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a b s t r a c t

Recruiting patients is a crucial step of a clinical trial. Estimation of the trial duration is a question of
paramount interest. Most techniques are based on deterministic models and various ad hoc methods
neglecting the variability in the recruitment process. To overpass this difficulty the so-called Poisson-
gamma model has been introduced involving, for each centre, a recruitment process modelled by a
Poisson process whose rate is assumed constant in time and gamma-distributed. The relevancy of this
model has been widely investigated. In practice, rates are rarely constant in time, there are breaks in
recruitment (for instance week-ends or holidays). Such information can be collected and included in a
model considering piecewise constant rate functions yielding to an inhomogeneous Cox model. The
estimation of the trial duration is much more difficult. Three strategies of computation of the expected
trial duration are proposed considering all the breaks, considering only large breaks and without
considering breaks. The bias of these estimations procedure are assessed by means of simulation studies
considering three scenarios of breaks simulation. These strategies yield to estimations with a very small
bias. Moreover, the strategy with the best performances in terms of prediction and with the smallest bias
is the one which does not take into account of breaks. This result is important as, in practice, collecting
breaks data is pretty hard to manage.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In order to get marketing authorization, a new product has to
succeed in clinical trials. A clinical trial is based on statistical con-
siderations in order to show the product efficacy, taking into ac-
count the variability of the environment. It is awell known fact that
the power of this test is linked to the number of patients we deal
with. If an inadequate number of enrolled patients is used, then the
study may fail to reject the null hypothesis due to lack of power. In
many cases the goal number of patients to include is thus a fixed
parameter of the trial. There has beenmuch effort in computing the
ematics, UMR 5219, CNRS, F-
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sample size for clinical trials. Its computation is now standard in
trial protocols (see ICH E9 guidance) andmandatory for most of the
publications (see Consort Group works Schulz et al. [20]). On the
other side relatively little attention is focused on improving the
prediction of the recruitment process. Indeed, till now the most of
techniques used by pharmaceutical companies are based on
deterministic models and various ad hoc techniques. Rojavin [19]
says “Patient recruitment and retention remains until now more
of an art rather than a science”.

The problem of predicting patients recruitment and evaluating
the recruitment time in clinical trials is of paramount interest for
planning trials because of scientific concern, economic and ethical
reasons.

� Ethical concern, because it is not satisfactory to continue a
study in vain.
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� Economical concern, a clinical trial is an expensive study in
itself and, as the duration of the trials is included in the duration
of the exclusive right to exploit the drug (20 years) [22], a delay
generates an enormous loss of income. Moreover, an improve-
ment of the planning andmonitoring of a trial may reduce costs.

� Scientific concern, because new drugs are increasingly devel-
oped and approved by regulatory agencies. When accrual rates
are too low, there may be new information available during the
enrolment period such as the results of other trials or a change
in the understanding of the underlying biology.

For these reasons, stopping or continuing a trial is a decision
with huge consequences and it will be useful to have some objec-
tive tools based on scientific criteria to take it.

Few authors have considered the problem of patients' recruit-
ment. The reader can refer to Barnard et al. [11] for a systematic
review of the existing models for recruitment and Anisimov [7],
Bakhshi et al. [10], Gajewski et al. [13], Heitjan et al. [14] for a
presentation and/or a discussion of methods. As far as we know, the
pioneer work is the one of Morgan [18] where an estimation of the
total study duration is proposed as a function of inclusion duration
and based on data from previous clinical trials. Let us cite Lee [15]
for a model of recruitment by Poisson processes. In Senn [21] a
model for multicentric trials based on Poisson process is intro-
duced. Poisson process appears as a natural assumption in litera-
ture [21]. However, Poisson processes depends on only one
parameter, which is the rate of enrolment in our setting and Carter
[12] have noticed that the use of the historic mean is a too simple
model and highlighted the necessity to take into consideration the
variability of the rates.

Inspired by queueing theory, Anisimov and Fedorov [9] pro-
posed to use a doubly stochastic Poisson process to take into
consideration the variation in recruitment rates between different
centres. This model, called as a Poisson-gamma model, assumes
that the patients arrive at different centres according to Poisson
processes with the rates viewed as independent gamma distributed
random variables. In Anisimov and Fedorov [9] the procedure of
parameters estimation from data collected up to an interim time
using empirical Bayesian technique have been suggested. The
model has been validated using data from a large number of real
trials [3]. The Poisson-gamma model was developed further for
predicting recruitment process at initial and interim stages [1], to
account for the situations when the centres opening dates may not
be known and assumed to be uniformly distributed in some in-
tervals [2,17] or when some centres can be closed or opened in the
future [6]. Sensitivity analysis to errors in parameters' estimation
has been investigated in Mijoule et al. [17]. Poisson-gamma model
allows to develop techniques for analysing the effects of unstrati-
fied and centre-stratified randomization [4], for predictive event
modelling [5], for predict randomization process [6] and for
modelling clinical trials' cost [16].

The Poisson-gamma approach on the modelling of patients'
recruitment is more and more popular. However, the assumption
on the rates, which are assumed to be constant in time, has to be
discussed. Indeed, in practice, there are breaks in recruitment
process. A break is defined as a period during which a centre does
not recruit any patient (holidays, week-end,..). This information is
observed and can be collected but, in practice, it is a huge and
complicated process. The Poisson-gamma model can be enriched
considering piecewise constant rate function yielding to inho-
mogeneous Cox models. In this case the estimation of the trial
duration is much more difficult. Three strategies of estimation of
recruitment duration are proposed in this paper: one taking ac-
count of breaks, one not taking account of breaks and a third
taking into account of only large breaks. These estimations are
biased. The bias is assessed by means of simulation study and the
strategies are compared in terms of bias in estimation and in
terms of predictive performances. Finally, these investigations
allow us to deal with a question of paramount interest: Is it really
useful to enrich the model in order to take into account breaks in
recruitments?

The paper is organized as follows. Section 2 describes the
Poisson-gamma model. The procedure of parameters estimation
and the computation of the expected duration of the trial are
given. Section 3 presents strategies which can be used to take into
account of breaks in the recruitment model. In Section 4 authors
explain the data generation procedure which allows to perform
the simulation studies. These studies investigate the bias and the
predictive performances of the strategies introduced in Section 3
together with the comparison of these strategies. The results are
presented in Section 5. Finally the paper ends with a concluding
Section 6.

2. The Poisson-gamma model without breaks in recruitment

2.1. Notations

Consider a multicentric clinical trial where C centres are
involved to recruit n patients. Denote ui the opening date of the i-th
centrewhich is assumed to be observed. The recruitment process of
centre i is denoted fNi

t ; t � uig and is modelled by a Poisson process
with intensity li. The global inclusion process is N ¼ PC

i¼1N
i. The

parameter of paramount interest is the stopping time:

T ¼
�
inf
t�0

: Nt � n
�
:

In the sequel we consider, for any i, li as a random variable
which is gamma-distributed with parameters (a,b) whose proba-
bility density function is:

pa;bðxÞ ¼ xa�1b
a e�b x

GðaÞ 1fx>0g;

where GðaÞ ¼ Rþ∞
0 ta�1 e�t dt.

2.2. Estimation

In most settings, parameter (a,b) is unknown. To estimate this
parameter, an empirical Bayesian strategy is used. Fix an interim
time of analysis t1. Data collected on [0,t1] are used to calibrate the
model. For any centre i, denote t1;i ¼ ðt1 � uiÞ∨0 the duration of
activity up to t1 of centre i and k1;i ¼ Ni

t1 the number of patients
recruited by centre i up to t1. Notice that {(t1,i,k1,i),i ¼ 1, …, C} are
observed data.

Theorem 1. (Anisimov et al. [8]). Maximum likelihood estimation
ðba; bbÞ of the parameter (a,b) is obtained by maximization of the
function:

MG
C ða;bÞ ¼ a lnðbÞ � ln GðaÞ þ 1

C

XC
i¼1

�
ln G

�
aþ k1;i

�
� �

aþ k1;i
�
ln
�
bþ t1;i

��
:

2.3. Prediction

If centre i is initiated at time 0 (ui ¼ 0), the so-called forward
rate bl1;i knowing fNi

t1 ¼ k1;ig is Gamma-distributed with param-
eters ðba þ k1;i; bb þ t1;iÞ. If centre i is not initiated at time 0, the
forward instantaneous intensity is time dependent and expressed
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as:

t/bl1;i1maxðt1;uiÞ�t ;

where bl1;i is a predictive posterior rate in center iwith distribution
Gðba þ k1;i; bb þ t1;iÞ. The prediction process is now written as:

Theorem 2. (Anisimov et al. [8]). Given, n1 ¼ PC
i¼1k1;i, the pre-

dictive recruitment process N expressed, for any t > t1 as:

Nt ¼ n1 þ N
1
t ; where N

1
t ¼

XC
i¼1

N
1;i
t ;

and N
1;i

is a Cox process whose predictive rate is
Gðba þ k1;i; bb þ t1;iÞ-distributed starting at time t1.
2.4. Expected duration

Consider n1 ¼ n� n1 the number of patients remaining to re-
cruit after t1 and T

1 ¼ finf t�t1 : N
1
t � n1g the remaining inclusion

time. Denote bL1 ¼ PC
i¼1

bl1;i.
Theorem3. (Anisimov [6]). � Assume that all centres are initiated at
the same time (ui ¼ u > 0, for any i) and denote t ¼ ðt1 � uÞ∨0. Then
T
1
is PVIðn1; baC þ n1; bb þ tÞ-distributed where PVI (n, a, b) denotes the

Pearson VI distribution whose probability density function is:

pn;a;bðxÞ ¼
1

B ðn; aÞ
xn�1ba

ðxþ bÞnþa ;

where B ða;bÞ ¼ R 1
0 xa�1ð1� xÞb�1dx is the beta function.

� In practice, the t1,i's may be different. The distribution of T
1
can

be approximated for large n by a PVIðn1; bA1;
bB1Þ distributionwith

�P 	2

bA1 ¼

C
i¼1 bm1;iPC
i¼1bv1;i ; bB1 ¼

PC
i¼1 bm1;iPC
i¼1bv1;i

where
bm1;i ¼
ba þ k1;ibb þ t1;i

; bv1;i ¼ ba þ k1;i�bb þ t1;i

	2

Recall that for X a random variable PVI(n, a, b)-distributed with
a > 2, the expectation and the variance are:

E½X� ¼ bn
a� 1

; V½X� ¼ b2nðnþ a� 1Þ
ða� 1Þ2ða� 2Þ

:

As a consequence, by Theorem 2 the expression of the expected
duration of the trial is:

E½T� ¼

8>><
>>:

t1 þ n1
bB1bA1 � 1

if bA1 >2;

þ∞ if 0< bA1 � 2:
3. The Poisson-gamma model with breaks in recruitment

Assume that the recruitment process for centre i stops at some
time denoted bi,j for periods denoted di,j. As in previous section, fix
an interim time of analysis t1. Data collected on [0,t1] will be used to
calibrate the model. For centre i, the data collected are:

� the number of recruited patients up to t1 denoted k1,i,
� the number of breaks up to t1:

j1;i ¼ inf


j : bi;j < t1; and bi;j þ di;j � t1

�
;

� (b1,i,j,j ¼ 1, …, ,j1,i) (resp. (d1,i,j,j ¼ 1, …, ,j1,i)) the breaks times
(resp. durations) up to t1.

The duration of activity for centre i up to t1 is thus
t1;i ¼ ðt1 � ui �

Pj1;i
j¼1d1;i;jÞ∨0. The recruitment dynamic for centre i,

still denoted as Ni, is a non-homogeneous Cox process with in-
tensity governed by li which is G(a,b) distributed. Indeed, the
instantaneous intensity for centre i is time dependent and
expressed as:

t/Aðli; tÞ ¼ li 1ft;D1;ig 1ft >uig; (1)

with D1;i ¼ ft; dj2f1;2;…; j1;ig; t � b1;i;j and t � b1;i;j þ d1;i;jg.

3.1. Estimation

The following theorem insures that (a,b) are estimated
following the same strategy as in Section 2. Only the definition of
t1,i differ.

Theorem 4. Maximum likelihood estimation ðba; bbÞ of the parameter
(a, b) is obtained by maximization of the function:

MG
C ða; bÞ ¼ a lnðbÞ � ln GðaÞ þ 1

C

XC
i¼1

�
lnG

�
aþ k1;i

�
� �

aþ k1;i
�
ln
�
bþ t1;i

��
:

3.2. Prediction

When considering breaks, the difficulty comes from the Cox
process N modelling the recruitment which is non-homogeneous
because of potential breaks in the dynamic. To overpass this diffi-
culty, consider ~N

1
a homogeneous Cox process starting at t1 with

intensity
PC

i¼1
bl1;i. Recall N

1
the remaining recruitment process

defined in Theorem 2. Processes N
1
and ~N

1
have the same in-

tensities but the first one allows breaks while the second one does
not (see Fig. 1).

Consider T ¼ finf t�0 : Nt � ng the “true” duration of the clin-
ical trial and T

1 ¼ finf t�t1 : N
1
t � ng (respectively ~T

1 ¼ finf t�t1 :
~N
1
t � ng) the remaining time after t1 considering there are

(respectively there are no) breaks in the recruitment. Obviously
~T
1 � T

1
. The duration denoted by (B) on Fig. 1 is thus interpreted as

the cumulated breaks duration.

3.3. Expected duration

The expected duration cannot be estimated directly but, as
E½T� ¼ t1 þ E½~T1� þ E½T1 � ~T

1�, an estimation can be proposed.
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Indeed, on the one hand, Theorem 3 gives us an estimation of E½~T1�
since ~N

1
is a homogeneous Cox process and, on the other hand,

assuming that breaks behave after t1 as before t1 and that the
cumulated breaks duration is proportional to the duration of the
follow up, E½T1 � ~T

1� can be estimated by

BC
1 ¼

E
h
T
1
i

PC
i¼1ðt1 � uiÞ

XC
i¼1

Xj1;i
j¼1

d1;i;j ; (2)

since
PC

i¼1
Pj1;i

j¼1d1;i;j is the cumulated breaks duration on [0,t1] andPC
i¼1ðt1 � uiÞ is the cumulated duration of activity of the centres on

[0,t1]. Replacing E½T1�, which cannot be computed, by E½~T1� yield to
the following estimation of E½T1 � ~T

1�.

fBC1 ¼
E
h
~T
1i

PC
i¼1ðt1 � uiÞ

XC
i¼1

Xj1;i
j¼1

d1;i;j: (3)

The simulation study of Section 4 aims to quantify the bias when
E½T1 � ~T

1� is estimated by fBC1
.

3.4. Another strategy

In practice, it may be useful to consider only sufficiently large
breaks (greater than a predefined value denoted dmax). Consider t1
an interim time of analysis of the recruitment process. For the
center i, the data collected on [0,t1] are:

� the number of recruited patients up to t1 denoted k1,i,
� the number of breaks which duration is greater than dmax up to
t1

j1;i ¼ inf


j : bi;j < t1; and bi;j þ di;j � t1 and di;j � dmax

�
;

� the breaks times and durations up to t1 greater than dmax
denoted (b1,i,j,j2J) and (d1,i,j,j2J), with

J ¼
n
j ¼ 1;…; ; j1;i; d1;i;j � d

o
:

The duration of activity up to t1 expressed as
t1;i ¼ ðt1 � ui �

P
j2J

d1;i;jÞ∨0. The rate of recruitment for centre i is

governed by li which is G(a,b)-distributed. The instantaneous in-
tensities are still time dependent and expressed, for any centre i, as:

t/li1ft;D1;ig1ft >uig;

with D1;i ¼ ft; dj2J; t � b1;i;j and t � b1;i;j þ d1;i;jg. Considering
these new notations and definitions, the estimation of the param-
eters of the model, the predictive process and expected duration of
the trial can be computed as explained in sections 3.1e3.3.
Fig. 1. Processes involved in the prediction of T.
4. Data generation procedure

Consider a multicentric trial involving C¼ 60 centres. We aim to
recruit n ¼ 720 patients in 365 days.

Remark 1. The whole numerical values introduced in this section to
perform the data generation procedure are chosen in such a way that
the recruitment dynamic is consistent with what is observed on real
trial. To do so, authors have taken the parameters of the real case study
of Anisimov and Fedorov [9].

In order to investigate different approaches of the breaks dy-
namic, different scenarios are proposed. Scenarios differ by the
breaks generation procedure (times of breaks and durations of
breaks). The scenarios are:

� Scenario 1: Exponential generation. The instants and dura-
tions of breaks are generated according to exponential distri-
butions. The breaks times are exponentially distributed with
intensity 1/60 this means a break appears on average every 60
days. The breaks durations are exponentially distributed with
intensity 1/14 this means the average break duration is 14 days.

� Scenario 2: Multinomial generation. The instants of breaks are
generated according to an exponential distribution with
parameter 1/60 meanwhile the durations are generated ac-
cording to a multinomial probability. Five levels of duration (2,
4, 8, 16 and 32 days) are involved. The corresponding probability
vector is built in such a way that it ensures that the total dura-
tions for each level are the same, (the breaks of 2 days happen
twice more than the one of 4 days).

� Scenario 3: Deterministic generation. The instants of the
breaks are the Saturdays and Sundays and a complete week
every two months for holidays.

Recruitment dynamic is generated involving breaks themselves
generated according to the scenarios defined above. The whole of
the dynamic is known thus the true duration denoted T0 of the trial
is known. The study consists in considering the data collected on
[0,t1] and to make use of the results of sections 2 and 3 to estimate
the duration of the trial. The three strategies of estimation of the
trial duration introduced in sections 2.4, 3.3 and 3.4 are considered:

� Strategy 1: not taking into account of breaks. The breaks
times and durations are not collected. The parameters of the
Poisson-gamma model for recruitment are estimated following
results of Section 2. The expected duration is denoted by T1 and
is computed by means of Theorem 3.

� Strategy 2: Taking into account of all the breaks. The breaks
times and durations are collected. This allow us to make use of
the estimation of the trial duration as explained in Section 3.3.
The expected duration is denoted T2.

� Strategy 3: Taking into account of only large breaks. Only the
breaks that have a duration greater than a predefined value of 14
days are collected and used as explained in Section 3.4. This
strategy leads to the expected duration denoted T3.

For a sake of simplicity, all centres are initiated at t¼ 0 (ui¼ 0 for
all i). The data generation procedure splits in two steps:

Step 1: Generate R ¼ 1000 recruitment processes according to
scenario 1, 2 or 3. Consider, for any 1 � r � R,
fNrðtÞ; 0 � t � Tr0g, where Tr

0 denotes the first time verifying
Nr(t) ¼ 720. The generation procedure is the following one:

1. Generate the breaks according to the scenario 1, 2, and 3
considered for a period of 730 days. The duration of 730 days is



Table 1
Average duration of the trial (in days) as a function of p, the strategy, together with its 95% confidence Interval. Absolute error between expected duration and true duration
(E0,p) as a function of the strategy together with its 95% confidence interval and the proportion of over-estimation (S0,p).

Real duration Strategy 1 Strategy 2 Strategy 3

Scenario 1 Mean 384.37 381.92 374.66 377.73
CI (95%) [351,415] [340,431] [336,421] [337,426]
E0,p e 13.81 15.42 14.41
CI (95%) e [2,13] [1,40] [0,38]
S0,p e 0.41 0.27 0.32

Scenario 2 Mean 337.92 337.8 336.41 337.16
CI (95%) [303,373] [304,374] [303,372] [353,406]
E0,p e 9.78 9.88 9.82
CI (95%) e [0,29] [1,29] [0,29]
S0,p e 0.44 0.40 0.42

Scenario 3 Mean 369.17 367.95 356.94 e

CI (95%) [343,398] [330,412] [321,398] e

E0,p e 11.04 14.88 e

CI (95%) e [1,32] [1,38] e

S0,p e 0.44 0.16 e

Fig. 2. Scenario 1. Histograms of expected duration for all strategies and comparison of the densities (solid line: T0, dashed line: T1, dotted line: T2, longdash line: T3).
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here arbitrary and chosen in order to be sure to catch the true
duration of the trial.

2. Generate the rates according to a G(2, 60.8) distribution.
3. Consider the modified rate function as defined in Equation (1).
4. Generate the recruitment process up to 730 days.
5. Identify Tr0 and shrink the recruitment process to ½0; Tr0�.

Step 2: Consider an interim time at t1 ¼ 182 days. For each
simulation run r ¼ 1, …, R and each strategy s ¼ 1, 2, 3,

1. Estimate parameters ðars; brsÞ of the gamma distribution applying
Theorem 1 for s ¼ 1 or Theorem 4 for s ¼ 2 and s ¼ 3 from data
collected on [0,t1].

2. Compute the expected duration of the trial Tr
s through the

application of Theorem 2 for s ¼ 1 or following strategies
explained in Section 3.3 for s ¼ 2 and Section 3.4 for s ¼ 3.

The performances of the model at interim time t1 are measured
by means of the absolute error defined by:
Es;s0 ¼ 1
R

XR
r¼1

��Trs � Trs0
��; for s; s02f0;1;2;3g; and sss0:

Remark 2. The value chosen for the minimal break duration in
analysis strategy 3 (14 days) is not coherent with the values chosen in
scenario 3 (2 and 7 days). There is thus no difference between the first
and the third scenario in this setting.
5. Results and discussion

5.1. Results on the bias

The first point investigated by the simulation study is the



Fig. 3. Scenario 2. Histograms of expected duration for all strategies and comparison of the densities (solid line: T0, dashed line: T1, dotted line: T2, longdash line: T3).

Fig. 4. Scenario 3. Histograms of expected duration for all strategies and comparison of the densities (solid line: T0, dashed line: T1, dotted line: T2).
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assessment of the bias embedded by the strategy of estimation of
the expected duration for each scenario. The results are collected in
Table 1. For each scenario, the mean duration (over the simulation
runs) of the simulated recruitment dynamic together with its 95%
confidence interval (which corresponds to the 25-th and 975-th
values of the sorted samples) are identified. For Strategy p
(p ¼ 1,2,3), the average expected trial duration and its 95% confi-
dence interval are computed. The bias is assessed by the average
(over r) of the absolute errors made between the expected dura-
tions ðTrpÞ and the true value of the trial duration ðTr

0Þ denoted E0,p.
Table 1 presents the value of E0,p, its 95% confidence interval and
the parameter denoted S0,p which measure the proportion of over-
estimation defined as the proportion of runs for which the expected
duration computed by means of Strategy p ðTr

pÞ is greater than the
true duration ðTr

0Þ.
These results are enriched by Fig. 2 (resp. 3 and 4) which refers

to Scenario 1 (resp. 2, 3). Each figure is composed of the plots of the
histograms of the (R ¼ 1000) expected durations for each strategy
together with the plot of the empirical density curves for each
strategy completed by the one of the true durations. Keep in mind
that, in accordance with Remark 2, Strategy 3 is not investigated for
Scenario 3.

First, the computation strategies are efficient. Indeed, on Table 1,
the mean value of the real duration is close to the mean durations
estimated by the different strategies. This is confirmed by the
values of E0,p. Moreover, thewidth of the confidence intervals of E0,p
is not large whatever the setting.

Second, for any scenario, the three strategies under-evaluate the
trial duration. This is not surprising since the estimation (3) of
E½T1 � ~T

1� involves E½~T1� instead of E½T1� and E½~T1� � E½T1�. The
Table 2
Results for Scenario 1. Comparison of the strategies of analysis in terms of absolute
error together with its 95% confidence interval and the proportion of over-
estimation.

Strategy 1 Strategy 2

Strategy 2 E2,p 7.27 e

CI (95%) [2,13] e

S2,p 0.99 e

Strategy 3 E3,p 4.25 3.07
CI (95%) [0,10] [1,5]
S3,p 0.94 0.01

Table 3
Results for scenario 2. Comparison of the strategies of analysis in terms of absolute
error together with its 95% confidence interval and the proportion of over-
estimation.

Strategy 1 Strategy 2

Strategy 2 E2,p 1.44 e

CI (95%) [0,3] e

S2,p 0.82 e

Strategy 3 E3,p 0.82 0.83
CI (95%) [0,2] [0,2]
S3,p 0.55 0.04

Table 4
Results for scenario 3. Comparison of the strategies of analysis in terms of absolute
error together with its 95% confidence interval and the proportion of over-
estimation.

Strategy 1

Strategy 2 E2,1 11.01
CI (95%) [9,14]
S2,1 1
values of S0,p on Table 1 and Figs. 2e4 confirmed this results.
Indeed, the histograms are uni-modal, not asymmetric and shift to
the left comparing with the one of the real duration. The strategies
are thus moderately biased.

5.2. Comparison of the strategies

Table 1 informs us that the error generated by Strategy 1 is
minimal whatever the setting and that the confidence intervals for
that strategy are the smallest. Strategy 1 is the less biased strategy
with values of S0,p close to 0.5. Figs. 2e4 highlight this result.

To specify the comparisons of the three strategies, results
analogous to those of Table 1 are collected in Table 2 for Scenario 1,
Table 3 for Scenario 2 and Table 4 for Scenario 3. Each block of the
table corresponds to a comparison of two strategies. These com-
parisons are given in terms of absolute error Es;s0 together with its
95% confidence interval (which corresponds to the 25-th and 975-
th values of the sorted samples) and the proportion Ss;s0 of over-
estimations, this means the proportion of runs for which the ex-
pected duration computed by strategy s0 is greater than the one
computed by strategy s.

Whatever the scenario, Tables 2e4 indicate that the results
obtained by the different strategies are more or less the same.
Notice that, for Scenario 1, the largest difference is around 7 days for
a study of 365 dayswhich is very small. The confidence intervals are
not large and the width is more or less the same whatever the
strategy of computation. Finally the proportion of over-estimation S
indicates that results from Strategy 1 over-estimate those from
Strategy 3 which over-estimate those from Strategy 2.

5.3. Predictive performance of the strategies

On contrary to bias analysis, predictive behaviour analysis of a
strategy is an individual concept. To investigate the predictive
performances of a strategy, Fig. 5 related to Scenario 1, Fig. 6 to
Scenario 2 and Fig. 7 to Scenario 3 are considered. Each figure splits
in sub-plots which are the plots of the 1000 values of the real
duration in abscissa and the expected duration in ordinate for each
strategy of computation. The plots are enriched with the regression
line and the straight line y ¼ x.

Whatever the scenario and whatever the strategy, the regres-
sion analysis yields to the same conclusions: the quality of the
regression model is good (quality of the fitting, normality, homo-
scedasticity and autocorrelation of the residuals values). It is thus
possible to compare the slope to 1 and the intercept to 0 by means
of Wald's tests and allow us to conclude that the differences
observed on the different plots are not significant. The predictive
performances are thus very good.

Differences between strategies and between scenarios are not
significant but exist. These differences are connected to results on
bias and illustrate the over-estimation issue already discussed. For
instance, for Scenario 1, Fig. 5 shows that Strategy 1 is closest to the
line y ¼ x and thus appears to be the best strategy (the slope are
0.94 for the first strategy, 0.87 for the second and 0.89 for the third).
The under-estimation of the strategies regardless to the real
duration is observable, the regression line is under the line y ¼ x. It
is easily seen on the plots that the difference between the regres-
sion line and the y ¼ x line increases with the true duration. The
bias in the estimation is thus time dependent unlike what is
observed for Scenario 3 with Strategy 2 (subplot on the right of
Fig. 7).

6. Conclusions and recommendations

To conclude, results of Section 5 allow us to claim that the



Fig. 5. Scenario 1. Linear Regression of the expected duration as a function of the real duration for each strategy. Solid line: y ¼ x line, dashed line: regression line.

Fig. 6. Scenario 2. Linear Regression of the expected duration as a function of the real duration for each strategy. Solid line: y ¼ x line, dashed line: regression line.
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Fig. 7. Scenario 3. Linear Regression of the expected duration as a function of the real duration for each strategy. Solid line: y ¼ x line, dashed line: regression line.
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procedures proposed in this paper to estimate the expected dura-
tion of the recruitment accounting of breaks in the recruitment
process are moderately biased and have very good predictive per-
formances. Notice that the assumption that the breaks behave after
the interim time as they behave before the interim time is
reasonable.

The main result states that the strategy with the best results is
the one ignoring breaks. This is not surprising since, for this strat-
egy, estimations (2) and (3) are the same and the induced bias is
null. That strategy applies directly the Poisson-gamma model on
the data collected. The consequence of the breaks is balanced by the
estimation of the parameters of the gamma distribution.

Thus, finally, as a recommendation one suggests to not worry
with breaks and to make use of a standard Poisson-gamma model.
Indeed, to collect breaks data during recruitment process is a
difficult process in practice and the impact on the recruitment
process modelling is really moderate.
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