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Abstract

Most existing electrocardiogram (ECG) feature extraction methods rely on rule-based

approaches. It is difficult to manually define all ECG features. We propose an unsupervised

feature learning method using a convolutional variational autoencoder (CVAE) that can

extract ECG features with unlabeled data. We used 596,000 ECG samples from 1,278

patients archived in biosignal databases from intensive care units to train the CVAE. Three

external datasets were used for feature validation using two approaches. First, we explored

the features without an additional training process. Clustering, latent space exploration, and

anomaly detection were conducted. We confirmed that CVAE features reflected the various

types of ECG rhythms. Second, we applied CVAE features to new tasks as input data and

CVAE weights to weight initialization for different models for transfer learning for the classifi-

cation of 12 types of arrhythmias. The f1-score for arrhythmia classification with extreme

gradient boosting was 0.86 using CVAE features only. The f1-score of the model in which

weights were initialized with the CVAE encoder was 5% better than that obtained with ran-

dom initialization. Unsupervised feature learning with CVAE can extract the characteristics

of various types of ECGs and can be an alternative to the feature extraction method for

ECGs.

1. Introduction

An electrocardiogram (ECG) is a record of the electrical fluctuations generated during cardiac

activity. ECGs are useful for several biomedical applications, including detection of arrhythmic

events, measuring heart rate variability, predicting myocardial infarctions, and screening con-

tractile dysfunctions [1, 2]. ECGs can be collected using a wearable device, an important

healthcare data can be easily obtained from ECGs for detecting and predicting the patients’

health status [3].

Many studies have attempted to develop a model that predicts a patient’s disease or health

state via electrocardiography; however, feature extraction is required to reduce the high-
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dimensional data included in ECGs. Various feature extraction methods have been proposed

for ECG analysis, including morphological and temporal approaches. In the morphological

approach, the specific shape of an ECG waveform, such as ST elevation, ST depression, and J-

waves, is defined [4, 5]. In the temporal approach, the time interval between certain features

observed in ECGs, such as the PR, RR, and QT intervals, is defined [6, 7].

However, the various shapes of the waveforms of ECGs render rule-based feature extraction

challenging. A morphological feature must be defined to be extracted; however, it is impossible

for a researcher to screen and define all waveform shapes observed in ECGs. Similarly, tempo-

ral features can only be defined by intervals between certain features that can be recognized.

Deep learning was recently proposed for feature extraction of high-dimensional data. There

are two approaches to deep learning: supervised and unsupervised learning. In supervised

learning, feature extraction is performed to classify data according to a matched label. More-

over, supervised learning has recently been applied to ECG analysis. Zhu et al. [8] conducted a

study to classify arrhythmias using a convolutional neural network (CNN), while Attia [9]

showed that deep learning could predict potential arrhythmic events using normal sinus

rhythms (SRs) only. These results indicate that deep learning can recognize and capture fea-

tures that are difficult to be perceived with the existing rules. In unsupervised learning, feature

extraction is performed with unlabeled data only. Chiang et al. [10] conducted a study on

restoring a noisy ECG using a denoising autoencoder. However, in supervised feature learning,

each ECG feature must be labeled, thus making the process time-consuming and resource-

intensive. In addition, the application of features extracted by supervised learning to other

tasks is difficult, as feature learning focuses on a specific task.

To overcome the limitations of supervised feature learning and represent the general fea-

tures of ECGs, unsupervised learning methods including the use of an autoencoder, were

applied for the analysis of ECGs. However, most of the unsupervised feature learning methods

were applied only to ECG beat units, while the clinically relevant rhythm of ECGs is a combi-

nation of several beats. Therefore, studies on beat units cannot accurately reflect the ECG char-

acteristics. Even in studies conducted using ECG rhythms, either the scale of the ECG dataset

or the performance evaluation was not adequate, and external validation was not performed.

This study proposed an unsupervised ECG feature learning method, using the convolutional

variational autoencoder (CVAE), and determined the effectiveness of the features. We trained

CVAE using data from the Ajou University Medical Center Intensive Care Unit (AUMC) bio-

signal database to include the ECG features of various types of patients. Validation of CVAE fea-

tures was then conducted via two approaches with external datasets. The first validation method

was to analyze the CVAE features without an additional training process using clustering, latent

exploration, and anomaly detection. Next, we applied trained CVAE and CVAE features to a new

task for training a different machine learning model to validate the CVAE. This included two

types of transfer learning for the classification of 11 ECG rhythms. We hypothesized that the

CVAE can extract features reflecting characteristics of ECGs without any labeled ECG data.

Although only lead II ECG of the intensive care unit (ICU) was utilized, no other study has

validated unsupervised feature learning trained with ECGs from large-scale ICU and provided

its model and weights. We have contributed to not only the application and validation of unsu-

pervised feature learning through anomaly detection, clustering, latent space exploration, and

transfer learning, but also the provision of pretrained model weights applicable to research.
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2. Materials and methods

This study was approved by the Ajou University Hospital Institutional Review Board

(AJIRB-MED-MDB-20-302). The requirement of obtaining informed consent was waived

owing to the retrospective nature of this study.

2.1 Data sources

The AUMC ICU biosignal database [11, 12] was collected from 23,422 patients in the ICU at

Ajou University Hospital between 2017 and June 1, 2020. The AUMC ICU biosignal database

includes two types of biosignal data, namely, waveform data such as ECG data, arterial blood

pressure, photoplethysmogram data, and respiratory impedance using the Nihon Kohden and

Philips device, and numeric data including the heart rate and respiratory rate, etc. In this

study, the CVAE was trained using only ECG lead II data, which were collected at 250 or 500

Hz, when using a Philips or Nihon Kohden device, respectively. We randomly selected 1,300

patients and extracted ECG samples of 8.2 seconds in length at 10-minute intervals throughout

each patient’s admission. The AUMC dataset was divided into a training dataset and a valida-

tion dataset at a ratio of 8:2.

We also used a 12-lead ECG dataset from the Shaoxing People’s Hospital in China, which

includes 12-lead ECG data recorded at 10-second intervals using a GE MUSE ECG system at

500 Hz [13]. This dataset includes ECGs from 10,646 patients. Each ECG was categorized by

two physicians into one of 11 rhythm types: normal sinus rhythm (SR), sinus irregularity (SI),

sinus bradycardia (SB), sinus tachycardia (ST), supraventricular tachycardia (SVT), atrial

tachycardia, sinus atrium to atrial wandering rhythm, atrioventricular node reentrant tachy-

cardia, atrioventricular reentrant tachycardia, atrial fibrillation (AFIB), and atrial flutter. The

categories were crosschecked by two physicians. Data from lead II were used for clustering,

anomaly detection, and transfer learning for the 11-rhythm classification task.

The third dataset was the Massachusetts institute of technology-Beth Israel hospital (MIT-BIH)

biosignal dataset from Beth Israel Hospital in Boston, USA [14, 15]. We used the MIT-BIH

arrhythmia dataset collected from 47 patients diagnosed with arrhythmias as well as the normal

SR dataset collected from 18 patients who had no significant arrhythmias. ECG lead II were used

to externally validate the anomaly detection threshold generated using the Shaoxing dataset. A

total of 542 samples of arrhythmias were extracted from the MIT-BIH arrhythmia dataset and 30

samples of normal ECGs were extracted for each patient from the MIT-BIH normal SR dataset.

The fourth dataset was a 12-lead ECG dataset from a medical check-up at AUMC. AUMC

check-up dataset had been collected by GE MUSE system from July 1994 to September 2012.

A total of 246,266 ECG test data were stored. We extracted 1,000 samples to resemble the age

distribution of AUMC ICU dataset and utilized them for clustering and visualizing ECG fea-

ture of ICU and medical check-up population.

2.2 Data preprocessing

We removed baseline noise< 0.5 Hz using a Butterworth pass filter. Data were resampled to

250 Hz, and linear interpolation was applied when up-sampling was required. After resam-

pling, the ECG data were normalized via z-score normalization. The lengths of the data were

adjusted to 8.2 seconds so that each data contained a total of 2,048 values.

2.3 Model development

2.3.1 One-dimensional convolutional variational autoencoder. The CVAE consisted of

an encoder and a decoder [16]. The encoder consisted of one-dimensional convolutional
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neural networks (1D CNNs) used to extract latent variables smaller than the original ECG data

(Fig 1). The decoder consisted of transposed 1D CNNs trained to reconstruct output similar to

the original ECG data using latent variables from the encoder. When the encoder extracted

latent variables, it generated means and standard deviations and then, generated latent vari-

ables sampled from a multivariate Gaussian distribution based on the means and the standard

deviations. In this study, mean values were used as CVAE features, the size of the mean values

was set at 60. The CVAE was trained to minimize the reconstruction error between the origi-

nal ECG and reconstructed ECG and to restrict means and standard deviations close to zeros

and ones. By restricting means and standard deviations, we were able to estimate the distribu-

tion of CVAE features. More detailed structures of the CVAE model are described in S1

Appendix.

2.4 Evaluation

2.4.1 Evaluation of CVAE. The CVAE performance was evaluated using the sum of the

reconstruction error and Kull-back divergence. Smaller values indicate a better performance.

During variational autoencoder training, the model performance was evaluated through a vali-

dation dataset for each epoch, and early stopping was performed when there was no improve-

ment in performance during an epoch.

2.4.2 Evaluation of classification task. Two classification tasks—anomaly detection and

transfer learning (classifying ECGs into 11 ECG rhythms)–were evaluated using four evalua-

tion metrics: accuracy, precision, recall, and weighted f1-score. The area under the receiver

operating characteristic (AUROC) [17] is also presented in the evaluation of anomaly detec-

tion. To confirm the difference in two distributions, a two-sided Welch’s t-test was used with

the significance level set at 0.05.

Accuracy ¼ ðTrue Positiveþ True NegativeÞ=ðTotal number of dataÞ

Precision ¼ ðTrue PositiveÞ=ðTrue Positiveþ False PositiveÞ

Recall ¼ ðTrue PositiveÞ=ðTrue Positiveþ False negativeÞ

f 1 � score ¼ 2 � ðPresion � RecallÞ=ðPrecisionþ RecallÞ

weighted f 1 � score ¼
Xk

i¼1
wi � f 1 � scorei

wi : portion of class i in total classes; k : the number of classes

2.5 Validation of CVAE features

To validate CVAE features, anomaly detection, features clustering, latent space exploration

and transfer learning were conducted.

2.5.1 Anomaly detection. The reconstruction error of CVAE was used as an anomality

feature. As the reconstruction error fully depends on the feature vector, the anomality score

can be considered a CVAE feature. The larger the anomality score, the higher the probability

of anomalous ECG. In the expanded methods in S2 Appendix, the assumptions for anomaly

detection with the reconstruction error are described in detail. We conducted anomaly detec-

tion to determine the effectiveness of the anomality feature using the Shaoxing dataset. In this

process, SR, SI, SB, and ST were defined as normal ECGs, and the remaining rhythms were

defined as abnormal ECGs. Moreover, we conducted an additional anomaly detection
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experiment to compare with previous work: long short-term memory (LSTM)-VAE. More

detailed methods are described in the S3 Appendix.

SI was regarded as normal data according to origin paper for Shaoxing dataset. Sinus brady-

cardia was included as normal data as this rhythm can occur in healthy patients without

adverse effects and does not require urgent treatment. Similarly, sinus tachycardia is also typi-

cally not a serious heart rhythm. Moreover, sinus bradycardia and sinus tachycardia rhythms

retain the morphological characteristics of a normal SR. The anomality score was calculated

for each datum. The threshold of score for anomaly detection was selected at the highest

f1-score in the Shaoxing dataset while changing the threshold by 0.05. Anomaly detection was

evaluated by f1-score, precision, recall, accuracy, and the AUROC, which were described in

the evaluation session in detail. The threshold of the anomality score selected by the Shaoxing

dataset was applied to the MIT-BIH dataset. Moreover, we selected 1,000 patients from the

AUMC ICU database and applied anomaly screening to the ECGs obtained every 10 minutes

Fig 1. Model architecture of encoder in convolutional variational autoencoder (CVAE) consists of nine layers of

one-dimensional convolutional neural network (CNN). The filter size is 19 until the sixth residual block, after which

it is reduced to nine. At the end of encoder, the extracted data are flattened and converted into the values of mean and

standard deviation with a size of 60. The latent variable is sampled from the values of mean and standard deviation.

The hyperparameter of the decoder is set symmetrically so that the output size is the same as that of the encoder.

Average pooling is applied to the outputs of the decoder. The mean values were used as the CVAE feature vector of

electrocardiogram (ECG).

https://doi.org/10.1371/journal.pone.0260612.g001
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during their entire hospital admissions. We then used a histogram to visualize the anomality

score distribution.

2.5.2 Clustering feature vectors. Clustering was performed using t-stochastic neighbor

embedding (T-SNE) [18] and locally linear embedding (LLE) [19]algorithms to confirm

whether the CVAE features reflect characteristics of various ECG rhythms. Three hundred

samples were randomly selected from the Shaoxing dataset for each rhythm category. Cluster-

ing was conducted with normal sinus samples and each of the arrhythmia samples. To deter-

mine whether distribution of ECG in ICU differ with distribution of ECG in Non-ICU

population, we conducted clustering with 1,000 ECG samples from ICU and from medical

check-up, respectively.

2.5.3 Latent space exploration. Latent space exploration allows for the identification of

the indirect implications of the feature vector [20]. While the value of the feature vectors was

changed, we visualized whether reconstruction output. After adding or subtracting 2 to a cer-

tain value in the feature vector, we observed the result of the reconstruction output. If the

CVAE learned features according to the various characteristics of ECGs, reasonable changes

are expected, in line with the ECG domain.

2.5.4 Transfer learning for arrhythmia classification. We conducted two types of trans-

fer learning. First, we reused the extracted features from CVAE as the input data for a different

model. Second, we reused the weights of the trained CVAE encoder to initialize another

model. The usefulness of the CVAE features and weights were confirmed by applying them to

the task of categorizing ECGs from the Shaoxing dataset into 11 categories of ECG rhythms.

We used an 8:2 ratio of training and validation data and repeated the validation model five

times using the bootstrap method [21]. The classification results were shown as the mean and

standard deviation of each metric. For the feature reuse experiment, we conducted arrhythmia

classification using the extreme gradient boosting (XGBoost) model [22] with CVAE features

as input data. Moreover, to conform that the anomality score offers additional information, we

classified the arrhythmias using only features of CVAE as well as features of CVAE and anom-

ality features.

We compared the performance of the model applied with CVAE weights and the model

applied with randomly initialized weights. The initial weight setting is known to affect perfor-

mance and convergence speed. If the CVAE encoder is trained to learn meaningful feature

extraction from ECGs, the classification will be affected by the weight settings. The perfor-

mance and convergence speed of transfer learning was compared with a randomly initialized

model. In this study, the classification model has an encoder and a fully connected layer. The

detailed structure of this model is described in S1 Fig. The learning rate was 0.0001 and the

total number of epochs was 150.

2.6 Software

CVAE model construction was performed on the framework with Pytorh 1.3 in Python 3.6

(Python Software Foundation, Wilmington, DE, USA). Model evaluation was conducted on

the platform with sklearn 0.21. The XGBoost package 1.0.2 was applied to the XGBoost model

for transfer learning.

3. Results

3.1 Patient and dataset characteristics

Table 1 summarizes the patients’ demographic data and the ECG data information for the four

datasets used in this study. The AUMC ICU dataset included 1,278 patients for whom demo-

graphic information could be obtained. There were no significant differences in the mean age
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of the patients in each dataset. The AUMC ICU dataset contained significantly more male

patients than the other three datasets (P-value<0.05). Half (50.1%; 540/1,082) of the ECGs in

the MIT-BIH dataset and 71.2% (7,682 /10,646) in the Shaoxing dataset were considered nor-

mal, as defined in the anomaly detection methods section. In the anomaly detection experi-

ments, ST and SB were regarded as normal ECG because there was no morphological

difference compared with normal sinus rhythm and these can be easily detected by heart rate.

3.2 CVAE training results

The CVAE was trained to extract latent variables that follow multivariate normal Gaussian dis-

tributions N(I,0) and then reconstruct the original ECG data using these variables. CVAE per-

formance was evaluated using the sum of the reconstruction error and Kull-back divergence.

The reconstruction error represents how well the CVAE extract ECG information, and Kull-

back divergence represents how well the distribution of the latent variables follows a multivari-

ate normal Gaussian distribution. When the sum of the reconstruction error and KL-diver-

gence was not decreased over 5 epochs, the training of the CVAE was stopped early, at the 18th

epoch. The reconstruction error was 560.31 and the KL-divergence was 79.72. The mean error

per datum point was 0.27 (560.31/2,048). As the average y-axis range of zero-normalized ECG

data is from -2 to 6, each value had an error of 3.38%.

3.3 Clustering feature vectors

The features learned by the CVAE were visualized in a two-dimensional space using t-Stochas-

tic Neighbor Embedding (t-SNE) (Fig 2A). The features of each arrhythmia were clustered

with the normal SRs. Although CVAE was not trained to classify arrhythmias, the features

show that it implied and learned the various patterns of arrhythmias. The T-SNE clustering

method showed that there were no cluster groups of AFIB, however, the LLE method showed

features that were divided into an AFIB group and a normal group (Fig 2B). The results of

clustering for arrhythmias with less than 300 samples are shown in S2 Fig. Fig 3 shows that fea-

tures from ICU and from medical checkup are divided into two clustered groups. Both results

of clustering showed distinct feature distribution between ICU and medical check-up

population.

Table 1. Baseline characteristics of each dataset.

Characteristic Datasets

AUMC a ICU dataset

(n = 1,278)

Shaoxing dataset

(n = 10,646)

MIT-BIHb dataset

(n = 65)

AUMC Check-up dataset

(n = 1,000)

Age (year), Mean (±SD)c 60.23 (19.17) 59.2 (18.00) 53.71 (22.4) 60.98 (14.05)

Men, No. (%)d 892 (64.68) 5,956 (52.08) 31 (47.70) 506 (50.06)

ECG data for study (N) 596,547 10,646 1,082 1,000

ECGs per

patient,

466.82 1 16.61 1

Anomaly

detection

Normal, No. - 7,682 540 -

Arrhythmia, No. - 2,964 542 -

aAjou university medical center.
bMassachusetts institute of technology-Beth Israel hospital.
cContinuous variables are shown as mean (±SD).
dCategorical variables are shown as n or n (%).

https://doi.org/10.1371/journal.pone.0260612.t001
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Fig 2. Visualization of (a) t-Stochastic Neighbor Embedding (t-SNE) and (b) Locally Linear Embedding (LLE) in two-

dimensional space for normal sinus rhythms and arrhythmias. Normal sinus rhythms are shown as blue clusters while

arrhythmias are shown as red clusters. It shows that feature vectors can represent the differences between normal and

arrhythmic rhythms although the model was trained without any label. Abbreviations: SR: normal sinus rhythm; ST:

sinus tachycardia; SVT: supraventricular tachycardia; AFIB: atrial fibrillation.

https://doi.org/10.1371/journal.pone.0260612.g002
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3.4 Reconstruction output validation (latent space exploration)

To validate the feature vector space of CVAE and verify that the CVAE learned to imply clini-

cally meaningful changes, we changed each variable in a feature vector and observed the recon-

struction output of the changed feature vector. Fig 4A shows an example of a reconstruction of

a normal SR. It is confirmed that the reconstruction outputs are close to the original data. In

Fig 4B, the reconstruction output resulting from a changed latent variable shows clinically

meaningful changes. The 9th latent variable affects the R peaks and the 27th and 28th latent vari-

able affect the ST depression. These changes to the ECGs are significant and provide validation

for the meaningful latent space learned by the CVAE.

3.5 Anomaly detection

We detected anomalies by defining a normal ECG as an ECG rhythm with no evidence of

arrhythmia. In the anomaly detection experiments, SB and ST were included in the normal

ECG group. We defined the reconstruction error of CVAE as an anomality score. We per-

formed anomaly detection to determine the effectiveness of the anomality score using the

Shaoxing and MIT-BIH datasets. The threshold of anomalous ECG was determined by the

Shaoxing dataset and applied to the MIT-BIH dataset. Table 2 shows the performance of the

anomaly detection through the reconstruction error of the CVAE. The performance of anom-

aly detection showed the highest f1-score of 0.82 when the threshold was set to 0.45 in the

Shaoxing dataset. When a threshold of 0.45 was applied to the MIT-BIH dataset, the f1-score,

precision, and recall of abnormal ECG were 0.72, 0.88, and 0.53, respectively. The AUROC

was 0.85 in the Shaoxing dataset and 0.84 in the MIT-BIT dataset. The distribution of the

anomality score between normal and abnormal ECGs was significantly different (P-

Fig 3. Visualization of (a) t-SNE and (b) LLE in two-dimensional space for ECG from ICU and Healthy test. ECGs from ICU are shown as blue clusters while ECGs

from medical-checkup are shown as red clusters. It shows that feature vectors can represent the differences between healthy and unhealthy people although the model

was trained without any label.

https://doi.org/10.1371/journal.pone.0260612.g003
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value<0.05). Moreover, we conducted additional anomaly detection using Long Short-Term

Memory (LSTM)-VAE for comparison with recent work [23]. The LSTM-VAE results are

described in the S3 Appendix.

3.6 Distribution of anomality score in whole electrocardiograms

Fig 5 shows the results of the anomaly features obtained from the entire hospital stay of 200

patients who were randomly selected from the AUMC ICU biosignal database. The

Fig 4. Reconstruction output and feature space exploration. (a) Examples of the reconstruction output of a normal electrocardiogram (ECG) are

shown. Original ECG data (blue) and reconstructed ECG data (yellow) are not significantly different. (b) Examples of latent space exploration. A single

blue line represents the reconstruction output of the sampled origin feature vector in the first ECG. In the remaining three ECGs, the blue line represents

the reconstruction output of the feature vector that subtracts 2 from the Nth feature variable. The yellow lines represent the reconstruction output of the

feature vector that adds 2 to the Nth feature variable.

https://doi.org/10.1371/journal.pone.0260612.g004

Table 2. Anomaly detection in the Shaoxing and MIT-BIH datasets.

Dataset Threshold Weighted f1-score Accuracy Normal Abnormal

Precision Recall Precision Recall

Shaoxing 0.25 0.69 0.67 0.93 0.59 0.45 0.89

0.35 0.80 0.80 0.89 0.83 0.62 0.73

0.45 a 0.82 0.83 0.85 0.92 0.75 0.58

0.55 0.73 0.82 0.82 0.97 0.83 0.44

MIT-BIH 0.45 0.72 0.73 0.66 0.92 0.88 0.53

aThe threshold with the highest micro f1-score was selected as the criteria for abnormal electrocardiograms. When thresholds with the same f1-score were present, the

threshold with the highest precision was selected.

https://doi.org/10.1371/journal.pone.0260612.t002
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distribution of the anomality score is skewed to the left, which is consistent with the premise

that the number of normal ECGs is more than the number of abnormal ECGs. ECGs with an

anomality score over 1.3 were due to noise or movement artifacts. The majority of ECGs with

an anomality score between 0.45–1.3 were abnormal.

3.7 Transfer learning

We evaluated the effectiveness of the CVAE encoder and features via two types of transfer

learning, which is a method where a trained model is reused for a different model [24]. One

type is feature reuse where features of CVAE were applied as an input for a different model. In

this study, CVAE features were used as an input for the XGBoost model for classifying cardiac

rhythms. The other type is weight reuse where weights of the CVAE encoder was used to ini-

tialize another model. Classification task with transfer learning was conducted with the Shao-

xing dataset including 11 cardiac rhythms.

Fig 5. Distribution of anomality score in 1,000 patients. The distribution of the anomality score is skewed to the left, which is consistent with the premise that the

number of normal ECGs is more than the number of abnormal ECGs. ECGs with an anomality score over 1.3 were due to noise or movement artifacts. The majority

of ECGs with an anomality score between 0.45–1.3 were abnormal.

https://doi.org/10.1371/journal.pone.0260612.g005
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The accuracy, f1-score, precision, and recall of the CVAE are 0.83, 0.86, 0.89, and 0.83,

respectively, when transfer learning of feature reuse for classification 11 cardiac rhythms was

performed using only CVAE features (Table 3). The overall performance of classification task

improved when using the CVAE features and anomality features. The results of each arrhyth-

mia and feature importance are described in S1 and S2 Tables, respectively.

To verify that the CVAE encoder learned useful features from the ECG data, we reused the

weights of the encoder to classify 11 types of ECG rhythms. The detailed results of this classifi-

cation are described in Table 4. The average f1-scores for the bootstrap method of the four

most common rhythms are the same for random initialization and transfer learning. In SR

and AFIB rhythms, transfer learning showed a better performance and more stable results

than random initialization.

The weighted average of the metrics for validation dataset for each epoch during 150 epochs

is shown in S3 Fig. It shows that transfer learning reached the higher peak earlier than random

initialization for all f1-scores and recall metrics. In the precision metric, random initialization

reached a peak earlier, but had worse results than transfer learning. The final performance of

transfer learning was more stable than the final performance of random initialization. The

results of transfer learning for arrhythmias less than 300 samples are shown in S3 Table.

4. Discussion

The present study reports the success of unsupervised ECG feature learning using the CVAE.

The codes and weights of the CVAE used in the study are available (see the Code Availability

Table 4. Transfer learning vs. random initialization using the bootstrap validation method.

Validation result of bootstrap

Random initializationa Transfer learningb,c

Rhythm type N f1-score Mean (a±SD) Precision Mean (±SD) Recall Mean (±SD) f1-score Mean (±SD) Precision Mean (±SD) Recall Mean (±SD)

All types 1,834 0.79 (0.14) 0.78 (0.15) 0.81 (0.12) 0.79 (0.02) 0.82 (0.02) 0.80 (0.03)

SB 778 0.97 (0.00) 0.96 (0.01) 0.99 (0.00) 0.93 (0.01) 0.96 (0.04) 0.92 (0.06)

SR 370 0.71 (0.40) 0.71 (0.40) 0.72 (0.40) 0.84 (0.04) 0.85 (0.05) 0.85 (0.09)

AFIB 357 0.53 (0.48) 0.51 (0.47) 0.55 (0.50) 0.71 (0.18) 0.78 (0.05) 0.70 (0.26)

ST 329 0.94 (0.01) 0.94 (0.02) 0.93 (0.02) 0.91 (0.02) 0.92 (0.06) 0.90 (0.04)

aResult at the 149th epoch, where the model showed the best weighted f1-score for 150 epochs.
bResult at the 140th epoch, where the model showed the best weighted f1-score for 150 epochs.
c Weights of CVAE encoder were reused for weight initialization for a classification model.

CVAE: convolutional variational autoencoder; SB: sinus bradycardia; SR: sinus rhythm; AFIB: atrial fibrillation; ST: sinus tachycardia.

https://doi.org/10.1371/journal.pone.0260612.t004

Table 3. Transfer learning using CVAE features and anomality features.

Validation result of bootstrap

CVAE features CVAE + anomality features

Rhythm type N f1-score Mean (a±SD) Precision Mean (±SD) Recall Mean (±SD) f1-score Mean (±SD) Precision Mean (±SD) Recall Mean (±SD)

All types 1,834 0.86 (0.01) 0.89 (0.00) 0.83 (0.01) 0.86 (0.01) 0.90 (0.00) 0.84 (0.01)

SB 778 0.96 (0.00) 0.97 (0.00) 0.94 (0.00) 0.96 (0.01) 0.97 (0.01) 0.94 (0.01)

SR 370 0.86 (0.02) 0.91 (0.04) 0.81 (0.01) 0.87 (0.02) 0.91 (0.05) 0.84 (0.01)

AFIB 357 0.74 (0.02) 0.82 (0.02) 0.67 (0.02) 0.76 (0.01) 0.87 (0.01) 0.68 (0.02)

ST 329 0.86 (0.02) 0.87 (0.04) 0.81 (0.01) 0.87 (0.01) 0.88 (0.02) 0.87 (0.01)

CVAE: convolutional variational autoencoder; SB: sinus bradycardia; SR: sinus rhythm; AFIB: atrial fibrillation; ST: sinus tachycardia.

https://doi.org/10.1371/journal.pone.0260612.t003
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section) and can be used by researchers aiming to improve automated ECG analyses. To the

best of our knowledge, this is the first study to use data from a large ICU ECG database for

unsupervised feature learning. Although previous studies have used autoencoder-based feature

learning, feature validation included clustering or classification tasks only. We applied and

suggested four types of evaluation methods, including clustering, classification, latent space

exploration, and transfer learning. By providing various application results, we confirmed the

reliability and utility of unsupervised feature learning. Moreover, due to the nature of data-

driven deep learning, the more the collected data, the more the information the CVAE will

represent as a useful feature extractor.

In this study, the reconstruction error of the CVAE could be used as a feature to reflect

anomality. The AUROCs for anomaly detection were 0.85 and 0.84 for the Shaoxing and

MIT-BIH datasets, respectively. The anomality score threshold of 0.45 showed a precision of

0.75 and 0.88 for identifying abnormal ECGs in the Shaoxing and MIT-BIH datasets, respec-

tively. However, the recall showed relatively unfavorable performances of 0.58 and 0.73 for the

Shaoxing and MIT-BIH datasets, respectively. In the intensive care unit where many alarms

occur sporadically, the alarm fatigue of the clinical staff is a major concern. Therefore, the

selection of a threshold with a higher precision than recall is more practical for reliable anom-

aly detection. Consequently, some abnormal ECGs may be overlooked. A false negative analy-

sis was conducted on 1,237 samples in the Shaoxing dataset. AFIB ECGs accounted for 56%

(n = 692) of false negative samples. We compared the portion of beats that were 50% longer or

shorter than the previous beat of true positive AFIB ECGs and false negative AFIB ECGs. The

portion of true positive AFIB ECGs was significantly larger than false negative AFIB ECGs (P-

value<0.05). This indicates that true positive samples may be more severe, which can be mea-

sured by the anomality score of ECGs. Furthermore, when screening the ECGs from the entire

hospitalizations of 1,000 patients selected randomly from the AUMC ICU database, we found

that noisy ECG can be classified.

The CVAE features accurately reflect clinically-relevant morphological features, such as

changes in RR intervals or ST depression, as verified by the latent space exploration. However,

each feature value does not correspond to a specific clinical change. In future studies, the rela-

tionship between the CVAE feature values and clinical conditions should be investigated for

interpreting each feature. If the clinical relationship with the extracted features can be inter-

preted, the black box problem of deep learning can be alleviated, and the clinical utility can be

increased. Furthermore, by utilizing the characteristics of VAE latent space exploration to

make various changes, we expect to use it for data augmentation when data are insufficient.

Although the CVAE learned ECG features without any labels for arrhythmia, the CVAE

features of arrhythmia were confirmed to have different distributions than those of normal

sinus, as confirmed using two different clustering algorithms. Although AFIB ECGs had no

clustered groups when T-SNE was applied, the LLE algorithm clustered AFIB ECGs. It visually

shows that CVAE features imply information about the arrhythmia waveform. Moreover, we

found that ECG features of ICU patients have different distributions compared to those of the

medical check-up population. Although VAE was trained with unlabeled AUMC ICU dataset,

it can represent various ECGs according to the health state: non-healthy and healthy.

We also validated the CVAE using transfer learning for the classification of ECGs into

arrhythmia categories using XGBoost. The accuracy and f1-score were 0.84 and 0.86 when

using a combination of CVAE and anomality features, indicating that the CVAE features are

able to classify various ECG rhythms even though the CVAE was trained with unlabeled ECG

data. Although the performance was not significantly different between the model using only

CVAE features and the model using CVAE and anomality features, the anomality feature pro-

vided additional information, as the anomality score was determined to be the most important
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feature. Weight initialization with CVAE features shows that the fluctuation of evaluation met-

rics from transfer learning is more stable and reaches the peaks earlier than random initializa-

tion, indicating that the CVAE encoder effectively learned the weights for extracting the

important features of ECG.

This study is not without limitations. Although we included a large sample size, the CVAE

was developed using data from a cohort of patients from the AUMC ICU. However, there are

currently few hospitals worldwide that collect such vast amounts of ECG data in the ICUs. It is

expected that the performance of the model can be improved by learning various ECG data

collected in multiple regions and countries in the future. The number of patients in the

AUMC ICU dataset is less than that in the Shaoxing dataset. However, the number of ECG

samples in the AUMC ICU dataset is five times the number of samples in the Shaoxing dataset.

Moreover, the CVAE can learn internal variability by extracting various ECG samples from a

patient. In this study, the length of ECG was static at 8.2 seconds because it depended on

model structure and only ECG lead II was trained because most ICUs mainly monitored and

collected ECG lead II. Therefore, various models that can extract features from different

lengths and types of ECG should be developed in the future. Although the proposed threshold

for anomaly detection may not be applicable in all circumstances, it can be used for reference

when choosing a threshold for a specific cohort. Some people in the AUMC check-up dataset

can be unhealthy. However, it is obvious that people undergoing medical check-ups are rela-

tively healthier than ICU patients. In addition, the clustering results can support its distinct

distribution.

5. Conclusion

In this study, we showed that unsupervised feature learning could be applied to ECG data

using a CVAE that can learn various ECG features. Despite the absence of labels, we confirmed

that unsupervised feature extractor could be trained, and its features could imply and represent

various arrhythmic ECGs. Our findings can be applied by researchers and physicians in their

laboratories and clinics, and a more advanced model can be developed. In the future, we plan

to study the interpretation of CVAE features to determine specific clinical relevance in future

studies.
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