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Despite the wealth of information regarding genetics of the causative parasite and experimental immunology of the cutaneous
leishmaniasis, there is currently no licensed vaccine against it. In the current study, a two-level data mining strategy was employed,
to screen the Leishmaniamajor genome for promising vaccine candidates. First, we screened a set of 25 potential antigens from 8312
protein coding sequences, based on presence of signal peptides, GPI anchors, and consensus antigenicity predictions. Second, we
conducted a comprehensive immunogenic analysis of the 25 antigens based on epitopes predicted by NetCTL tool. Interestingly,
results revealed that candidate antigen number 1 (LmjF.03.0550) had greater number of potential T cell epitopes, as compared
to five well-characterized control antigens (CSP-Plasmodium falciparum, M1 and NP-Influenza A virus, core protein-Hepatitis B
virus, and PSTA1-Mycobacterium tuberculosis). In order to determine an optimal set of epitopes among the highest scoring predicted
epitopes, the OptiTope tool was employed for populations susceptible to cutaneous leishmaniasis. The epitope (127SLWSLLAGV)
from antigen number 1, found to bindwith themost prevalent allele HLA-A∗0201 (25% frequency in Southwest Asia), was predicted
as most immunogenic for all the target populations. Thus, our study reasserts the potential of genome-wide screening of pathogen
antigens and epitopes, for identification of promising vaccine candidates.

1. Introduction

Leishmaniases are a group of complex diseases caused by
protozoan parasites of the genus Leishmania and transmitted
to humans by hematophagous sandflies [1]. There are at least
20 species of the parasite, which vary according to geograph-
ical location and cause a variety of clinical manifestations,
ranging from self-limiting cutaneous lesions to potentially
fatal infection of the viscera [2, 3]. It is a disease of tropical
and subtropical areas, with more than 12 million cases in
88 countries and 2 million new cases annually including 1.5
million cases of cutaneous leishmaniasis (CL) and 0.5 million
cases of visceral leishmaniasis (VL). The cutaneous disease
is particularly prevalent in Afghanistan, Algeria, Brazil, Iran,
Peru, Saudi Arabia, and Syria, accounting for 90% of the
global CL burden [4].

Although high-cost chemotherapeutics are available, they
show high toxicity and are prone to drug resistance devel-
opment due to prolonged treatment periods [5]. Despite

substantial effort spent in developing effective vaccines, there
is currently no licensed vaccine against human leishmani-
asis [6]. A large number of proof-of-principle studies have
clearly demonstrated that different vaccine formulations,
ranging from killed/live-attenuated parasites to recombinant
DNA/protein vaccines, can provide significant protection
against infection with Leishmania spp. in a variety of animal
models [7, 8]. However, the efficacy of these prophylactic
or therapeutic vaccines remains partial, and it is therefore
necessary to develop novel and effective vaccines [1].

In this regard, antigen identification represents the most
important roadblock in vaccine development against any
pathogen, as it is usually achieved through rather empirical,
time-consuming, and labour-intensive in vivo and in vitro
experiments. Efforts have thus been devoted to the devel-
opment of novel strategies for a more rational and faster
identification of antigens among large number of pathogen
proteins [9]. In recent development, reverse vaccinology
approach can be used to predict those antigens that are most
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likely to be vaccine candidates using the pathogen genomic
sequence [10].

Moreover, the genomic information, which contains the
sequences of all known and unknown potential antigens of
each pathogen, has enabled the prediction and analysis of
the entire repertoire of potential cytotoxic T lymphocytes
(CTL) epitopes using bioinformatics tools. This strategy
allows the development of vaccines that were previously
difficult or impossible to make and can lead to the discovery
of unique antigens that may improve existing vaccines [11].
The recent genomic sequence completion of L. major, L.
braziliensis, L. infantum, and L. donovani and the availability
of immunoinformatics tools have opened new opportunities
for the identification of novel vaccine targets against CL [9].
Additionally, the presence of genetically stable but highly
conserved antigens among most of the species, including
antigens with little or no homology to human proteins, offers
hope for the development of a single vaccine for multiple
disease indications [12].

As depicted in the literature, effective vaccines must
invoke a strong response from both T and B cells; therefore,
CTL epitope mapping is crucial in any vaccine designing
strategy.Many immunoinformatics algorithms and resources
have been available to predict T and B cell immune epitopes
for peptide based vaccine design and development [13].Thus,
the approach of T cell epitopes prediction and their in vitro/in
vivo validations appeared to be a very powerful strategy in
rational antigen identification, particularly for a pathogen
with a large genome such as Leishmania [9]. Hence, the
current study deals with the analysis of L. major genome
(33.6Mb), considered to express about 8300 proteins, all
of which are potential antigens containing effective CTL
epitopes with respect to susceptible population [14].

2. Materials and Methods

2.1. Retrieval of Proteome Sequence Dataset. The complete
proteome of L. major (strain Friedlin), consisting of 8312 pro-
tein coding sequences, was extracted from database GeneDB
[15]. We also retrieved five well-characterized control anti-
gens (CSP-401GLIMVLSFL from Plasmodium falciparum,
M1-58GILGFVFTL andNP- 265ILRGSVAHK from Influenza
A virus, core-141STLPETTVV from Hepatitis B virus, and
PSTA1- 41FVVALIPLV from Mycobacterium tuberculosis)
from database AntigenDB in order to compare and validate
the prediction results. These known antigens have been
previously tested and verified in various experimental studies
and reported as capable of eliciting CTL responses [16].

2.2. Methodology Used for Prediction and Characterization of
Candidate Antigens/Epitopes. Initially, the L.major proteome
(8312 proteins) was screened for the presence of both signal
peptide and GPI anchors using SignalP [17] and DGPI
[18], respectively, and then consensus antigenicity predictions
were done using VaxiJen [19] and ANTIGENpro [20] pro-
grams. Finally selected candidate antigens were further char-
acterized using TMHMM [21], SCRATCH protein predictor
[22], and BetaWrap program [23].Thereafter, these candidate

antigens were searched for potential sequence similarity
with other closely related species and human and/or mouse
proteins, using OrthoMCL database [24]. Furthermore, CTL
epitopes prediction was carried out using NetCTL1.2 [25, 26]
tool integrating predictions of proteasomal cleavage, TAP
transport efficiency, and 12 MHC class I supertypes’ binding.
Finally, OptiTope (http://etk.informatik.uni-tuebingen.de/
optitope) was used to determine good vaccine epitopes
called the optimal set of epitopes from top scoring naturally
processed T cell epitopes, for each population susceptible to
cutaneous leishmaniasis (Figure 1) [27].

The tool OptiTope requires the following input data
from the user: (i) sequences of known/predicted antigens,
(ii) a target human population, that is, MHC alleles and
corresponding frequency, and (iii) the epitope set to be
optimized.The input given by the user is transformed into an
optimization problem. If it is feasible, OptiTopewill return an
optimal set of epitopes alongwith fraction of immunogenicity
contributing to overall immunogenicity. Otherwise, program
will propose changes to the user’s input that might yield a
feasible optimization problem. The information related to
MHCalleles frequency in susceptible humanpopulations and
geographic areas is retrieved from dbMHC database (http://
www.ncbi.nlm.nih.gov/gv/mhc). A good vaccine displays a
high overall immunogenicity that means it is capable of
inducing potent immunity in a large fraction of the target
population including high mutation tolerance as well as a
certain degree of allele and antigen coverage. Furthermore,
the finally selected epitopes should display a high probability
of passing through the natural antigen processing pathway.
From all possible epitope combinations, the ones with a
maximum overall immunogenicity will be called “optimal”
(there may be more than one optimal epitope combination).
Hence, the search for an optimal epitope set for an good
vaccine can be considered as an optimization problem: out
of a given set of epitopes, choose a subset which, out of
all subsets meeting the other input requirements, displays
maximum overall immunogenicity 𝐼, which can be derived
mathematically (1) as a weighted sum over immunogenicities
of epitopes 𝐸 with respect to the given MHC alleles 𝐴:

𝐼 = ∑

𝑒∈𝐸

∑

𝑎∈𝐴

𝑝
𝑎
⋅ 𝑖
𝑒,𝑎
, (1)

where 𝑝
𝑎
is the frequency of allele 𝑎 in the target population

and 𝑖
𝑒,𝑎

measure the immunogenicity of epitope 𝑒 when
bound to allele 𝑎 (either predicted or experimentally deter-
mined).

3. Results and Discussion

The present study was divided into two major steps: (i) we
utilized the L. major genome consisting of 8312 protein cod-
ing sequences and predicted 25 antigens (Table 1), through
successive screening and consensus antigenicity predictions;
(ii) we conducted a comprehensive analysis of the epitopes
predicted from these 25 candidate antigens (Figure 1). The
present strategy is similar to the reverse vaccinology approach
adopted by John et al. [28], for identifying common vac-
cine candidates from L. major and L. infantum genomes.
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L. major genome (8312 protein coding sequences) downloaded from GeneDB database

Prediction of 265 GPI 
anchored proteins using DGPI 

Prediction of 1798 proteins containing 
signal peptides/signal anchors using

Screening of 151 surface associated proteins

Consensus prediction of 25 antigenic proteins using VaxiJen and ANTIGENpro tools

Characterization of 25 predicted antigens using tools SOLpro, TMHMM, BetaWrap,
and OrthoMCL database 

Prediction of supertypes CTL epitopes from 25 predicted and 5 control antigens using
NetCTL

Susceptible human population coverage analysis using OptiTope

Selection of good vaccine candidates

tool SignalP3.0

Figure 1: Flowchart depicting the steps adopted for genome-wide screening of potential antigens and their epitopes optimization.

Additionally, Singh et al. [29, 30] also utilized the similar
approach of MHC supertype based epitope identification, as
a strategy to mine proteomic data for identification of novel
CTL epitopes, in Plasmodium falciparum.

3.1. Screening of L. major Genome for Identification and
Characterization of Antigens. The previous studies revealed
that surface-exposed proteins such as secretory/outer mem-
brane proteins are ideal targets for vaccine development, with
respect to those pathogens against which a strong B cell
response (for antibody production) is critical. However, for
vaccine development against those pathogens where T cell
response is critical, subcellular localization is not an issue
since a T cell response could be directed to any protein
target [31]. In addition, GPI anchored proteins are abundantly
expressed in the infective and intracellular stages of Try-
panosoma cruzi (another kinetoplastid protozoan) and have
been recognized as antigenic targets by both the humoral and
cellular immunity [32].

Herein, the entire protein repertoire of L. major, con-
sisting of 8312 protein coding sequences, was screened for
presence of signal peptides and GPI anchors. Out of these,
265 proteins were predicted as GPI anchored proteins, using
DGPI tool [18], and 1798 proteins were found to contain
signal peptides/signal anchors, using SignalP3.0 tool [17].
However, 151 proteins were predicted to contain both signal
peptides/signal anchors and GPI anchors (data not shown).
Further screening of these 151 proteins, based on consensus
antigenicity predictions usingVaxiJen [19] andANTIGENpro
[20] tools, above a predefined threshold of 0.6, provided a set
of 27 antigenic proteins (data not shown). Interestingly, three
candidate antigens (GeneDB id: LmjF.04.0130, LmjF.04.0140,
and LmjF.04.0170) were found to share a high sequence
similarity (more than 99.6%) and thus the latter two antigens

were excluded from further analysis. Finally, 25 candidate
antigenswere screened for further characterization as vaccine
candidates (Table 1). Protein insolubility has been known to
be a major obstacle for many experimental studies. Thus,
we used SOLpro tool (of SCRATCH protein predictor [22])
to predict the propensity of a protein to be soluble upon
overexpression. Out of the 25 antigens, 8 (numbers 3, 5, 7,
12, 13, 14, 16, and 18) were predicted to be soluble upon
overexpression while control antigens M1, core, and PSTA1
were predicted to be insoluble upon overexpression (Table 1).

Similarly, proteins with more than one transmembrane
(TM) region have been found to be difficult to clone, express,
and purify. Thus, we predicted TM regions using TMHMM
web server. Out of 25 predicted antigens, 19 antigens were
found to contain less than two; 5 antigens (numbers 6, 11,
12, 13, and 24) were found to contain two each while antigen
number 1 was found to contain five TM regions. On the other
hand, PSTA1 was found to contain 6 TM regions (Table 1).
Through literature analysis, it has also been observed that
many bacterial and fungal proteins such as toxins, virulence
factors, adhesins, and surface proteins have parallel beta-
helices which play important role in human infectious disease
[33]. Therefore, BetaWrap program [23] was used to predict
the super secondary structural motif in primary amino
acid sequences of 25 antigens. A total 9 candidate antigens
(numbers 2–6, 9, 11, 13, and 24) were predicted to contain
right-handed parallel beta-helix.

Besides, heterologous immunity may exist to cross-
reactive epitopes in other strains of the same organism.
Thus, we identified the potential orthologs in the available
Leishmania genomes annotations using OrthoMCL database
[24] through BLASTP homology prediction program. All
the selected 25 candidate antigens showed orthologs in
other related species, namely, L. braziliensis, L. infantum,



4 Journal of Tropical Medicine

Table 1: List of predicted 25 L. major candidate antigens and 5 control antigens along with their prediction probabilities using SOLpro and
TMHMM program.

Antigen number
GeneDB

ID/UniProt
accession number

Number
of

amino
acids

Function
Protein solubility upon

overexpression prediction
probabilities

Number of
TM regions

1 LmjF.03.0550 1316 Hypothetical protein, conserved 0.947197
Insoluble 5

2 LmjF.04.0130 531 Hypothetical protein, conserved in Leishmania 0.814123
Insoluble 0

3 LmjF.04.0180 504 Surface antigen-like protein 0.819598
Soluble 1

4 LmjF.04.0190 709 Surface antigen-like protein 0.931571
Insoluble 1

5 LmjF.04.0200 182 Surface antigen-like protein 0.769865
Soluble 0

6 LmjF.04.0210 277 Surface antigen-like protein 0.913911
Insoluble 2

7 LmjF.04.0910 248 Hypothetical protein, conserved 0.586919
Soluble 0

8 LmjF.06.0380 401 Hypothetical protein, conserved 0.76955
Insoluble 0

9 LmjF.09.0850 335 Ras family protein-like protein 0.612666
Insoluble 0

10 LmjF.12.0710 108 Hypothetical protein, conserved 0.556695
Insoluble 1

11 LmjF.12.1000 385 Promastigote surface antigen protein 2, PSA2 0.802331
Insoluble 2

12 LmjF.12.0870 547 Surface antigen protein 2, putative 0.696157
Soluble 2

13 LmjF.12.0740 760 Surface antigen protein, putative 0.534869
Soluble 2

14 LmjF.13.0480 522 Hypothetical protein, conserved 0.785913
Soluble 0

15 LmjF.14.0770 396 Hypothetical protein, unknown function 0.705749
Insoluble 0

16 LmjF.16.0620 1136 Hypothetical protein, unknown function 0.682847
Soluble 0

17 LmjF.17.1350 179 Hypothetical protein, conserved 0.625526
Insoluble 1

18 LmjF.22.0470 426 Hypothetical protein, conserved 0.743393
Soluble 0

19 LmjF.22.1260 1087 Hypothetical protein, conserved 0.689942
Insoluble 0

20 LmjF.23.0225 221 Hypothetical protein, conserved 0.870557
Insoluble 1

21 LmjF.24.1520 1152 Hypothetical protein, conserved 0.588925
Insoluble 0

22 LmjF.26.0340 342 Hypothetical protein, conserved 0.671966
Insoluble 1

23 LmjF.28.2565 264 Hypothetical protein, conserved 0.607781
Insoluble 0

24 LmjF.32.0510 363 Hypothetical protein, conserved 0.825034
Insoluble 2

25 LmjF.33.1890 556 Hypothetical protein, conserved 0.558399
Insoluble 1

CSP P02893 412 Circumsporozoite protein 0.857803
Soluble 0
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Table 1: Continued.

Antigen number
GeneDB

ID/UniProt
accession number

Number
of

amino
acids

Function
Protein solubility upon

overexpression prediction
probabilities

Number of
TM regions

M1 P36347 252 Matrix protein 1 0.655264
Insoluble 0

NP P03466 498 Nucleoprotein 0.528252
Soluble 0

Core CAA59535.1 185 HBV core 0.816707
Insoluble 0

PSTA1 P9WG10 304 Phosphate transport system permease protein 1 0.654434
Insoluble 6

andL.mexicana except antigen number 11. One of the greatest
barriers in vaccine development is the possibility that a
particular vaccine may cross-react between host and parasite
antigens [34]. Thus, vaccine candidates showing sequence
similarity with the hosts (e.g., human or mouse) proteins
are likely to cause autoimmunity in the host and should
be discarded to avoid potential autoimmunity. Out of 25
antigens, 3 (numbers 3, 9, and 18) showed orthologs in human
as well as mouse.

3.2. Epitope Based Analysis of the Selected Antigens Using
NetCTL. For elicitation of T cell responses, the subcellular
location and function of target protein are less important
than the presence of appropriate MHC binding epitopes in
the protein sequences [35]. In past 15 years, significant efforts
have been made toward generation of procedures/algorithms
for accurate prediction of MHC binding affinity and T cell
epitopes. Utilizing the clustering method, majority of HLA
molecules have been classified in relatively few HLA super-
types on the basis of their peptide binding specificities [36,
37]. One approach to identifying targets of CTL responses in
an antigen is based on prediction of high affinity MHC class
I restricted T cell epitopes using computerized algorithms
[38]. It is also demonstrated that peptides that possess in
vitro binding affinity (IC

50
) values of ≤ 500 nM are more

immunogenic in vivo [39].
Thus, in the current study, the immunogenicity screening

was limited to the predicted peptides that were able to
bind HLA class I supertypes, with binding affinities (IC

50
)

≤500 nM [25]. Furthermore, it is important to consider
whether each MHC binding peptide is being correctly pro-
cessed from the native antigen and subsequently displayed
on the surface of antigen presenting cells. At present, it is
possible to predict the naturally processed peptides using
NetCTL algorithm above a combined epitope processing
score of 0.75, which includes predictions of proteasomal
cleavage, TAP binding, and HLA binding [26].Thus, in order
to identify candidate CD8+ T cell epitopes, 25 candidate
antigens selected from L. major were screened usingNetCTL.

The tool NetCTL1.2 provides a comprehensive predic-
tion about epitopes binding to the 12 different HLA class
I supertypes: HLA-A1, HLA-A2, HLA-A3, HLA-A24, and

HLA-A26 and HLA-B7, HLA-B8, HLA-B27, HLA-B39, HLA-
B44, HLA-B58, and HLA-B62. A total of 3756 putative CTL
epitopes were predicted, including 1373 HLA-A (230-A1, 429-
A2, 269-A3, 207-A24, and 238-A26) and 2383 HLA-B (542-
B7, 283-B8, 318-B27, 288-B39, 157-B44, 304-B58, and 491-
B62) supertype binding peptides (Figure 2). Predictions for
the 5 control antigens showed that CSP had 28-HLA-A, 40-
HLA-B, M1 had 33-HLA-A, 55-HLA-B, core had 21-HLA-A,
48-HLA-B, PSTA1 had 83-HLA-A, 104-HLA-B, and NP had
59-HLA-A, 126-HLA-B restricted CTL epitopes. Apart from
this, their experimentally validated CTL epitopes were also
predicted by NetCTL ranked in top five. From the analysis,
antigen number 1 was found to have largest number of
predicted CTL epitopes for HLA-A and HLA-B supertypes
while antigens numbers 4, 16, 19, and 21 had higher number
of CTL epitopes forHLA-A supertypes and antigens numbers
13, 16, 19, and 21 had higher number of CTL epitopes forHLA-
B supertypes in comparison to the control antigens. Overall,
test antigen number 1 showed highest number of supertype
epitopes and was thus predicted as best antigen. From among
the predicted CTL epitopes, the epitopes which displayed
the top processing score for the respective MHC supertypes
are presented in Tables 2 and 3. These 624 potential CTL
epitopes were also checked for their potential similarity with
human proteins, using Human Protein Reference Database
(http://www.hprd.org/). However, none of the epitopes were
found similar to any human proteins [40].

3.3. Selection of Optimal Epitopes Set Based on Population
Coverage Analysis. MHC is highly polymorphic; hence each
individual possesses a set of MHC molecules of differing
specificities; that is, different patients typically bind different
repertoires of peptides. Thus, a crucial step in the design
of effective peptide based vaccine is the selection of the
good epitopes set which yields the best immune response
in a given population or individual. Furthermore, the fre-
quency of an MHC allele to occur within the target human
population directly affects the allele’s contribution to the
overall immunogenicity. Sette et al. have also demonstrated
a correlation between immunogenicity and MHC class I
binding affinity [39]. It is therefore reasonable to use MHC
class I binding affinity prediction methods for calculation



6 Journal of Tropical Medicine

Table 2: NetCTL predicted top scoring CTL epitopes along with start position and processing score for the HLA-A supertypes in 25 L. major
candidate antigens.

Antigens A1 A2 A3 A24 A26

1 NTDNFFFML
(228: 2.3073)

SLWSLLAGV
(127: 1.4042)

NLAAGQSLK
(489: 1.4921)

LYLLLPFLL
(19: 1.9727)

YTISLNPLL
(512: 1.6485)

2 MSSTSFDDY
(38: 3.3876)

ALVSINVPL
(224: 1.3414)

SLFRVANCK
(238: 1.4763)

VWCTVPDCI
(421: 1.4489)

SVVDPMQNY
(409: 2.3630)

3 CTQCAPNYY
(308: 2.8811)

LLTSFAMHL
(495: 1.0227)

SSYSCVSQK
(469: 1.6062)

GYAKDSNGF
(175: 1.5045)

YVVDSYDGL
(351: 1.4847)

4 FIDANTAIY
(122: 3.1585)

MLPDMTCSL
(390: 1.4053)

SSYSCVSQK
(674: 1.6062)

GYIVVDKYF
(93: 1.4189)

YVVDSYDGL
(556: 1.4847)

5 TTSTTTNTV
(68: 1.4293)

LMAAMLVAV
(7: 1.2898)

TMPTAPSSK
(43: 1.1211)

GYMPTASFK
(142: 0.8997)

ETASTTSTT
(64: 0.5879)

6 VSAQTIDDY
(32: 2.4784)

YLCDRTTAA
(123: 1.1971)

VSYTCIPRK
(241: 1.5973)

GYPNINTYL
(116: 1.1822)

QTIDDYPPV
(35: 1.4284)

7 TAAVKPLSY
(18: 1.8789)

TLASHPHYL
(208: 1.2381)

RVAEFLVVK
(198: 1.3425)

HYLHEANVF
(214: 1.6364)

EVPICSLEF
(185: 1.0192)

8 SIMSLQIRY
(127: 1.1734)

FLFSPTDTL
(12: 1.3828)

RIKRNWQKK
(38: 1.3737)

IFMRLEDTI
(185: 1.4289)

SIIEKATRY
(200: 2.2008)

9 YREILNEFY
(162: 1.6879)

FVAKYIPTI
(96: 1.3345)

LMMSCWSAR
(3: 1.1799)

LYTPALPPF
(17: 1.7705)

EVIEDLVVW
(321: 1.7072)

10 SASNHKEFY
(11: 1.8707)

RMDVIGATV
(52: 1.1546)

EFYIYYLAK
(17: 0.7897)

QWTRRMHLI
(29: 1.3589)

SASNHKEFY
(11: 0.9535)

11 LTDEKTCLK
(346: 1.7725)

FLTDEKTCL
(345: 1.2608)

QAFGRAIPK
(51: 1.2646)

TYAGTLPEM
(90: 1.0075)

YVSGISPTY
(83: 1.6128)

12 LTDERTCLV
(508: 2.3650)

FLTDERTCL
(507: 1.2308)

RIQQLVLRK
(230: 1.3906)

LYIWNMPLL
(112: 1.9046)

TTITSTTKL
(445: 1.1733)

13 LTDERTCLV
(721: 2.3650)

MLSAENLQL
(469: 1.2642)

KSLTNLYLK
(422: 1.3473)

EWSRVTSLL
(200: 1.6263)

EMKSLTNLY
(396: 1.8138)

14 DLEEEVEEY
(115: 1.8614)

TLLEQYASL
(292: 1.2313)

LLEQYASLK
(293: 1.3401)

SFPPSPSLL
(2: 1.4148)

QVKELKVSY
(182: 1.2390)

15 QTRVHPGLY
(116: 2.0525)

YLLDGDQLI
(71: 1.4042)

RSAPHHSRR
(226: 1.3101)

LFGAFLFAF
(388: 1.2731)

DVKESNAHV
(48: 1.1458)

16 LVDTTAWRY
(1027: 3.6396)

MLWETVAAL
(290: 1.3564

RTATARLHK
(248: 1.5070)

LFQRVLAPI
(982: 1.1324)

EAQDHSCFY
(628: 1.9956)

17 KADTYVEEF
(82: 1.3354)

VLAVVVLLV
(10: 1.1790)

HLRGAATGK
(74: 1.4033)

DMATVFAYF
(151: 1.2555)

STVRLLVSF
(163: 1.4330)

18 ATSNAASRY
(119: 3.2566)

TMADVLLYA
(135: 1.2997)

ATMADVLLY
(134: 1.3320)

QFLINSSSI
(2: 1.2187)

ATMADVLLY
(134: 1.7501)

19 FTSGEISFY
(21: 3.4722)

YMNLISQSI
(1056: 1.2709)

LLYCRESRK
(1039: 1.6445)

AYLRELFPV
(702: 1.3356)

FTSGEISFY
(21: 2.3098)

20 NTTTAVRGY
(27: 1.7205)

ILMWSFAAL
(204: 1.3025)

ALFVVMAMY
(211: 1.2263)

NWWILMWSF
(201: 1.5092)

NTTTAVRGY
(27: 1.5857)

21 LASLLSSKY
(1096: 1.7120)

ALARYPLPV
(58: 1.3281)

ALASLLSSK
(1095: 1.5764)

VYILLTEFL
(1138: 1.6493)

HVARQLASY
(980: 2.0702)

22 YMDPGAAGY
(201: 3.0231)

TLFPIDVTV
(220: 1.3367)

ALYTSIPVR
(288: 1.4227)

LFLLVIYAF
(35: 1.7091)

EAAHFLMAY
(155: 2.1321)

23 CTGSSPSVY
(8: 2.2878)

VLIDYLLSM
(252: 1.4781)

TLASSAAVK
(184: 1.5850)

VYFTLPTAV
(15: 1.3233)

VLIDYLLSM
(252: 1.3831)

24 LTAPVYMQY
(106: 3.2540)

LMFSLSQSL
(98: 1.2637)

RLTPFFQNY
(115: 1.2825)

LYRIDGTLI
(181: 1.3091)

ATGDQVSGY
(155: 1.9446)

25 ISDTQVLLA
(264: 1.5818)

VLVGVVLGV
(539: 1.2310)

LVHAGIAGK
(486: 1.3287)

AYFVVPLEM
(356: 1.1485)

STVLRLFSF
(24: 1.4346)
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Table 3: (a) NetCTL predicted top scoring CTL epitopes along with start position and processing score for the HLA-B supertypes (B7, B8,
B27, and B39) in 25 L. major candidate antigens. (b) NetCTL predicted top scoring CTL epitopes along with start position and processing
score for the HLA-B supertypes (B44, B58, and B62) in 25 L. major candidate antigens.

(a)

Antigens B7 B8 B27 B39

1 APALYTISL
(508: 1.7598)

PLRWRFRAV
(957: 2.1122)

RRAKRGIQK
(908: 1.8727)

YQLTGTPVL
(439: 2.2884)

2 TPSSARLSM
(83: 1.7256)

FPISKGAAL
(203: 2.2300)

VRVDTQSSF
(195: 1.4558)

SFDDYTMVL
(42: 2.2280)

3 APNYYLTPL
(312: 1.7308)

YSLWVAAAV
(486: 1.0021)

SRAILIAVL
(3: 1.3691)

SRAILIAVL
(3: 1.8971)

4 APNYYLTPL
(517: 1.7308)

FVRVWDRSL
(215: 1.8335)

LRVSHSSVK
(224: 1.3540)

VRAPFTIQL
(155: 1.5796)

5 APAHGSVSL
(33: 1.7709)

VKHLLMAAM
(3: 1.4045)

DRLGQCMVV
(109: 0.5955)

KHLLMAAML
(4: 1.0764)

6 SPTPLLAAL
(256: 1.6602)

NPHKRGAAA
(9: 1.8533)

KRGAAAVLL
(12: 1.3311)

HKRGAAAVL
(11: 1.2133)

7 APSPCVPPL
(175: 1.5944)

AAYRSYAAV
(144: 0.9391)

MQVLLGADF
(237: 0.8288)

SHDGKHVIL
(31: 2.6870)

8 LPRLFLAFL
(5: 1.6144)

LLPRLFLAF
(4: 1.5126)

GRIKRNWQK
(37: 1.4947)

IHPERTVAL
(294: 2.2073)

9 SARARTLSL
(9: 1.8057)

YPRIKLLVI
(69: 2.0337)

ARARTLSLY
(10: 1.2183)

YEAAQGVLL
(170: 1.5760)

10 QPTTFKNPI
(80: 1.1417)

RMHLIGTAV
(33: 1.4672)

KQWTRRMHL
(28: 1.5430)

HKEFYIYYL
(15: 1.4474)

11 TPRTTTEPL
(274: 1.7685)

MSKARSLQL
(181: 1.3726)

RRLVLAATL
(6: 1.9702)

QRTNTLAVL
(42: 1.4593)

12 MPYLRGVSL
(300: 1.8440)

MPYLRGVSL
(300: 2.1953)

RRLVLAATL
(6: 1.9702)

YRHVMIREL
(104: 1.7846)

13 MPRLRLVGL
(493: 1.7353)

MPRLRLVGL
(493: 2.2824)

RRLVLAATL
(6: 1.9702)

TAAQRTHTL
(39: 1.5626)

14 MPAPPLNPF
(414: 1.6955)

KEKERHKAV
(94: 1.8613)

RRLMPAPPL
(411: 1.7237)

YESNTVSAL
(317: 2.1937)

15 TPRIPLDSL
(187: 1.5747)

SSHRKHKAM
(162: 1.6542)

RRMRAGSSH
(250: 1.6225)

AHAPQNAAL
(138: 2.5007)

16 MPRKRGRPL
(237: 1.8778)

MPRKRGRPL
(237: 2.3735)

RRTLQAQQL
(546: 1.5424)

DHAQGVAAL
(877: 2.1234)

17 VPHHPGGDV
(134: 0.9985)

YVEEFYQAA
(86: 0.7269)

KRVMAPSDR
(37: 1.1717)

FHDPSTVRL
(159: 2.8191)

18 HPSGAAVAI
(409: 1.4883)

RLYVEDMVL
(284: 1.2511)

RRAEKEKAK
(215: 1.7438)

NHSAHTEVL
(147: 2.1507)

19 KPSAVMTAF
(919: 1.8285)

EPSRRTVQF
(667: 1.7157)

RRWAAQNTF
(77: 2.1177)

FRVDGADAL
(675: 2.1322)

20 AARQRIMTM
(156: 1.6084)

ILMWSFAAL
(204: 1.7177)

RRAPTGLYE
(71: 0.9324)

QLDDNWWIL
(197: 1.3196)

21 APAAPHSPL
(153: 1.7675)

ELRRRGQEV
(1113: 1.9415)

RRLLAASPF
(877: 2.0769)

NQATTSLAL
(504: 1.9553)

22 YPAHRSKIV
(163: 1.5878)

DAQVRQTAL
(281: 1.8406)

QRRDVVIGM
(75: 1.3697)

SHLVSVDKL
(331: 1.5360)

23 TPRVGCSVA
(63: 1.2802)

FFRRYTRVF
(46: 2.1834)

RRYTRVFPA
(48: 1.7379)

YFTLPTAVL
(16: 1.6593)

24 SPLSVSAVF
(27: 1.5060)

YMQYRLTPF
(111: 2.0206)

FRYDHINSY
(61: 1.7109)

YASQKFVQL
(311: 1.2960)
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(a) Continued.

Antigens B7 B8 B27 B39

25 RPRLFARAI
(256: 1.7812)

RLPRRLQAM
(301: 2.1397)

RRLLVHAGI
(483: 1.8779)

HSEAATSSL
(72: 1.7315)

(b)

Antigens B44 B58 B62

1 RELQSVYLL
(1293: 1.9593)

GTFAAPLRW
(952: 2.0156)

SQQETSSLY
(802: 1.4851)

2 VESGALFSF
(276: 1.5005)

VSGGSTVSF
(299: 1.2478)

LVVDASSLF
(232: 1.2364)

3 AECDTGYSL
(383: 1.7888)

SAAAPYSLW
(481: 1.7104)

VINSAAAPY
(478: 1.2841)

4 AECDTGYSL
(588: 1.7888)

SAAAPYSLW
(686: 1.7104)

AMKDPYTNY
(355: 1.5075)

5 PEQSKNAAL
(153: 0.9583)

AMASDASSW
(20: 1.2946)

SGYMPTASF
(141: 1.1587)

6 CESGYALTV
(233: 1.5835)

VAATVACVM
(269: 1.3253)

SGYALTVSY
(235: 1.2956)

7 HEANVFGDL
(217: 1.4597)

ITLASHPHY
(207: 1.8535)

MQVLLGADF
(237: 1.4107)

8 EEHKFHEQL
(234: 1.7745)

STQPPVSSW
(375: 1.3179)

QFIQGRCPY
(279: 1.2654)

9 YEAAQGVLL
(170: 1.8058)

QSFAALQSW
(186: 1.9574)

REHGCAAYY
(301: 1.0743)

10 KEFYIYYLA
(16: 1.2817)

TAVGVAICW
(62: 1.8196)

RMHLIGTAV
(33: 1.0529)

11 PEWGSMTSL
(152: 1.5995)

ISGSVPPEW
(146: 1.9830)

YVSGISPTY
(83: 1.4703)

12 LEGLTSLTL
(131: 1.7189)

ITGPLPPQW
(241: 1.9075)

YVRVISTTY
(83: 1.4798)

13 SEMKSLTSL
(323: 1.9322)

GSLPSEWSW
(171: 1.9009)

TQVSGTLPL
(336: 1.2966)

14 GEFSDIRQL
(25: 1.9010)

AAVADAEVW
(458: 1.6950)

QVKELKVSY
(182: 1.3565)

15 AQTRVHPGL
(115: 0.9806)

MSLFVSTLF
(381: 1.5159)

FVSTLFGAF
(384: 1.2037)

16 GEARNPHRL
(724: 1.7322)

AASAPSFQW
(501: 1.9979)

RLAAEAQGF
(516: 1.3449)

17 EFYQAAGHL
(89: 0.5235)

KADTYVEEF
(82: 1.5709)

QDMATVFAY
(150: 1.1423)

18 GEDEEQVSL
(71: 1.8499)

SAAKAQVSY
(196: 1.3995)

IVSGLVESY
(299: 1.3837)

19 AEHRRGTQL
(978: 1.4654)

CASTATHVF
(601: 1.7234)

MMSQSLSTY
(1: 1.4755)

20 AEMQRNIDR
(60: 0.5443)

LMWSFAALF
(205: 1.0739)

RGYTRGIPY
(33: 1.3338)

21 TESVQFLKL
(968: 1.5363)

LTSAINQFW
(140: 1.8100)

SMMLPAGDF
(797: 1.4153)

22 FEAPLGEML
(132: 1.6939)

VAFACYFLF
(26: 1.6804)

VLFTDGTPY
(57: 1.4757)

23 QEAKARTTV
(193: 1.3216)

TGSSPSVYF
(9: 1.0291)

AMHDDQLRF
(38: 1.2996)

24 KEPGHKIPL
(256: 1.9127)

LTAPVYMQY
(106: 1.7822)

SQSLTAPVY
(103: 1.4574)

25 REWYSADVL
(525: 1.8122)

KSSALAHKL
(246: 1.5564)

RVVKQSLCF
(128: 1.1964)
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Table 4: The distribution of fractional immunogenicity for the 60 optimal epitopes against the population of Southwest Asia.

S. number Epitope Fraction of overall immunogenicity Covered alleles
1 SLWSLLAGV 0.07 A∗0201
2 LPRLFLAFL 0.06 B∗0702 B∗0801 B∗3501 Cw∗0401 Cw∗0602
3 YLLDGDQLI 0.05 A∗0201 A∗0205
4 GYPNINTYL 0.05 A∗2402 Cw∗0401
5 LYLLLPFLL 0.05 A∗2402 Cw∗0401
6 YMDPGAAGY 0.05 A∗0101
7 TPRIPLDSL 0.05 B∗0702 B∗0801 B∗3501 Cw∗0401
8 SPTPLLAAL 0.04 B∗0702 B∗3501 Cw∗0401 Cw∗0602 Cw∗0702
9 SFDDYTMVL 0.04 A∗2402 B∗3801 Cw∗0401
10 GYIVVDKYF 0.03 A∗2402
11 VLVGVVLGV 0.03 A∗0201
12 TLFPIDVTV 0.03 A∗0201
13 FIDANTAIY 0.03 A∗0101
14 FLFSPTDTL 0.02 A∗0201 A∗0205
15 LMAAMLVAV 0.02 A∗0201
16 APNYYLTPL 0.02 B∗0702 B∗3501 Cw∗0401
17 SLFRVANCK 0.02 A∗0301
18 LFLLVIYAF 0.02 A∗2402 Cw∗0401
19 MLPDMTCSL 0.02 A∗0201 A∗0205
20 ELRRRGQEV 0.02 B∗0801
21 LFGAFLFAF 0.02 Cw∗0401 Cw∗0702
22 LVHAGIAGK 0.02 A∗1101 A∗6801
23 FPISKGAAL 0.02 B∗0702 B∗0801 B∗3501
24 RPRLFARAI 0.01 B∗0702 B∗3501 B∗5101
25 STQPPVSSW 0.01 B∗5801
26 GYMPTASFK 0.01 A∗1101
27 APAAPHSPL 0.01 B∗0702 B∗3501
28 LTSAINQFW 0.01 B∗5801
29 IHPERTVAL 0.01 B∗3801
30 VESGALFSF 0.01 B∗4403
31 YQLTGTPVL 0.01 A∗0205 B∗5201
32 GTFAAPLRW 0.01 B∗5801
33 YVVDSYDGL 0.01 A∗0205
34 APALYTISL 0.01 B∗0702 B∗3501
35 APAHGSVSL 0.01 B∗0702 B∗3501
36 AYFVVPLEM 0.01 A∗2402
37 KHLLMAAML 0.01 B∗3801 Cw∗0602
38 FVRVWDRSL 0.01 B∗0702 B∗0801
39 AHAPQNAAL 0.01 B∗3801
40 ALYTSIPVR 0.01 A∗0301
41 MSLFVSTLF 0.01 B∗5801
42 TPSSARLSM 0.01 B∗0702 B∗3501
43 STVLRLFSF 0.01 B∗5801
44 VSGGSTVSF 0.01 B∗5801
45 SAAAPYSLW 0.01 B∗5801
46 NLAAGQSLK <0.01 A∗0301
47 TMPTAPSSK <0.01 A∗0301
48 CESGYALTV <0.01 B∗4006
49 VSAQTIDDY <0.01 Cw∗0702
50 YLCDRTTAA <0.01 A∗0201
51 RELQSVYLL <0.01 B∗4006 B∗4403



10 Journal of Tropical Medicine

Table 4: Continued.

S. number Epitope Fraction of overall immunogenicity Covered alleles
52 RIKRNWQKK <0.01 A∗1101
53 HVARQLASY <0.01 Cw∗0702
54 SVVDPMQNY <0.01 Cw∗0702
55 AMKDPYTNY <0.01 Cw∗0702
56 LLPRLFLAF <0.01 A∗0301
57 REWYSADVL <0.01 B∗4006
58 YTISLNPLL <0.01 Cw∗0602
59 VRAPFTIQL <0.01 Cw∗0602
60 KSSALAHKL <0.01 Cw∗0602
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Figure 2: Graphical representation of CTL epitopes predicted by NetCTL for the 25 potential L. major antigens and 5 control antigens (CSP,
M1, core, PSTA1, and NP), which bind with at least one allele in the HLA-A (A1, A2, A3, A24, and A26) and HLA-B (B7, B8, B27, B39, B44,
B58, and B62) supertypes.

of the overall immunogenicity [40]. Hence, the present
study employed OptiTope (using BIMAS method [41]) to
determine the optimal set of epitopes from the selected
epitopes, which calculate the best immune response in
the susceptible target populations of cutaneous leishmaniasis,
namely, Southwest Asia, North Africa, and South America.

Initially, the top scoring epitope sets predicted using
NetCTL from each of the 25 candidate antigens were tried
to optimize by OptiTope and screened the BIMAS based
HLA nonbinders (negative) for the target populations. Out
of these, 10 epitope sets (from antigen numbers 1, 2, 4, 5,
6, 8, 15, 21, 22, and 25) that were predicted HLA binders
(positive) are clubbed together to form a set of 120 candidate
epitopes. However, when this combined epitope set was
further optimized for the three different target populations,
no optimization solution was obtained for any population.
Therefore, epitope set of antigen number 21 was randomly
excluded from the combined set and got the optimized results
with the 108 combined epitopes set (derived from the 9
positive antigens) for the different target populations.

For the target population of Southwest Asia, out of the
108 candidate epitopes set, OptiTope selected a subset of 60
epitopes restricted by the 19 MHC class I alleles covering
96.58 % human population.The most immunogenic epitope,
127SLWSLLAGV, from antigen number 1, was found to
bind with allele HLA-A∗0201, contributing 7%, while the
least immunogenic epitope, 246KSSALAHKL, from antigen
number 25, contributed < 1% to the overall immunogenicity
(Table 4).

Similarly, for the target population of North Africa,
out of the 108 candidate epitopes’ set, OptiTope selected
a subset of 45 epitopes restricted by the 13 MHC class I
alleles covering 88.48 % human population. Here again, the
epitope 127SLWSLLAGV, from antigen number 1, was most
immunogenic, covered the allele HLA-A∗0201, and contrib-
utes 9%, and the least immunogenic epitope, 4LLPRLFLAF,
from antigen number 8, contributed <1% to the overall
immunogenicity (Table 5).

Also, for the target population of South America, out of
the 108 candidate epitopes’ set, OptiTope selected a subset of
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Table 5: The distribution of fractional immunogenicity for the 45 optimal epitopes against the population of North Africa.

S. number Epitope Fraction of overall immunogenicity Covered alleles
1 SLWSLLAGV 0.09 A∗0201
2 YMDPGAAGY 0.09 A∗0101
3 YLLDGDQLI 0.07 A∗0201
4 TPRIPLDSL 0.05 B∗0702 B∗0801 B∗3501
5 LPRLFLAFL 0.05 B∗0702 B∗0801 B∗3501
6 FIDANTAIY 0.05 A∗0101
7 VESGALFSF 0.04 B∗4403
8 VLVGVVLGV 0.04 A∗0201
9 TLFPIDVTV 0.04 A∗0201
10 ELRRRGQEV 0.04 B∗0801
11 GYPNINTYL 0.03 A∗2402
12 LYLLLPFLL 0.03 A∗2402
13 LMAAMLVAV 0.03 A∗0201
14 FPISKGAAL 0.03 B∗0702 B∗0801 B∗3501
15 FLFSPTDTL 0.03 A∗0201
16 GYIVVDKYF 0.03 A∗2402
17 MLPDMTCSL 0.02 A∗0201
18 SLFRVANCK 0.02 A∗0301
19 APAAPHSPL 0.02 B∗0702 B∗3501
20 RPRLFARAI 0.01 B∗0702 B∗3501 B∗5101
21 ALYTSIPVR 0.01 A∗0301 A∗3101
22 APALYTISL 0.01 B∗0702 B∗3501
23 APNYYLTPL 0.01 B∗0702 B∗3501
24 APAHGSVSL 0.01 B∗0702 B∗3501
25 FVRVWDRSL 0.01 B∗0702 B∗0801
26 STQPPVSSW 0.01 B∗5801
27 LVHAGIAGK 0.01 A∗1101 A∗6801
28 LTSAINQFW 0.01 B∗5801
29 GTFAAPLRW 0.01 B∗5801
30 AYFVVPLEM 0.01 A∗2402
31 SPTPLLAAL 0.01 B∗0702 B∗3501
32 TPSSARLSM 0.01 B∗0702 B∗3501
33 MSLFVSTLF 0.01 B∗5801
34 GYMPTASFK 0.01 A∗1101
35 STVLRLFSF 0.01 B∗5801
36 YLCDRTTAA 0.01 A∗0201
37 NLAAGQSLK <0.01 A∗0301
38 TMPTAPSSK <0.01 A∗0301
39 VSGGSTVSF <0.01 B∗5801
40 SAAAPYSLW <0.01 B∗5801
41 RELQSVYLL <0.01 B∗4403
42 SFDDYTMVL <0.01 A∗2402
43 LFLLVIYAF <0.01 A∗2402
44 RIKRNWQKK <0.01 A∗1101
45 LLPRLFLAF <0.01 A∗0301

34 epitopes restricted by the 9 MHC class I alleles covering
98.97 % human population. For a third time, the epitope
127SLWSLLAGV, from antigen number 1, which binds to
the allele HLA-A∗0201, was predicted most immunogenic
and contributed 10%, while the least immunogenic epitope,

127SIMSLQIRY, from antigen number 8, was found to con-
tribute <1% to the overall immunogenicity (Table 6).

Thus, overall, it was found that 6 antigens (numbers 1, 4,
13, 16, 19, and 21) had larger number of predictedCTL epitopes
as compared to control antigens which could be tested
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Table 6: The distribution of fractional immunogenicity for the 34 optimal epitopes against the population of South America.

S. number Epitope Fraction of overall immunogenicity Covered alleles
1 SLWSLLAGV 0.1 A∗0201
2 ALYTSIPVR 0.1 A∗3101
3 GYPNINTYL 0.08 A∗2402 Cw∗0401
4 YLLDGDQLI 0.08 A∗0201
5 LYLLLPFLL 0.08 A∗2402 Cw∗0401
6 GYIVVDKYF 0.05 A∗2402
7 VLVGVVLGV 0.05 A∗0201
8 TLFPIDVTV 0.04 A∗0201
9 SFDDYTMVL 0.04 A∗2402 B∗3901 Cw∗0401
10 VSAQTIDDY 0.04 Cw∗0702
11 SPTPLLAAL 0.03 Cw∗0401 Cw∗0702
12 LMAAMLVAV 0.03 A∗0201
13 FLFSPTDTL 0.03 A∗0201
14 HVARQLASY 0.03 Cw∗0702
15 MLPDMTCSL 0.02 A∗0201
16 LFLLVIYAF 0.02 A∗2402 Cw∗0401
17 LFGAFLFAF 0.02 Cw∗0401 Cw∗0702
18 AYFVVPLEM 0.02 A∗2402
19 KHLLMAAML 0.02 B∗3901
20 IHPERTVAL 0.02 B∗3901
21 LPRLFLAFL 0.02 Cw∗0401
22 TPRIPLDSL 0.01 Cw∗0401
23 LVHAGIAGK 0.01 A∗6801
24 AHAPQNAAL 0.01 B∗3901
25 APNYYLTPL 0.01 Cw∗0401
26 SVVDPMQNY 0.01 Cw∗0702
27 AMKDPYTNY 0.01 Cw∗0702
28 YLCDRTTAA 0.01 A∗0201
29 LLPRLFLAF 0.01 B∗1501
30 SQQETSSLY 0.01 B∗1501
31 YQLTGTPVL <0.01 B∗5201
32 VRAPFTIQL <0.01 B∗3901
33 KRGAAAVLL <0.01 B∗3901
34 SIMSLQIRY <0.01 B∗1501

in vivo for validation. Similarly, the epitope 127SLWSLLAGV,
from antigen number 1, binds to HLA-A∗0201 molecule
and was predicted as most immunogenic for all the three
populations’ susceptibility to leishmaniasis [42, 43]. Hence,
these antigens/peptides may be considered as suitable can-
didates for vaccine and diagnostics design [44]. Further,
these protective epitopes conform to the anchor-based MHC
binding motifs’ concept used for T cell epitope identification
by many researchers such as Sette et al. [45] and Rötzschke
et al. [46].

4. Conclusions

The current study aimed to mine L. major genome for anti-
gens selection and characterization as vaccine components

based on criteria such as presence of transmembrane
domains and orthologs analysis. Furthermore, the immuno-
genic epitopes predicted from these antigens can be ana-
lyzed for HLA-supertype binding and optimization of good
vaccine epitopes against susceptible human populations to
L. major infection. In light of the results obtained, it can
be concluded that the combined use of reverse vaccinology
and immunoinformatics alongwith in vitro/in vivo validation
strategies has emerged as the most promising approach in
designing successful vaccine against tropical diseases.

In future, it would be helpful to use modeling and
simulation system where critical experiments may be per-
formed in a computer in order to predict the effects of
experimental modifications on the immune system and thus
offer a criterion for the selection of themost likelymeaningful
experimental tests to be conducted in vivo or in vitro.
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