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Abstract

Saururus chinensis is a core member of Saururaceae, an ancient, perianthless (lacking pet-

als or sepals) family of the magnoliids in the Mesangiospermae, which is important for

understanding the origin and evolution of early flowers due to its unusual floral composition

and petaloid bracts. To compare their transcriptomes, RNA-seq abundance analysis identi-

fied 43,463 genes that were found to be differentially expressed in S. chinensis bracts. Of

these, 5,797 showed significant differential expression, of which 1,770 were up-regulated

and 4,027 down-regulated in green compared to white bracts. The expression profiles were

also compared using cDNA microarrays, which identified 166 additional differentially

expressed genes. Subsequently, qRT-PCR was used to verify and extend the cDNA micro-

array results, showing that the A and B class MADS-box genes were up-regulated in the

white bracts. Phylogenetic analysis was performed on putative S. chinensis A and B-class

of MADS-box genes to infer evolutionary relationships within the A and B-class of MADS-

box gene family. In addition, nature selection and protein interactions of B class MADS-

box proteins were inferred that B-class genes free from evolutionary pressures. The results

indicate that petaloid bracts display anatomical and gene expression features normally

associated with petals, as found in petaloid bracts of other species, and support an evolu-

tionarily conserved developmental program for petaloid bracts.

Introduction

The angiosperm perianth leave perennial always continues to be a focus of evo-devo studies,

due to its remarkable diversity across angiosperm species and the likely convergent evolution

of its parts [1]. Generally, flowers comprise several sterile laminar structures of the perianth

encircling male and female reproductive organs. While some flowers have undifferentiated

perianths (tepals), the majority of perianths comprise two different whorls of leaf, i.e., the

outer green sepals and the inner, showy petals [2–4]. According to morphological and phylo-

genetic evidence, petals have evolved multiple times, arising as modifications of stamen-like

structures (andropetaloidy) in some lineages, and modifications of bracts or leaves (bracteope-

taloidy) in others [5, 6]. The petal organs tend to be large, showy, and either white (due to the

presence of leucoplasts) or pigmented (due to the presence of chromoplasts). Petal epidermal

cells tend to be conical or elongate, at least on the adaxial face [7].
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Research into evolutionary developmental genetics has led to useful models for the genetic

basis of perianth development. Foremost is the ABCE model, by which four classes of transcrip-

tion factors combine to specify each of the four typical floral organs as modified leaves [8–10].

In the ABCE model, class A transcription factors specify the identity of the first and second

whorl organs, but combine with B-class factors only in the second whorl organs to form the pet-

als. The B-class genes are also expressed in the third whorl organs, where they combine with C

genes to specify androecium development. In the fourth whorl, expression of C-class genes

alone leads to gynoecium development [11–14]. E-class genes are expressed in all four whorls,

combining with the A, B, and C transcription factors to aid in organ identity specification [15].

Petaloid bracts are found in many other species, such as poinsettia (Euphorbia pulcherrima),
the dove tree (Davidia involucrata), and the flowering dogwood, (Cornus florida). The effect of

these showy bracts in pollinator attraction is analogous to that of true petals, and their petaloid

characteristics probably result from expression of petal development genes in the bracts [5, 16,

17]. Another model, the “fading borders” model, suggested that homologs of B-function

MADS-box genes are more broadly expressed across the floral meristem in basal lineages [18].

For example, ectopic expression of the B-class genes AP3 and PI in Arabidopsis first-whorl

organs results in petaloid organs in place of sepals [5, 19]. The evolution of B-gene function is

complex, however, since B-class gene expression has also been found in gymnosperm androe-

cia, and in other non-petal angiosperm organs such as the staminodes [20]. Evidence of expres-

sion from orthologs of Arabidopsis B-class was reported in the petaloid involucral bracts (bracts

that appear in a whorl subtending an inflorescence) of the dove tree (Davidia involucrata) by

Vekemans et al. [21], with two B-class genes detected early in bract development in this species.

The expression of the CorPI-B, CorPI-A and CorAP3 genes could be detected in the developing

bracts of Cornus florida. The detection of B-class genes in the maturing bracts in Cornus sug-

gested that the mechanism for heterotopic petaloidy may exist in the Cornus lineage [22].

The perianthless paleoherb S. chinensis provides a unique opportunity to study the genetics

of floral development in a magnoliid of the Mesangiospermae, whose bracts are at least analogs

of, and perhaps are homologous to, petals in other angiosperm species. In this work, we com-

pared the morphologies and physiological indices of petaloid and non-petaloid (green) bracts.

We then constructed cDNA libraries from the transcriptomes of these two types of bract,

assigned the S. chinensis genes to functional categories, and measured transcript abundance.

We further compared expression profiles of tissue sections of bracts that were partially petaloid;

that is, for bracts that were half white and half green, we extracted nucleic acids from the white

and green portions separately, both for green bracts transitioning to white, and for white bracts

reverting to green coloration following floral senescence. We then validated the results for A

and B class genes and four transcription factors by qRT-PCR. Finally, we used phylogenetic

analysis to compare S. chinensis A and B class genes with their homologs in other basal species

and nature selection and protein interactions of B class MADS-box proteins were performed.

The differential regulation of S. chinensis A and B class MADS-box transcription factors

likely plays a key role during bracts development. This study contributes to our understanding

of bracts development in Saururus, an understudied paleoherb lineage.

Results

Physiological and morphological differences between green and white

bracts

The stomatal conductance (gs) of white bracts was greatly reduced (Fig 1A). The net photosyn-

thetic rate of white bracts was significantly (44%) lower than that of young green bracts in this

species [17]. The abundance of chlorophyll a, chlorophyll b and carotenoids were all also
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dramatically reduced in the white bracts of S. chinensis as compared with their levels in the

green bracts (Fig 1B).

Morphological observation of the epidermis of green bracts found that these tissues

completely lacked cone-shaped cells on either adaxial (Fig 2A) or abaxial surfaces (Fig 2B and

2C). The surfaces of white bracts, conversely, were found to display tube trichomes and the

ridged, cone-shape epidermal cells common to petals, both on the adaxial (Fig 2G and 2H)

and abaxial sides (Fig 2D–2F and 2I). Electron micrographs of ultrathin sections from both

types of bracts showed that chloroplasts from normal green bracts had well-developed mem-

brane systems composed of grana connected by stroma lamellae (Fig 3A and 3B). However,

the thylakoid membrane systems in the petaloid bracts chloroplasts were disturbed, and the

membrane spacing was not as clear as that in the normal green bracts (Fig 3D and 3E). The

chloroplasts from petaloid bracts were smaller (Fig 3D and 3E) than those from green bracts

(Fig 3A and 3B) and had a smaller average number of discs per grana stack (Fig 3D and 3E).

Petaloid bracts also showed thicker cell walls (Fig 3F) than did green bracts (Fig 3C).

Illumina sequencing and de novo assembly of sequence reads in S. chinensis
Clean reads from all samples were pooled and assembled de novo using the Trinity program

[23], resulting in 86,532,094 total reads (10,816,511,750 bps) with an average length of 908bp

in unigenes, an N50-value of 1582 bp, and with 13,821 unigenes (30.71%) longer than 1000 bp

(Table 1). The 44,998 total unigenes were aligned to the four public protein databases (Nr,

Swiss-Prot, KEGG, and COG), of which 22,668 (50.42%) were annotated in the public data-

bases (S1 Table). Of these, 3,976 unigenes were found in all four databases, 22,617 (50.26%)

were annotated in Nr databases, 16,772 (37.23%) in Swiss-Prot databases, 8,076 (17.94%) uni-

genes in COG databases, and 6,243 (13.43%) unigenes in KEGG databases (S1 Table). Further-

more, top-hit species distribution analysis based on BLASTx results showed the unigenes

showing high sequence similarity with sequences of Vitis vinifera (5,904), Theobroma cacao
(3,948), Oryza sativa Japonica Group (1,547), Cucumis sativus (1,326), Fragaria vesca subsp.

Vesca (1154), Glycine max (974), Solanum lycopersicum (919), Arabidopsis thaliana (835),

Cicer arietinum (804) and Medicago truncatula (737) (S2 Table). This suggests the S. chinensis
genome is more closely related to V. vinifera genome than to other sequenced plant genomes.

Gene Ontology (GO) classification

GO assignments were used to classify the functions of all unigenes. Based on sequence similar-

ity, 22,688 unigenes were assigned to one or more ontologies. In total, 22,947 unigenes were

Fig 1. Stomatal conductance (gs) and chlorophyll concentrations of the green bracts and white bracts of S.

chinensis. Stomatal conductance (gs) and chlorophyll concentrations of white and green bracts from different plant

leaves were measured, respectively. Each sample was done in triplicate, and the error bars represent the standard

deviation of the three independent experiments.

https://doi.org/10.1371/journal.pone.0255679.g001
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Fig 2. Scanning electron microscope micrographs of green bracts and white bracts. A) Adaxial surface of green bract. B, C) Abaxial surface of green bract. D, E, F, I)

Abaxial surface of white bracts. G, H) Adaxial surface of white bract. Scale bars for A, C, D and G equal 100 μm, and scale bars for B, E, F, H and I equal 10 μm.

https://doi.org/10.1371/journal.pone.0255679.g002

Fig 3. Transmission electron micrographs of chloroplasts and cell walls of green bracts and white bracts of S.

chinensis. A, B) Chloroplast in green bract; D, E) Chloroplast in white bract; C) Cell wall in green bract; F) Cell wall in

white bract; A and B, Scale bars represent 1 um; C, D, E and F, Scale bars represent 2 μm.

https://doi.org/10.1371/journal.pone.0255679.g003
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grouped under biological processes, 19,078 unigenes were grouped as cellular components,

and 20,072 unigenes were grouped as having a role in molecular functions. In the biological

processes category, the top GO terms included “metabolic process”, “single-organism process”,

“localization”, “establishment of localization” and “multicellular organismal process” (Fig 4).

The top GO terms of the cellular component category included “cell”, “organelle”, “membran”,

“macromolecular complex” and “membrane-enclosed lumen” (Fig 4). Finally, the top terms in

the molecular function category were “metabolic process”, “binding”, “single-organism pro-

cess”, “establishment of localization” and “biological regulation”.

Differentially Expressed Genes (DEGs) were identified in the petaloid and

green bracts

A total of 43,463 genes were shown to be differentially expressed between green and white

bracts, of which 5,797 were significant differential expression. Of these, 1,770 DEGs were up-

Table 1. Summary of illumina paired-end sequencing and assembly for S. chinensis.

Database Number Total Length (bp)

Total Clean Reads 86,532,094 10,816,511,750

Q20 percentage 95.49%

GC percentage 50.26%

Average length of contigs 16772

Number of unigenes 44998 40,849,381

Average length of unigenes 907.8

Max length of unigenes 15660

Min length of unigenes 201

Unigene size N50 1582

https://doi.org/10.1371/journal.pone.0255679.t001

Fig 4. Functional annotation of assembled unigenes based on Gene Ontology (GO) categorization. The results are

summarized in three main categories: biological process, cellular component and molecular function.

https://doi.org/10.1371/journal.pone.0255679.g004
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regulated and 4,027 DEGs were down-regulated in the green vs. white comparison (S3 Table).

To understand the functions of these differentially expressed genes, we mapped them to terms

in KEGG database, with special attention given to significantly enriched DEGs predicted to

operate in metabolic or signal transduction pathways. Among all the genes with KEGG path-

way annotation, 1,305 DEGs were annotated into 113 KEGG pathways in the green vs. white

comparison (S4 Table). Among these, the most DEGs were found in the following pathways:

“ribosome”, “DNA replication”, “ribosome biogenesis in eukaryotes”, “mismatch repair”, and

“homologous recombination” (S4 Table).

To further compare the transcript abundance of DEGs in target tissues, a custom cDNA

microarray was designed and hybridized with tissue-specific transcripts. Total RNA was iso-

lated from young seedling leaves, as well as from bracts at various stages of development. That

is, during the transition of green bracts to white bracts when the organ is half green and half

white, we isolated the green tissue and the white tissue and extracted total RNA from each.

Likewise, during the white bracts’ reversion to a pale green coloration following floral senes-

cence, we isolated the tissues by color and extracted RNA from the different samples. Compar-

ing the bract tissues’ transcript profiles with the transcript profiles of developing seedling

leaves identified 166 bract DEGs (S5 Table). During the green-to-white transition, 66% (71)

were up-regulated and 34% (37) were down-regulated in the green portion of the bicolor

bracts, 79% (81) were up-regulated and 21% (21) were down-regulated in the white portion of

the bracts, compared with 62% (23) of the DEGs being up-regulated and 38% (14) down-regu-

lated in completely white bracts. During the bract white-to-green reversion, 36% (21) were up-

regulated and 64% (38) were down-regulated in the white portion, and 8% (6) were up-regu-

lated and 92% (71) were down-regulated in the pale green portion, and 9% (6) were up-regu-

lated and 91% (58) were down-regulated in the fully pale green bracts (Fig 5) (S5 Table).

During the green-to-white transition, the white portion DEGs in the category of transcrip-

tion were the most numerous (16%), of which 94% were up-regulated followed by metabolism

(11%), cellular transport (9%), and energy (9%), a majority of which were down-regulated

(66.67%) (S5 Table). In the fully white bracts, the most abundant functional category for DEGs

Fig 5. Proportion of up-regulated (white) and down-regulated (grey) differentially expressed genes at different

stages of bract development. 1) Green tissue in bracts undergoing green-to-white transition; 2) White tissue in bracts

undergoing green-to-white transition; 3) Fully white bracts; 4) White tissue in bracts during white-to-green reversion;

5) Pale green tissue during white-to-green reversion; 6) Fully pale green bracts.

https://doi.org/10.1371/journal.pone.0255679.g005
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was transcription (40.54%), for which all of the DEGs were up-regulated, followed by cellular

transport (13.51%) and energy (10.81%), which were down-regulated (S5 Table). Conversely,

in the white portions of bracts during the reversion to a pale green coloration following floral

senescence, the category with the most DEGs was energy (15.79%), two-thirds of which were

down-regulated, as well as transcription (14.04%) and cellular transport (14.04%), up to 75%

of which were down-regulated. In the pale green portion of reverting bracts, transcription fac-

tors were most numerous (14.1%), 72.73% of which were down-regulated, followed by energy

(11.54%), which were all down-regulated, cellular transport (7.69%), of which 83.33% were

down-regulated, as well as binding (7.69%) and metabolism (6.1%) (all down-regulated).

Among the DEGs of the fully pale green bracts, cellular transport (14.06%), transcription

(12.5%), energy (10.94%) and metabolism (10.94%) were the most numerous and were all

down-regulated except for the transcription factors. Not surprisingly, all putative genes encod-

ing components of the chloroplast or involved in photosynthesis were down-regulated in the

white bracts, including homologs to chlorophyll A-B binding protein (G136, G244 and G548)

and a photosystem I reaction center subunit protein (G547) (S5 Table).

Significantly up-regulated transcription factor homologs

Several transcription factor genes were found to be differentially expressed in the bracts com-

pared to developing seedling leaves. The significantly up-regulated transcription factor genes

included ScAP1, ScSEP1, ScAGL6, ScPI and ScAP3, in addition to other genes generically iden-

tified as MADS-box transcription factors and members of the zinc finger, basic helix-loop-

helix (bHLH), MYB transcription factors and AUX/IAA protein families (S5 Table). The rela-

tive transcript abundances of these genes, however, differed between white and green bracts.

For example, the zinc finger, basic helix-loop-helix (bHLH), and MYB transcription factors

were up-regulated in white bracts and down-regulated in green bracts. The two ScAP1 homo-

logs were especially up-regulated in white bracts.

Support of microarray results by real-time quantitative PCR

To evaluate the accuracy and reproducibility of the microarray results, ten differentially

expressed transcription factors were selected for confirmation by qRT-PCR (Fig 6). The

qRT-PCR results showed expression trends for these genes that were largely consistent with

the microarray results. Among them, ScAP1-A (F1254) and ScAP1-B (GenBank accession

AY057378, D.Z.L. unpublished data) MADS-box genes were more abundant in the fully white

bracts and in the white portion of bracts whether during the green-to-white transition or dur-

ing the white-to-green transition, in addition, ScAP1-A were more abundant in the green por-

tion of bracts during the green-to-white transition (S5 Table) (Fig 6). ScAP3-A (EH662329)

transcripts were more abundant in the green and white portion of bracts during the green-to-

white transition, in the fully white bracts and in the white portion of bracts during the white-

to-green transition, while ScAP3-B (EG530709) transcripts were more abundant in the white

portion of bracts during the green-to-white transition and in the fully white bracts (S5 Table)

(Fig 6). ScPI-A (EG530711) and ScPI-B (D658) transcripts were more abundant in the fully

white bracts, meanwhile, ScPI-B (D658) transcripts were more abundant in the white portion

of bracts during the green-to-white transition (S5 Table) (Fig 6).

Alignment and phylogenetic analysis of AP1 and B-class MADS-

box transcription factors

Alignment with 24 putative AP1/FUL/FRU/FL/CAUL subfamily proteins and 5 putative

MADS-box proteins showed that the S. chinensis putative ScAP1-A and ScAP1-B genes shared
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the MPPWML motifs of other AP1 MADS-box genes (Fig 7A). 28 putative AP3/DEF subfam-

ily proteins and 6 putative MADS-box proteins showed that the S. chinensis putative ScAP3-A
and ScAP3-B genes shared the PI and paleoAP3 motifs of other AP3 MADS-box genes

Fig 6. Validation of microarray results by qRT-PCR for selected genes. ScAP1-A and ScAP1-B MADS-box genes are

F1254 and AY057378; ScAP3-A and ScAP3-B MADS-box genes are EH662329 and EG530709; ScPI-A and ScPI-B
MADS-box genes are EG530711 and D658; the transcription factors are F431, F480, F583 and F1387. α-TUBULIN
(JK704891) was used as an internal control for normalization of the template cDNA. Each sample was done in

triplicate, and the error bars represent the standard deviation of the three independent experiments. In each graph, the

white bars represent the relative expression found in the microarray experiments, and the black bars represent the

relative expression determined by normalized qRT-PCR. The number 1 to 6 correspond in the X axis represent the half

green and half white during the transition of green to white bracts, the fully white, as well as the stages following floral

senescence the half green and half white during the transition of white to green bracts, and Fully pale green bracts

when bracts are reverting back to green coloration.

https://doi.org/10.1371/journal.pone.0255679.g006
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(Fig 7B), while 25 putative PI/GLO subfamily proteins and 3 other putative MADS-

box proteins showed that the S. chinensis putative ScPI-A and ScPI-B genes shared the PI

motifs of other PI MADS-box genes (Fig 7C).

Analysis of the A-class and B-class protein alignment using the Minimum Evolution

method supported the identification of S. chinensis AP1, AP3 and PI-family homologs.

ScAP1-A and ScAP1-B were homologous to these S. chinensis A-class MADS-box genes, as all

clustered together when compared to the AP1 homologs from Houttuynia cordata, Magnolia
and Persea americana. In the phylogenetic reconstruction, ScAP1-B was placed close to an AP1
homolog isolated from H. cordata with high bootstrap support (99%), and the pair clustered

closely to MADS600 homologs from Asarum caudigerum (Fig 8A). ScAP3-A and ScAP3-B
were homologous to these S. chinensis B-class MADS-box genes, as all clustered together with

moderate bootstrap support (BS = 86%) when compared to the AP3 homologs from Houttuy-
nia cordata and Piper nigrum. ScAP3-A was placed close to an AP3 homolog isolated from P.

nigrum with high bootstrap support (99%), and ScAP3-B was placed close to the AP3 homolog

isolated from H. cordata with high bootstrap support (100%) (Fig 8B). ScPI-A and ScPI-B were

homologous to these S. chinensis B-class MADS-box genes, as all clustered together with high

Fig 7. Comparison of the C-terminal region of amino acid sequences for MADS-box B class genes. ScAP1-A and

ScAP1-B have a conserved MPPWML motif in the C-terminal region. ScAP3-A and ScAP3-B shared a PI-derived

motif and a characteristic ancestral paleoAP3 motif. ScPI-A and ScPI-B protein has the highly conserved sequence PI-

motif in the C-terminal region.

https://doi.org/10.1371/journal.pone.0255679.g007

Fig 8. Bootstrap consensus tree of Minimum Evolution method analysis of the putative A-class and B-class MADS-box transcription

factors, using 1000 bootstrap iterations. Black triangles represent the A-class and B-class MADS-box genes from S. chinensis in this study

and others from GenBank that were included in the analysis.

https://doi.org/10.1371/journal.pone.0255679.g008
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bootstrap support (BS = 99%) when compared to the PI homologs from H. cordata. ScAP3-B
was placed close to the PI homolog isolated from H. cordata with high bootstrap support

(100%) (Fig 8C).

Nature selection of B-class MADS-box transcription factors

The pairwise dN/dS analysis within AP3 subfamily suggests that the tree display dN/dS values

that are consistent with purifying selection. The ω values are not less than 1 among five AP3
MADS-box genes and are constrained (dN/dS = 0.4995) between the two ScAP3-A and

ScAP3-B MADS-box genes (Table 2). Meanwhile, the ω values are not less than 1 among nine

PI MADS-box genes and are constrained (dN/dS = 0.3906) between the two ScPI-A and

ScPI-B MADS-box genes (Table 2).

Protein interactions of four B-class MADS-box proteins

To determine the protein interactions of the B class proteins in vitro, yeast two-hybrid assays

were performed between the B class proteins. The results of two-hybrid analysis revealed that

the ScPI-A protein could interact with ScPI-B. No homodimer or other interaction between

the AP3-type members was observed in S. chinensis (Fig 9).

Discussion

Anatomical and photosynthetic physiological variation

In addition to the anatomical differences between the green and white bracts of S. chinensis,
we have demonstrated in this study that bracts have reduced or altered foliar photosynthetic

functions [17]. More specifically, in white bracts the fine structures of chloroplasts were

degraded relative to those in normal leaves, and chlorophyll content, photosynthetic rate, and

stomatal conductance (gs) were also greatly reduced (Figs 1, 3) [17]. These anatomical and

physiological changes support the hypothesis that functional divergence has occurred in the

white bracts, in a manner similar to the white bracts of D. involucrate [16].

Table 2. Pairwise dN/dS analyses on five MADS-box genes with AP3 and nine MADS-box genes with PI.

AP3

ScAP3-A Saururus chinensis
ScAP3-B Saururus chinensis 0.4995

HcAP3 Houttuynia cordata 0.3288 0.6745

AP3 Amborella 0.1691 0.3104 0.0880

AP3 Magnolia 0.1141 0.2401 0.1892 0.1116

PI

ScPI-A Saururus chinensis
ScPI-B Saururus chinensis 0.3906

HcPI1 Houttuynia cordata 0.3460 0.3343

HcPI2 Houttuynia cordata 0.3056 0.3977 0.8685

GLO Paphiopedilum concolor 0.2030 0.1470 0.1758 0.1835

PI Magnolia championii 0.1568 0.2539 0.2543 0.2077 -1.0000

PI Magnolia delavayi 0.1768 0.2392 0.2488 0.2083 0.0440 0.3509

MahoPI Magnolia hookeri 0.1549 0.2331 0.2372 0.2049 1.0000 0.6617 0.4176

MADS9 Vitis vinifera 0.1862 0.3516 0.3067 0.2937 0.1084 0.1061 0.1010 0.0960

https://doi.org/10.1371/journal.pone.0255679.t002
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Differential gene expression in the green vs. white bracts

A total of 43,463 genes were shown to be differentially expressed between green bracts and

white bracts, of which 5,797 were up-regulated or down-regulated. In the developmental tran-

sition of green bracts to white bracts, the majority of DEGs were up-regulated compared with

the seedling leaves, while the majority of DEGs were down-regulated during the bracts’ rever-

sion to pale green coloration (Fig 5). Many of the DEGs categorized as functioning in tran-

scription and cellular transport were up-regulated during the bracts’ green-to-white transition,

and down-regulated during the white-to-green reversion (S5 Table). DEGs identified as

involved with energy and photosynthesis were down-regulated in white bracts (S5 Table), and

their low or absent expression levels were confirmed by qRT-PCR analyses (Fig 6). Moreover,

the changes in gene expression occurred before morphological characteristics appeared, as

demonstrated by large number of genes that were up-regulated in green portion of the bracts

during the green-to-white transition (S5 Table).

The combined gene expression of ScAP1, ScAP3 and ScPI paralogs plays an

important role in the petaloid bracts

AP1 is an A-class gene involved in the earliest stages of floral meristem development, and spec-

ifies petal and sepal identities in the first and second floral whorls; in Arabidopsis, loss-of-func-

tion mutants showed loss of petals and production of bract-like organs in lieu of sepals, among

other defects [24]. According to both the microarray and qRT-PCR analyses, the two AP1
homolog (ScAP1-A and ScAP1-B) were up-regulated in S. chinensis bracts during the green-to-

white transition. Interestingly, ScAP1-A and ScAP1-B showed maximum up-regulation in the

white portions of transitioning bracts, and then were less up-regulated in fully white bracts.

Following floral senescence, the ScAP1 homologs showed gradual down-regulation in bracts

reverting to pale green color (S5 Table) (Fig 6). The likely involvement of these A-class genes

Fig 9. Yeast two-hybrid interactions of five MADS-box B class proteins of S. chinensis. GAL4-based yeast two-

hybrid vectors pGADT7 vector (AD) and pGBKT7 vector (BK) and co-transformed into the AH109 yeast strain. Yeast

growth on selection plates SD/-Trp-Leu-His-Ade/X-α-GAL solid medium.

https://doi.org/10.1371/journal.pone.0255679.g009
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in executing bract petaloidy development appears to be another instance of a key floral devel-

opment gene gaining expanded roles [5].

The products of MADS-box genes AP3 and PI generally dimerize and specify floral organ

petaloidy [5]. In this study, two paralogs of AP3 and two paralogs of PI were isolated from the

basal angiosperm S. chinensis, suggesting two gene duplication events for each gene lineage in

this species. ScAP3 transcripts were more abundant in the white portion of bracts during the

green-to-white transition and in the fully white bracts (S5 Table) (Fig 6). ScPI-A transcripts

were more abundant in the white portion of bracts during the green-to-white transition, while

ScPI-B transcripts were more abundant in the fully white bracts (S5 Table, Fig 6). This may

reflect an increased role for one of the paralogs in a certain tissue type. ScAP3-B transcripts

were more abundant in the bracts during the green-to-white transition (S5 Table).

In many perianthless species, first and second whorl primordia initiate but then arrest; in

Saururaceae and Piperaceae, conversely, petal and sepal primordia are completely absent

throughout floral morphogenesis [25]. As such, it has been shown that selection pressures

(ω<1) on AP3 and PI would be reduced in the perianthless Piperales (Table 2), as these genes

have been released from their perianth identity function and the same should be true for Saur-

uraceae [26]. We therefore suggest that two factors, the reduced dimerization capabilities of

the various S. chinensis AP3/PI combinations and the complete lack of perianth tissues in this

species (Fig 9), combined to render S. chinensis B-class genes especially free from evolutionary

pressures. It will be interesting to determine what functions the broad expression patterns of

the AP3 and PI genes have maintained in this perianthless species.

Bracts that appear in a whorl subtending an inflorescence are collectively called an involu-

cre. They often contain chloroplasts and can contribute to the photosynthetic capacity of the

plant [27]. An involucre is a common feature beneath the inflorescences of many species,

including Euphorbia pulcherrima, Davidia and the fossil genus Amersinia, all of which have

large colorful bracts surrounding much smaller, less colorful flowers. The showy bracts of such

species function to supplement or substitute absent or reduced perianths. In those species,

large bracts developed to aid in attracting pollinators [17]. This likely occurred before the

divergence of bougainvillea, Euphorbia pulcherrima, Davidia and Amersinia [28]. Because

Amersinia also had a weakly developed perianth, the bracts might have appeared petaloid, as

in S. chinensis. It has been suggested that gene networks controlling color and other petaloid

characteristics in petals or tepals are ectopically expressed in such showy bracts [5].

In conclusion, the results indicated that petaloid bracts display anatomical and gene expres-

sion features normally associated with petals, as has been found in petaloid bracts of other spe-

cies, supporting an evolutionarily conserved developmental program for petaloid bracts. This

work has also demonstrated that A- and B-class gene expression are involved in the develop-

ment of showy bracts to attract pollinators.

Methods

Plant material

An inbreeding population of S. chinensis, a perennial medicinal herb in the Saururaceae, was

cultivated in the Botanical Garden of the Kunming Institute of Botany, Chinese Academy of

Sciences, Kunming, Yunnan Province, China. The species is found mainly in moist habitats

across southern China [29]. The bracts of this species are initially small and green (Fig 10A),

resembling leaves, but white coloration develops first along the midvein and then spreads out-

ward during inflorescence development (Fig 10B). Bracts then revert to a pale green coloration

during floral senescence. There is some irregularity in bract morphology and color pattern,

e.g., occasionally a plant’s upper-most bracts remain very small with white coloration on both
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adaxial and abaxial surfaces (Fig 10C). More often, however, the three uppermost bracts are quite

large (Fig 10B). The species with perianthless flowers tend to be wind pollinated [17] (Fig 10D).

Scanning Electron Microscopy (SEM) and Transmission Electron

Microscope (TEM) observation

Green bracts and white, petaloid bracts were dissected in the greenhouse and fixed in FAA

(5% formaldehyde, 5% acetic acid, in 70% alcohol) for 13 hours, and then dehydrated through

a series of alcohol solutions ranging from 70% to 100%. The materials were further dissected

under a stereomicroscope, and the alcohol replaced with isopentanol acetate before the sam-

ples were dried in a Hitachi HCP-2 CO2 Critical Point Dryer (CPD). The dried material was

mounted on stubs and coated with gold-palladium. Observations were made using a Hitachi

KY Amray-100B SEM at 25KV.

The leaves were cut into 0.5mm × 0.5mm pieces and immediately fixed in 4% glutaralde-

hyde (in phosphate buffer, pH 7.4) for 3 hours in a refrigerator, then washed three times with

the same buffer, each for 30 min. The specimens were re-fixed with 1% osmic acid (in the

same buffer) overnight in a refrigerator, washed three times with the buffer and distilled water

(30 min each time), and then were dehydrated in an alcohol series and embedded in Epon 812

resin. The specimens were sectioned and stained with uranium acetate-lead citrate, before

being examined and photographed under a JEM-100 CX transmission electron.

Stomatal conductance (gs) and chlorophyll concentrations measurement

All photosynthetic measurements were taken at this site between 16 May and 26 July, in both

2012 and 2013. Chlorophyll and carotenoid concentrations were determined using a modified

Fig 10. Morphological diversity of the green bracts and white bracts of Saururus chinensis. A) Bracts are initially

green. B) Top three bracts are white. C) Occasionally, upper-most bracts are reduced in size and colored white on both

adaxial and abaxial surfaces. D) A bee feeding from flowers of S. chinensis.

https://doi.org/10.1371/journal.pone.0255679.g010
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version of the spectrophotometric method of Hendry and Grime [30] and was done in tripli-

cate. Leaf samples (0.2 g fresh weight) were homogenized in 3 ml 80% acetone (80% (v/v)).

Samples were placed in darkness for 30 min, and then the absorbance of the supernatant was

measured at 480, 645 and 663 nm to determine carotenoid and chlorophyll concentrations.

Each sample was done in triplicate, and the mean and standard deviation of the three indepen-

dent experiments were calculated.

Tissue collection and RNA extraction

Bracts were collected at various stages of their development from floral meristem emergence

to anthesis, including the initial green bract stage, the half green/half white stage, the fully

white stage, as well as the stages following floral senescence when bracts revert back to green

coloration. Collected issues were immediately frozen in liquid nitrogen and stored at -80˚C.

Young upper leaves were also collected at the seedling stage and frozen. Total RNA was iso-

lated from the tissues using TRIZOL reagent (Shanghai Huashun Co. Ltd., Shanghai, China)

according to the manufacturer’s protocol. RNA quality was characterized initially on an aga-

rose gel and a NanoDrop ND1000 spectrophotometer (NanoDrop Technologies, Wilmington,

DE, USA) and then further assessed by RIN (RNA Integrity Number) value (>8.0) using an

Agilent 2100 Bioanalyzer (Santa Clara, CA, USA).

Library preparation and sequencing

According to the Illumina manufacturer’s instructions, poly(A)+ RNA was purified from 5 ug

of pooled total RNA from petaloid-bract and green-bract using oligo(dT) magnetic beads.

Fragmentation buffer was added to disrupt mRNA to short fragments of about 150–200 bp in

size. Using these short fragments as templates, a random hexamer primer was used to synthe-

size the first-strand cDNA. Next, 10×buffer, 25 mM dNTPs, 20–60 U/μl RNaseH and 5 U/μl

DNA polymerase I were added to synthesize the second strand. The double strand cDNA was

then purified with QiaQuick PCR extraction kit (Qiagen) and washed with EB buffer for end

repair and adenine addition. Finally, sequencing adaptors were ligated to the fragments. The

fragments were purified by agarose gel electrophoresis and enriched by PCR amplification to

construct a cDNA library. The library products were ready for sequencing analysis via Illumina

HiSeq™ 2000.

Sequence data analysis, assembly, and annotation

The cDNA library was sequenced on the Illumina sequencing platform and the sequencing

method was pair end. Clean reads were obtained by removing from the raw data all low quality

reads as well as those reads containing poly-N or adapter sequences. Subsequently, Q20, GC

content and sequence duplication levels of the clean data were calculated. Unigenes were used

for BLAST searches with annotation against the NCBI Nr database (NCBI non-redundant

sequence database) using an E-value cut-off of 10−5 (E-value<0.00001). After sequence assem-

bly, the unigene sequences were also aligned by BLASTX to protein databases such as Swiss-

Prot, KEGG and COG.

Screening of differentially expressed genes

Unigenes that showed different expression levels between the petaloid-bract and green-bract

were subjected to GO function analysis and KEGG pathway analysis. A strict algorithm was

developed to identify differentially expressed genes between two samples, building on previous

work into the significance of digital gene expression profiles [31]. FDR (false discovery rate)
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was used to determine the threshold P-value, and fold changes for each unigene between sam-

ple pairs (Green bracts vs. Showy bracts) were computed as the log2Ratio values. This research

used FDR < 0.001 and an absolute value of the log2Ratio� 1 as the threshold to judge the sig-

nificance of gene expression difference [32]. For pathway enrichment analysis, all differentially

expressed genes were mapped to terms in the KEGG database, and a list of KEGG terms that

were significantly enriched in the bract phases compared to the genome background was

compiled.

Gene annotation

Functional categories of the predicted genes were obtained by applying gene ontology (GO)

terms (http://www.geneontology.org) to the Nr database annotation using the Blast2GO pro-

gram [33], and summarized using WEGO software [34]. Subsequently, the GO annotations of

the differentially expressed genes were mapped to the plant-specific GO slim ontology using

the map2slim script (www.geneontology.org/GO.slims.shtm l) (p-value, 0.05), and final classi-

fication of the differentially expressed genes was based on these GO slims.

cDNA microarray construction and analysis

Reverse-subtracted white bract cDNA libraries were used to design a custom microarray (Hua

Da Genomic Company, Beijing, China). Microarray probes were derived from the 1,262 uni-

ESTs according to Zhang et al. [35] with minor modifications. The probes were generated by

reverse transcription of 50 μg of total RNA using the SuperScript Indirect cDNA Labeling Sys-

tem (Invitrogen, Carlsbad, CA, USA). The reverse transcription reaction also contained 1 ng

of Lambda polyA+ RNA-A (TX802; Takara, Kyoto, Japan) as an external control. Lambda

DNA (TX803; Takara, Kyoto, Japan) was used as a control template, and SARS virus genes

and distilled water were used as negative controls. Probes derived from RNA of seedling leaves

were labeled with Cy3 fluorescent dye, and probes derived from RNA from bracts at various

stages of flowering development were labeled with Cy5 fluorescent dye. Equivalent quantities

of Cy3- and Cy5-labeled probes were pooled, purified, dried under vacuum according to

Zhang et al. [35], and resuspended in 1× hybridization solution (5× standard saline citrate,

0.1% SDS, 25% formamide, and 0.1 mg/mL of denatured salmon sperm DNA). A common ref-

erence design was adopted in our cDNA microarray experiment [36], and two biological repli-

cates for each time point were completed. Pre-hybridization, hybridization, and post-

hybridization washes were carried out in accordance with the UltraGAPS Coated Slides

instruction manual (Corning, Lowell, MA, USA). After being washed, the slides were

scanned using an Axon GenePix 4100B scanner (Molecular Devices, Sunnyvale, CA, USA) at

a resolution of 10 μm. Laser and photomultiplier tube voltages were adjusted manually to

minimize background to reduce the number of spots that showed saturated signal values,

and to bring the signal ratio of the majority of control genes as close to 1.0 as possible. Spot

intensities were quantified using Axon GenePix pro 6.0 software (Molecular Devices, Sunny-

vale, CA, USA). The intensity of each channel for individual spots was calculated by deter-

mining the median value. Background fluorescence was calculated on the basis of the

fluorescence signal of the negative control genes. The Lambda control template DNA frag-

ment was used to normalize the fluorescence intensities of the two labeling dyes for dye bias

reduction. The spots with a ratio�2 or�0.5 were judged significantly upregulated and ana-

lyzed with Hierarchical Clustering Explorer 3.0 (http://www.cs.umd.edu/hcil/hce/hce3.

html). Only those genes with�2-fold or�0.5-fold differences in expression were considered

differentially expressed genes.
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Real-time quantitative PCR analysis

Total RNA of the seedling leaves and the bracts at various stages of development were reverse

transcribed with oligo-dT and reverse transcriptase (Promega, Madison, WI, USA) following

the supplier’s protocols. To validate the cDNA microarray results for ten putative transcription

factors including ScAP1, ScAP3 and ScPI, real-time quantitative PCR (qRT-PCR) was per-

formed using an ABI Prism 7500 HT sequence detection system (Applied Biosystems, Carls-

bad, CA, USA). Primers were designed using Primer5 and synthesized in ShengGong

Cooperation (Shanghai, China) (S6 Table). An alpha-tubulin gene sequence (JK704891) was

used as internal control for normalization of the template cDNA. qRT-PCR reactions used 1×
SYBR Green I PCR Master Mix (Applied Biosystems, Carlsbad, CA, USA) containing 200 nM

of each primer and 1μl 1:10 diluted total cDNA. The PCR was performed using the following

program: 1 cycle at 50˚C for 2 min, 1 cycle at 95˚C for 10 min, and then 40 cycles of 95˚C for

30 s, 60˚C for 30 s, and 72˚C for 18 s. Following amplification, melting curve analyses were

performed at 95˚C for 10 min, followed by 40 cycles of 95˚C for 30 s, 60˚C for 30 s, and 72˚C

for 20 s. The data collected during each extension phase were analyzed using SDS2.1 (Applied

Biosystems, Carlsbad, CA, USA). The transcript abundance of the eight putative transcription

factors was calculated using the relative 2-ΔΔCT analytical method [37]. Each sample was done

in triplicate, and the mean and standard deviation of the three independent experiments were

calculated.

Construction of phylogenetic trees and estimation of the dN/dS ratio

The putative S. chinensis homologs of the MADS-box genes AP1, AP3 and PI were aligned

with those closely related to A-class genes from GenBank using Clustal X [38], followed by

manual adjustment where necessary. Alignments were created using MIKC domains. A

Minimum Evolution method (ME) tree was constructed using the pairwise deletion option

in MEGA7 [39]. Genetic distances were estimated under Close-Neighbor-Interchange

model.

The codon alignment of cDNA was performed and the phylogenic tree was constructed

with the MEGA7 using Maximum Likelihood method [39]. The nonsynonymous/synonymous

substitution rate ratio (ω = dN/dS) was estimated by using the software PAML4.9e [40]. Site-

specific methods were applied to calculate selection pressure.

Yeast two-hybrid assays

The full-length coding cDNA sequences of ScAP3-A, ScAP3-B, ScPI-A, and ScPI-B genes con-

taining restriction sites at the 5’and 3’ ends were introduced into the GAL4-based yeast two-

hybrid vectors pGBKT7 (Clontech) and pGADT7-Rec (Clontech) and co-transformed into the

AH109 yeast strain by the LiAc/DNA/PEG method according to the Yeast Protocols Hand-

book from Clontech (http://www.clontech.com).
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