
responsible for the formation of a vast array of products
including metal oxide,30−33 hydroxide,27,34,35 and even
carboxylate29,32 clusters (Scheme 1, path 3).
Another issue of key importance for the oxygenation non-

redox-active metal alkyls, which remains an undeveloped area
of research for decades, concerns the mode of O2 activation by
this type of organometallics. Our systematic studies on the
oxygenation of NRMR complexes strongly indicated that the
oxygenation process of metal alkyls is dramatically influenced
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Scheme 1. Divergent Transformation Pathways of
Nonredox Metal Alkylperoxides
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by both the coordination state of the organometallic species
and the geometric requirements of an O2 molecule
approaching the metal center.22,23,26−28 For example, the
combined structural and chemical patterns provided compel-
ling experimental evidence that the attack of O2 on the metal
center from a desired direction is the key feature in the O2
activation by an octet-compliant four-coordinate organo-
aluminum complex, prior the insertion of O2 into the Al−C
bond.22,23 Thus, for an in-depth understanding of the
oxygenation of NRMR complexes, it is essential to rationally
select an appropriate model system with tuned electronic and
steric factors.
Notably, there is still a limited understanding of the factors

affecting reaction outcomes in the oxygenation of aluminum
alkyls in contrast to the important breakthroughs in the
oxygenation chemistry of zinc24−27,29,36,37 and magnesi-
um11,28,38 alkyls, as well as a some progress in the analogous
reactions involving organoindium39,40 complexes. Up to now,
there is a handful of well-defined aluminum alkoxides isolated
directly from the oxygenation of metal alkyl precursors, and
only one example of an aluminum tert-butylperoxide,
(tBuOO)(tBuO)Al(μ-tBuO)2Al(mesal)2 (mesal = deproto-
nated methyl salicylate; Scheme 2, upper left).21,40−43 The

latter was derived by the controlled oxygenation of an octet-
compliant di-tert-butylaluminum complex incorporating a
O,O′-bidentate ligand. Besides, two other examples of
aluminum alkyperoxides have hitherto been isolated from the
protonolysis of aluminum complexes stabilized by β-

diketiminate ligands involving tert-butylhydroperoxide
(Scheme 2, bottom).44,45 All of the above-mentioned well-
defined aluminum alkylperoxides have one common feature;
namely, they possess a terminal alkylperoxo moiety. Herein, we
describe the first example of a dimeric AlOOR compound with
a bridging tert-butylperoxide ligand (Scheme 2). In the course
of our systematic studies on the relationship between the Lewis
acidity of metal centers in octet-compliant complexes and
noncovalent interactions in the secondary coordination
sphere,22,23,46−48 we report the oxygenation of dialkylalumi-
num complexes with a pyrrole−ester ligand as purposefully
selected dormant Lewis acidic octet-compliant model com-
pounds (for an extended discussion on dormant Lewis acidic
complexes, see refs 46 and 47); previously, the same N,O-
pyrrolate ligand was successfully exploited in the controlled
oxygenation of alkylzincs, leading to zinc alkoxides with
unprecedented structural motifs.49 Our studies demonstrate
that the controlled reaction of four-coordinate (metpyrrol)-
AlR2 complexes with O2 affords a novel dimeric aluminum tert-
butylperoxide and hexanuclear aluminum oxoethoxide com-
pounds, depending on the nature of the aluminum-bonded
alkyl substituent, respectively (metpyrrol = deprotonated
methyl-1H-pyrrole-2-carboxylate). While formation of the
metal oxo compounds has previously been observed during
the reaction of organozinc complexes with O2, to our
knowledge, this is the first example of an oxoaluminum cluster
obtained directly from the oxygenation of an alkylaluminum
complex.
The starting octet-compliant dialkylaluminum chelate

complexes with the N,O-pyrrolate ligand, (metpyrrol)AltBu2
(1) and (metpyrrol)AlEt2 (2), were readily prepared by the
equimolar reactions involving methyl-1H-pyrrole-2-carboxylate
and tBu3Al(Et2O) or Et3Al, respectively. Both compounds
were isolated in high yield as oily liquids and fully
characterized spectroscopically. The resulting 1H, 13C, and
27Al NMR spectra of 1 and 2 are fully consistent with the
anticipated formula (for details, see the Supporting Informa-
tion, SI). Given the pronounced susceptibility of a tert-butyl
ligand to stabilize metal alkylperoxide species, we initially
investigated oxygenation of the di-tert-butylaluminum chelate
complex 1. Treatment of a solution of 1 in Et2O with dry O2 at
0 °C, followed by concentration of the reaction mixture, and
crystallization at −20 °C led to the reproducible formation of
an aluminum tert-butylperoxide, [(metpyrrol)2Al(μ-OOtBu)]2
(32; isolated yield ca. 75%). Remarkably, the replacement of
sterically encumbered tert-butyl groups in 1 by ethyl groups
dramatically changed the reaction outcome, and the oxygen-
ation of a toluene solution of 2 at 0 °C for ca. 3 h, followed by
the concentration of the reaction mixture, gave an oily

Scheme 2. Structurally Well-Defined Aluminum
Alkylperoxides

Scheme 3. Oxygenation of Octet-Compliant Dialkylaluminum Complexes Supported by a N,O-Chelate Ligand
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intractable product. Interestingly, a long-time postcrystalliza-
tion process (weeks) of the parent solution at 0 °C allowed
one to isolate single crystals of an unprecedented hexanuclear
aluminum oxoethoxide compound, {(metpyrrol)4[Al(μ-
OEt)]3(μ3-O)}2 (4), in moderate yield (Scheme 3) for a
putative source of the observed oxo species vide infra.
Compounds 32 and 4 were characterized spectroscopically,
and their identity in the solid state was determined by single-
crystal X-ray diffraction studies. The 1H NMR spectrum of the
alkylperoxide 32 features a single set of signals characteristic of
the tert-butylperoxide group and the pyrrole−ester ligand (for
details, see the SI). Compound 32 is stable in the solid state as
well as in a solution stored at −20 °C. However, extended
storage of a toluene solution of 32 at room temperature leads
to its decomposition with the formation of an intractable
mixture of products, as judged from the 1H NMR spectrum. In
turn, the 1H NMR spectrum of the oxoethoxide compound 4
recorded in C6D6 shows a complex pattern (for details, see the
SI).
Compound 32 crystallizes in the space group P 21/c as a

centrosymmetric dimer, with the aluminum centers bridged by
the tert-butylperoxide groups (Figure 1a). The six-coordinate
metal centers adopt a distorted octahedral geometry, and their
coordination sphere is completed by two pyrrolate−ester
ligands. The O1−O2 bond length [1.480(3) Å] in 32 is slightly
longer than that observed in the terminally aluminum-bound
tert-butylperoxide group [1.38(2) Å].21 Compound 4 crystal-
lizes in the P1̅ space group as a centrosymmetric hexanuclear
cluster (Figure 1b). This cluster may be formally viewed as two
trinuclear units {(metpyrrol)4[Al(μ-OEt)]3(μ3-O)} bridged by
the μ-ethoxide ligands with formation of a central four-
membered Al2(μ-O)2 ring. These units incorporate three
inequivalent aluminum centers joined by the μ3-oxo and μ-
ethoxide bridges, and their coordination spheres are supported
by pyrrolate−ester ligands. The two five-coordinate aluminum
atoms of the central Al2(μ-O)2 ring adopt a square-pyramidal
geometry, and their coordination sphere is completed by the
nitrogen atom from the bridging (μ-η1:η1)-pyrrolate−ester
ligand. The remaining aluminum atoms exhibit a distorted
octahedral geometry. Besides the ethoxide and oxo groups, the
coordination sphere of the Al2 atom is completed by an
oxygen atom from the bridging (μ-η1:η1)-pyrrolate−ester
ligand as well as the second pyrrolate−ester ligand. The
coordination sphere of the distal Al3 atom is terminated by the
two N,O-chelating ligands.
Although the exact mechanism of the formation of 32 and 4

remains obscure, there are a number of possible scenarios that

may be responsible for the observed divergent reaction
outcomes. It seems reasonable to suggest that, under given
conditions, both Al−R bonds in the octet-compliant complexes
1 and 2 react with O2, leading presumably to a putative
dialkylperoxide, (metpyrrol)Al(OOR)2. In the case of oxygen-
ation of 1, the anticipated alkylperoxide likely undergoes a
ligand-exchange reaction to give 32 and an elusive
[(tBuOO)3Al]n species. This suggestion is in line with our
previous observations concerning the oxygenation of (mesal)-
AltBu2, in which a putative (mesal)Al(OOtBu)2 likely
disproportionates to (tBuOO)(tBuO)Al(μ-tBuO)2Al(mesal)2
with a concomitant partial rearrangement of the alkylperoxide
Al-OOtBu to the alkoxide Al−OtBu species.21 Conversely, the
isolation of 4 demonstrates the pronounced difference in the
stability and reactivity between tert-butylperoxide and an
ethylperoxide group. While the former is relatively stable under
given conditions (vide supra), the latter easily transforms with
the formation of aluminum ethoxide or oxo species. Moreover,
the presence of oxo species in 4 seems to be the most striking
feature, being commonly formed during the reaction of
alkylaluminum compounds with H2O.

50 Owing to the fact
that the oxygenation of 2 was conducted in a highly controlled
manner, minimizing the possibility of serendipitous hydrolysis,
it appears reasonable to suggest that O2 is the source of the oxo
ligand. Remarkably, the formation of metal oxo species in the
course of oxygenation of nonredox metal alkyl complexes has
very rarely been encountered,37,51 and our previous studies
indicate that homolytic cleavage of the MO−OR bond,
affording oxo MO• and alkoxide RO• radicals, is likely the
long-time-overlooked pathway leading to a vast array of
oxygenated products (cf. Scheme 1, path 3).27,29−35

In summary, the synthesis of novel dimeric aluminum tert-
butylperoxide and hexanuclear aluminum oxoethoxide com-
pounds supported by the pyrrole−ester ligand was achieved
using the controlled oxygenation of dormant Lewis acidic
octet-compliant dialkylaluminum chelate complexes. The
results have demonstrated, for the first time, that not only
aluminum alkylperoxides and alkoxides but also metal oxo
species can be formed during the oxygenation of aluminum
alkyls. Further in-depth studies on the oxygenation chemistry
of organoaluminum compounds and an investigation of the
reactivity of aluminum alkylperoxides are underway.
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Figure 1. Molecular structures of (a) 32 and (b) 4 with thermal ellipsoids set at 35% probability. Hydrogen atoms are omitted for clarity.
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(31) Lewinśki, J.; Bury, W.; Dutkiewicz, M.; Maurin, M.; Justyniak,
I.; Lipkowski, J. Alkylzinc Carboxylates as Efficient Precursors for Zinc
Oxocarboxylates and Sulfidocarboxylates. Angew. Chem., Int. Ed. 2008,
47, 573−576.
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