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A B S T R A C T   

In the existing leanings of environmental and national security issues, establishment of appropriate sensors for explosive as well as pollutant 
nitroaromatic compounds may be considered as one of the most prodigious job for material researchers. In the current study a new Cd(II) based 1D 
ladder coordination polymer (CP), [Cd(4-bpd)(3-cbn)2]n, has been synthesized and well characterized through single crystal X-ray diffraction 
analysis. Interestingly, the supramolecular assembly of this compound has efficiently identified 2,4,6-trinitrophenol through fluorescence quenching 
method. The Stern–Volmer coefficient (Ksv) has been calculated as 6.047 × 103 M− 1, which can be attributed to the quenching of the emission 
intensity. The limit of detection (LOD) has been determined as 0.260 μM following the 3σ method along with almost 95% fluorescence intensity 
reduction. FESEM study revealed that the crystalline nature of the compound has been altered upon interaction with the above mentioned nitro
aromatic analyte. Theoretical studies were performed to get the insight idea of fluorescence quenching mechanism which also substantiated the 
experimental observation. The present study can pave the way for the fabrication of future generation technology in sensor field.   

1. Introduction 

These days, development of new coordination polymers and their application in various fields are considered as one of the most 
increasingly appealing research areas due to the diversities in their structure and their prospective applications in numerous fields of 
scientific and industrial research such as storage of gas [1–7], catalysis [8–16], fabrication of electronic devices [17–23], sensing 
[24–29], magnetism [30,31], biomedical research [32–36] etc. Coordination polymers exhibiting varying geometries can be syn
thesized by varying both the nature and the stoichiometry of the metal ions and the organic ligands associated with metal centers under 
appropriate reaction conditions. Generally, coordination polymers containing luminescent organic ligands were found to exhibit 
different kind of sensing properties. Over last few decades researchers focused on the implementation of such kind of coordination 
polymers in sensing purposes though emission quenching mechanism. It has been observed that nitroaromatic compounds exhibit a 
general tendency to reduce the intensity of emission of the coordination polymers. This observation can be utilized in the detection of 
explosive as well as pollutant nitro aromatic (epNAC) compounds [37,38]. These days, terrorist activities across all over the globe 
become a threat to human civilization [38]. News related to terrorist activities in various parts of the planet appears in the headlines 
nearly every week. So, for the purpose of the security of the homeland and to restrict the terrorist activity it is of extreme importance to 
build up appropriate system which can easily identify explosives. 

There is a general perception among the common people about the explosive nature of TNT and through the print as well as 
electronic media we are more familiar with the term TNT [39–43], but 2,4,6 trinitrophenol by no means exhibits lesser potential as an 
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explosive compared to TNT [44,45]. Therefore, designing a suitable chemosensor that can effectively detect TNP has extreme 
importance in the field of forensic science. In addition to this, TNP is extensively used in pharmaceutical industries, in preparation of 
dyes, analytical chemicals, fireworks, staining materials [46,47], etc. Upon releasing in the surroundings it has the potential to 
contaminate ground water as well as soil [48–52]. TNP can change the pH level of river water if discharged in river as industrial waste 
[53]. Pollution originated by this nitroaromatic compound can potentially cause numerous health hazards like infertility, anemia, 
disease in respiratory track, carcinogenesis in human cells as well as in other living beings [54–57], etc. Therefore, detection of 2,4, 
6-trinitrophenol has a significant importance because of its pollutant as well as explosive nature. 

Coordination polymers synthesized by metal ions of d10 electronic configuration along with π-conjugated aromatic moieties are 
considered to be capable materials to exhibit the photoactive properties [58–64]. Luminescent properties of this kind of coordination 
polymers can be effectively utilized to sense different materials through the process of fluorescence quenching. Several coordination 
polymers based on d10 metal systems were reported to effectively sense various nitroaromatic compounds through fluorescence 
quenching mechanism [65–74]. 

In this background, we report herein the synthesis, characterization and TNP sensing property of a Cd(II)-based coordination 
polymer, [Cd(4-bpd)(3-cbn)2]n (1) (where 4-bpd is 1,4-Bis(4-pyridyl)-2,3-diaza-1,3-butadiene and 3-cba is 3-chlorobenzoate). Co
ordination polymer 1 was synthesized in suitable reaction conditions and thereafter it was characterized by usual spectroscopic 
methods. 4-Bpd was opted for its elongated π-conjugation. Coordination polymers containing this kind of ligands as its building block 
are familiar to exhibit noticeable fluorescence emission. This persuaded us to utilize 1 towards detection of the nitroaromatic com
pounds through emission quenching mechanism. 

2. Experimental 

2.1. Materials and physical methods 

The chemicals utilized during this work were bought from commercial sources. They were used as received. No further purification 
was performed. Synthesis of 1,4-Bis(4-pyridyl)-2,3-diaza-1,3-butadiene was done with the help of an earlier reported process [75]. An 
elemental analyzer (Perkin-Elmer 2400C) was utilized for the purpose of Elemental analyses. Emission spectra were recorded by using 
a Perkin-Elmer LS-45 fluorometer. The fluorescence lifetime measurements were performed by utilizing a HORIBA Jobin-Yvon 
time-correlated single-photon counting instrument. SEM imaging was performed with JEOL scanning electron microscope. 
PXRD-analyses of the materials were performed by using Bruker D8 Discover instrument with Cu-Kα radiation (λ = 1.5406 Å). 

2.2. Synthesis of [Cd(4-bpd)(3-cbn)2]n 

2.0 mmol of sodium salt of 3-chlorobenzoic acid dissolved in 4.0 mL of water was mixed well with 1.0 mmol of 4-bpd dissolved in 
4.0 mL of methanol. The resulting solution containing the mixed ligands was gradually layered above an aqueous solution containing 
1.0 mmol of Cd(NO3)2.4H2O using 1:1 (v/v) water/methanol mixture (5.0 mL) functioning like buffer. Block shaped yellow-colored 
crystals, which can be used for X-ray diffraction study, appeared after a week. After collection, these crystals were rinsed with water- 
methanol mixture; thereafter the crystals were dried out under vacuum. (Yield = 0.482 g; 76%.) Anal. Calc. For C26H18N4O4Cl2Cd: C, 
49.22; H, 2.84; N, 8.84; Cd, 17.74. Found: C, 49.28; H, 2.79; N, 8.81; Cd, 17.76%. 

2.3. Detection limit calculation 

The limit of detection (LOD) was determined by utilizing the empirical equation as follows: 
Limit of detection (LOD) = 3σ/k. 
(where, σ = the standard deviation and k = the slope). 
For coordination polymer 1 the standard deviation has been evaluated by the data obtained from fluorescence spectroscopic an

alyses. The fluorescence intensity of 1 as suspension in acetonitrile medium at 428 nm during emission quenching titration with 2,4,6- 
trinitrophenol has been plotted against the concentration of 2,4,6-trinitrophenol. The slope (k) can be obtained from the graphical plot. 

2.4. Crystallographic data collection and refinement 

The block shaped single crystal of 1 obtained by slow diffusion process mounted on a glass-fiber tip using super glue purchased from 
commercial source. At 298 K data collection of the single crystal X-ray diffraction analysis was accomplished by the use of a X-ray 
diffractometer (Bruker APEX II) which was endowed with a fine-focus and sealed tube of the source of X-ray with graphite mono
chromated Cu-Kα radiation (λ = 1.5406 Å). The collected data were integrated by utilizing a SAINT program [76] and SADABS was 
used in absorption correction. The structure solution was done by SHELXT [77] by utilizing direct methods and refinement was done 
by full matrix least-squares on F2 utilizing SHELXL-2016/6 [78]. Data collection parameters as well as the parameters of structure 
refinement are provided in Table S1. CCDC 2181620 has the supplementary crystallographic data for 1. 

2.5. Theoretical calculations 

The GAUSSIAN-09 [79] program package was utilized for optimization of the geometries as well as for attaining the molecular 
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functions of the material. The DFT-B3LYP hybrid [80] theoretical functional was employed all the way through the process. The 
LanL2DZ basis set was used for both the coordination polymer and the nitroaromatic compound. The coordinates found from X-ray 
diffraction analyses of the single crystal were considered during the process. The time-dependent density functional theory (TDDFT) 
[81–83] formalism of the material was build up for the assignment of the low-lying electronic transitions in the spectra. Gauss sum [84] 
was utilized to evaluate the fractional involvement of the molecular orbitals of the metal as well as those of the ligands. 

3. Results and discussion 

3.1. Description of crystal structure of 1 

X-ray diffraction analysis of the single crystal shows that Coordination polymer 1 crystallized in triclinic P-1 space group. Fig. 1 
displays the asymmetric unit of 1. Selected bond lengths and bond angles of this coordination polymer are provided in Table S2 and 
Table S3 respectively. The asymmetric unit of the coordination polymer contains one cadmium(II) ion, two chlorobenzoate ions along 
with one 4-bpd ligand. The cadmium atom, remaining at the centre, exhibits distorted pentagonal bipyramidal coordination geometry. 
The equatorial pentagonal plane is generated by the oxygen atoms of 3-chlorobenzoate ions whereas nitrogen atoms of the 4-bpd 
moieties occupy the axial positions. Two such Cd(II) centers are connected to each other by the bridging oxygen atoms of 3-chloro
benzoate moiety. The other end of the axially attached 4-bpd ligand is connected to another Cd(II) centre generating an one 
dimensional ladder like chain structure. The π-π stacking interactions present within this coordination polymer help in building the 
supramolecular architecture. Fig. 2 represents a perspective view of the polymeric network of 1. 

In the structural architecture of the molecular system, there exist a number of potential secondary interactions to generate su
pramolecular assembly. Hydrogen bonding interactions (C–H…Cl = 2.956 Å) are there between H-atoms of pyridyl ring and Cl-atoms 
of 3-chloro benzoic acid (Fig. 3); some Cl-atoms are oriented such a way towards aromatic pyridyl ring and originated Cl … π (3.487 Å) 
short contacts (Fig. 4). In addition to these, there exists C–H … π (3.584 Å) interactions in between the aromatic rings of the nitrogen 
donor ligand and hydrogen atoms of chloro-benzoic acid (Fig. 5). However, these supramolecular interactions have played pivotal role 
in the documentation of structure-property relationship as well as functionality; sometimes, in the process of molecular recognition 
such non-covalent contacts created favorable electronic atmosphere towards analytes. 

3.2. Nitroaromatic explosives detection 

The dispersion of 1 in acetonitrile was employed for the luminescence studies. 1 exhibits a peak of high intensity in its emission 

Fig. 1. ORTEP diagram of the asymmetric unit of 1 drawn with 50% ellipsoidal probability. Symmetry codes: (i) − x, 2 − y, 1 − z; (ii) − 1 + x, y, 1 
+ z. 
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Fig. 2. A perspective view of the polymeric network of 1. H-atoms are excluded for clarity.  

Fig. 3. Hydrogen bonding interactions between H-atoms pyridyl ring and Cl-atoms of 3-chloro benzoic acid.  

Fig. 4. Cl … π interaction between Cl-atoms of 3-cholo benzoic acid and pyridyl aromatic ring.  
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spectra at 428 nm on excitation at 350 nm. Generally both oxidation and reduction of Cd2+ systems are difficult due to d10 electronic 
configuration [85,86]. Therefore, the emission maximum exhibited by this coordination polymer cannot be inferred as an LMCT or an 
MLCT [60]. Intra-ligand (π*− π or π*− n) emission may be reason behind this kind of strong emission exhibited by this coordination 
polymer [87,88]. Other than this, enhancement of the rigidity due to the complexation between the ligand and the metal centre may 
reduce the non-radiative decay [89–91]. The emissive properties exhibited by this coordination polymer, encouraged us to investigate 
about some useful applications of it. Consequently, we have investigated its application in sensing of various nitroaromatic com
pounds. For ensuring the purity of the material to be used for the sensing purpose, the PXRD-patterns of the coordination polymer were 
recorded and compared with the single crystal X-ray diffraction analysis generated simulated patterns (Fig. S1). The similarity between 
these two patterns ensures the purity of the bulk material to be used for the sensing purpose. The detection ability of this coordination 
polymer for 1,3-DNB (1,3-dinitro benzene), 4-NA (4-nitro aniline), 3-NBA (3-nitrobenzoic acid), 4-NT (4-nitro toluene), 3-NT (3-nitro 
toluene), 2-NT (2-nitro toluene), 2-NP (2-nitro phenol), 2,4-DNP (2,4-dinitro phenol) and TNP (2,4,6-trinitro phenol) has been studied 
(with 10− 3 M concentration of each nitroaromatic compounds). To ensure the ability of detection of this coordination polymer, the 
aqueous solution of the nitroaromatic compounds have been slowly added with steady increase in concentration to the dispersion of 
the coordination polymer in acetonitrile medium. It has been observed that TNP has quenched the emission property of this coor
dination polymer; whereas, other nitroaromatic compounds like 1,3-DNB, 4-NA, 3-NBA, 4-NT, 3-NT, 2-NT, 2-NP, 2,4-DNP do not have 
considerable influence on the emission intensity of 1 dispersed in acetonitrile (Fig. 6). In this context, it is necessary to reveal that the 
initial emission intensity of 1 dispersed in acetonitrile medium remains unperturbed in the presence of water. 

Since the emission quenching of this coordination polymer takes place in the presence of 2,4,6-trinitro phenol, a titration has been 
performed. The titration has been carried out by gradual addition of aqueous solution of 2,4,6-trinitro phenol (10− 3 M) to the 
dispersion of 1 in acetonitrile medium (3 μL). Fig. 7 displays that the fluorescence intensity at 428 nm is extremely quenched on 
addition of TNP. The intensity of emission of 1 dispersed in acetonitrile is reduced by 95.0% in the presence of 57 μL of 2,4,6-trinitro 
phenol. 

Fig. 5. C–H … π interactions in between the aromatic rings of the nitrogen donor ligand and hydrogen atoms of chloro-benzoic acid.  

Fig. 6. Selectivity of 1 for TNP compare to other epNACs.  
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The ratio of emission intensity (I0/I) has been plotted against TNP-concentration to obtain Stern–Volmer plot (Fig. S2). The 
Stern–Volmer coefficient (Ksv) has been calculated as 6.047 × 103 M− 1, which suggests the quenching in the emission intensity. For 
quantification of the efficiency of sensing, the calculation of the limit of detection (LOD) is extremely important. The limit of detection 
has been determined as 0.260 × 10− 6 M (Fig. S3). Shenthilkumar et al. reported a Cd(II) complex and its TNP sensing properties. The 
detection limit was reported as 16.9 × 10− 6 M [92]. Another Cd(II) based complex reported by Venkateswarulu et al. was reported to 
sense TNP with limit of detection reported as 1.7 × 10− 9 M [93]. Hu et al. reported a Cd(II) based MOF which was reported to exhibit 
TNP sensing properties with LOD value of 1 × 10− 6 M [94]. Dutta et al. reported TNP-detection properties of a Cd(II) based CP and the 
LOD was reported as 0.91 × 10− 6 M [20]. Halder et al. reported a Cd(II) based MOF and utilized it in TNP sensing. The LOD of this MOF 
for TNP sensing was reported to be 6 × 10− 5 M [70]. Another Cd(II) based coordination polymer reported by Dutta et al. reported to 
exhibit TNP sensing properties with LOD reported as 1.65 × 10− 6 M [95]. The values of the detection limit of these earlier reported 
Cd-based metal complexes for the detection of TNP are tabulated in Table S4. Comparing with some of these recently reported values, 
the value of limit of detection for the coordination polymer [Cd(4-bpd)(3-cbn)2]n for TNP sensing, seems be good enough for selective 
sensing of 2,4,6-trinitrophenol. 

To check whether the emissive nature of the coordination polymer is the intrinsic property of the material or not, the emission 
spectra of the a mixture of Cd(NO3)2, 1,4-Bis(4-pyridyl)-2,3-diaza-1,3-butadiene and 3-chlorobenzoic acid in acetonitrile medium was 
recorded. The emission intensity of this mixture was very low when compared with that of the suspension of 1 in acetonitrile medium 
(Fig. S4). The emission spectra of each of the ligands also do not exhibit as strong emission intensity as 1 dispersed in acetonitrile. This 
observation suggests that the emission intensity exhibited by 1 may be due to the rigidity imparted to the system on formation of the 
polymeric architecture. 

To ensure the recyclability of the coordination polymer as a sensor of TNP, a paper strip made of filter paper was dipped into the 
acetonitrile medium containing the suspension of 1. When placed under UV light chamber this paper strip displayed emission. 
Thereafter aqueous solution containing TNP was added to this paper strip. The emission of this paper strip sharply quenched on 
addition of TNP solution. When the paper strip was washed with distilled water several times to remove TNP from it, the emission 
reappeared under illumination of UV light. This observation repeated for several cycles which confirmed the recyclability of 1 for the 
detection of TNP. 

To ensure the stability of coordination polymer 1 after interaction with TNP, the coordination polymer was washed thoroughly 
with distilled water after its interaction with TNP to make it completely free from TNP and thereafter it was dried. The PXRD pattern of 
this material matched well with the simulated pattern which ensured its stability even after interaction with TNP (Fig. S1). 

Nitroaromatic compounds are generally considered to be oxidizers due to the occurrence of low-lying vacant π* molecular orbitals, 
where readily acceptance of electron can take place from fluorophores in their excited state and thereby these types of compounds 
effectively quench the emission intensity of the fluorophore materials. For an effective emission quenching of a fluorophore to occur in 
the presence of a nitroaromatic explosive compound, it is extremely necessary for the nitroaromatic molecule to come nearer to the 
fluorophore sensor molecule and ultimately interact with the fluorophore. These types of interactions between fluorophore molecule 
and nitroaromatic molecules are mainly π-interactions, like π … π stacking interactions, C–H … π interactions etc. Here, due to the 
presence of poly aromatic rings in 1, it becomes electron rich and the structure of this coordination polymer reveals the possibility of π 
… π stacking interaction. The density functional theory computation adopting the B3LYP/LanL2DZ method was utilized on 1 and 
energy levels for lowest unoccupied molecular orbital (LUMO1) and highest occupied molecular orbital (HOMO1) were calculated as 
− 3.07 eV and − 6.25 eV, respectively. The energy level of the LUMO of TNP (LUMOTNP) was found to be − 4.85 eV, which was lower in 
energy compare to LUMO1, but higher in energy than HOMO1 (Fig. 8). The electrons, those have jumped on excitation from the 
HOMO1 to the LUMO1, cannot revert back to HOMO1 because of the presence of LUMOTNP. As a result, the electrons have to proceed 
from the LUMO1 to the LUMOTNP and thereafter they can return to the ground state. As a result, emission quenching of 1 has occurred 
in the presence of 2,4,6-tri nitro phenol. 

It is evident from Fig. 9 that the emission decay profiles of both 1 and 1 in the presence of 2,4,6-trinitro phenol display bi- 
exponential nature. The fluorescence lifetime of this coordination polymer was found out be 0.497 ns, which was observed to be 
increased to 2.384 ns in the presence of 2,4,6-trinitro phenol. From the fluorescence decay study it can be stated that the quenching has 
been taken place through dynamic mechanistic way. 

The interaction between 1 and 2,4,6-trinitro phenol is also substantiated by SEM-EDS study. The change in morphology of 1 on 
interaction with TNP can be clearly understood by comparing Fig. 10(a) and Fig. 10(b). EDS analysis of 1 after interaction with TNP, 
displays lowering in the weight percentage of cadmium and carbon as well as enhancement in the weight percentage of nitrogen and 
oxygen compare to the weight percentage of these elements found from single crystal X-ray diffraction analysis (Fig. S5). 

4. Conclusion 

In summary, a new Cd(II) based 1D ladder shaped coordination polymer [Cd(4-bpd)(3-cbn)2]n have been synthesized and char
acterized. The outstanding emission properties of 1, encouraged us to implement this coordination polymer as a sensor for the 
detection of explosive as well as pollutant 2,4,6-trinitro phenol. The quenching in emissive properties of this coordination polymer in 
the presence of 2,4,6-trinitro phenol has been analyzed extensively. Fascinatingly, 1 can selectively detect 2,4,6-trinitro phenol among 
other nitroaromatic compounds. Thus, 1 can be utilized as an excellent material for the detection of 2,4,6-trinitro phenol during 
security checking. These observations ultimately ascertained this one dimensional Cd(II) based coordination polymer as a general 
sensor for the detection of 2,4,6-trinitro phenol. It is also expected that in near future these classes of coordination polymer may be 
paved the way towards fabrication of explosive detection device. 
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Fig. 7. Emission quenching of 1 on addition (0–57 μL) of 10− 3 M aqueous solution of 2,4,6-trinitro phenol.  

Fig. 8. Frontier orbitals energy relationship illustration through electron transfer fluorescence quenching mechanism.  

Fig. 9. Fluorescence decay profile of 1 and 1 with TNP.  
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