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Abstract: Background: The performance of chest radiography-based age and sex prediction has
not been well validated. We used a deep learning model to predict the age and sex of healthy
adults based on chest radiographs (CXRs). Methods: In this retrospective study, 66,643 CXRs
of 47,060 healthy adults were used for model training and testing. In total, 47,060 individuals
(mean age ± standard deviation, 38.7 ± 11.9 years; 22,144 males) were included. By using chrono-
logical ages as references, mean absolute error (MAE), root mean square error (RMSE), and Pearson’s
correlation coefficient were used to assess the model performance. Summarized class activation maps
were used to highlight the activated anatomical regions. The area under the curve (AUC) was used
to examine the validity for sex prediction. Results: When model predictions were compared with the
chronological ages, the MAE was 2.1 years, RMSE was 2.8 years, and Pearson’s correlation coefficient
was 0.97 (p < 0.001). Cervical, thoracic spines, first ribs, aortic arch, heart, rib cage, and soft tissue of
thorax and flank seemed to be the most crucial activated regions in the age prediction model. The sex
prediction model demonstrated an AUC of >0.99. Conclusion: Deep learning can accurately estimate
age and sex based on CXRs.

Keywords: age prediction; sex prediction; deep learning; chest radiograph

1. Introduction

Predicting age and sex using various medical imaging modalities has been imple-
mented for decades. In forensic medicine, dental and manubrium with age correlation [1,2]
and costal cartilage mineralization studies [3,4] have extensively been used to estimate age
and sex. Bone age study is commonly used for clinical purposes to evaluate the skeletal
maturity of children or adolescents [5]. Beyond age and sex per se, neuroimaging-derived
age prediction has been found to correlate with influences from various diseases, such
as cognitive impairment and schizophrenia [6–11]. T-scores obtained from bone density
with DEXA scans among both sexes, which usually decrease with age, can be used to
predict osteoporosis and fracture risk [12]. These prior studies suggest that various medical
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imaging modalities contain features that may have correlations with chronological age
and sex.

The advantages for medical imaging to predict age and sex may have roots in the fact
that age and sex are not simply one single concept. In fact, image findings may reflect the
overall effects of chronological, biological, and/or pathological changes [13–15]. Chrono-
logical changes reflect natural development over time, e.g., endochondral ossification in
skeletal evolution, changes in body shape, or breast growth related to hormones. Biological
changes indicate cumulative effects resulting from interactions between the body and
environment or lifestyle, e.g., obesity-related to an unhealthy diet and osteoporosis-related
to diet and a lack of exercise. Beyond the physiological changes, including chronological
and biological ones, pathological changes can be related to a certain disease, cohort, or
sex-specific issue, e.g., cancer growth and chronic tuberculosis sequela usually seen in
elderly persons and breast cancer mostly seen in females. Human eyes cannot distinguish
complex changes in imaging results from the intertwined components of chronological,
biological, and pathological changes, and machine learning (ML) techniques, by contrast,
have the potential for detecting these corporate changes in a quantitative way.

Numerous advances have been implemented in conventional ML for bone age [16,17]
or neuroimaging-derived age prediction [18–20]. Recently, deep learning, an ML technique
that utilizes feature-learning methods with multiple levels of representation, has also
been used for bone age [21] and brain age prediction [22] with comparable accuracy.
Both methods can be used to summarize and quantify the continuous change in the
images, which are beyond the capacity of unaided human eyes. Conventional ML methods
require preprocessing and predefined features for training. In contrast, deep learning
via convolutional neural network (CNN) can extract related features from raw images
for further quantification analysis. Through multiple layers in deep learning models,
complex input data can be transformed to an output classifier that determines specific
representations of the data with multiple levels of abstraction [23]. Therefore, deep learning
method may have advantages over conventional ML approaches and can be a robust
method without prior knowledge.

Chronological age has been widely used in various studies to predict disease and
treatment prognosis. However, biological age may better reflect the impacts of lifestyle,
nutrition, multiple risk factors, and environmental factors, which, in turn, can benefit the
prediction of disease and prognosis both theoretically and practically [24–26]. Among all
medical imaging modalities, the chest radiograph is the most widely available modality,
displaying plenty of information about the cardiopulmonary and musculoskeletal system.
Despite research using chest radiograph-derived biological age estimates to successfully
predict longevity, long-term mortality, and cardiovascular risk [13,14,27], very few studies
have ever validated chest radiography-based age prediction methods [15,27], and none
of them have validated the prediction model in a real-world clinical dataset. Therefore,
there remains a lack of direct proof or predictive performance data regarding whether
and how chest radiographs can provide accurate age and sex predictions based on clinical
datasets. To fill this gap, we aimed to assess the accuracy of a deep learning model for age
and sex estimation based on chest radiographs of a healthy adult cohort from a real-world
clinical dataset.

2. Material and Methods
2.1. Ethics Statement

This study was approved by the Far Eastern Memorial Hospital Institutional Review
Board (FEMH 107094-E), and the requirement to obtain informed consent was waived due
to its retrospective nature. The participant records were anonymized and deidentified
before analysis. This project was supported by Quanta Computer Inc. (Taoyuan, Taiwan).
The data and analysis were controlled by authors independent of Quanta Computer (C.-Y. Y.
and K.-H. K.). Three authors (C.-C. K., K.-C. H., and J.-S. C.) are employees of Quanta
Computer but had no control of data presented in this study.
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2.2. Image Data Acquisition

In this study, we used data of 50,575 individuals (age > 19 years) who underwent
frontal chest radiograph studies (n = 71,878) for health screening from January 2008 to
December 2017 at Far Eastern Memorial Hospital. To train the model purely based on
physiological age change, an in-house deep learning screening model was used to exclude
all images revealing any kind of lung diseases, acute traumatic lung, surgical conditions,
or any type of implants. In total, 66,643 images from 47,060 individuals were used for
model training and testing (Figures 1 and 2). The Digital Imaging and Communications in
Medicine (DICOM) files were downloaded from the picture archive and communication
system of Far Eastern Memorial Hospital. The age and sex of the participants were
extracted from the DICOM metadata. The images from the DICOM files were extracted in
Portable Network Graphics image format and then randomly split into training (n = 53,315),
validation (n = 6664), and test (n = 6664) sets. Multiple images from the same participant at
different timepoints were selected only for the training set, rather than for the validation or
test sets (Table 1).

Figure 1. Recruitment and analysis flowchart.
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Figure 2. (A–D) Examples from the enrolled images. Chronological age/AI predicted age, sex/predicted sex: (A: 25/24.32,
M/M), (B: 34/33.06, F/F), (C: 43/43.97, M/M), (D: 57/55.19, M/M) years old. (M = male, F = female). (E–H) Examples
for the excluded images due to the presence of lung nodules, increased infiltration, cardiomegaly, or aortic stent-graft
implantation, respectively.

Table 1. Image-based demographics of individuals of the training, validation, and test datasets.

Set Training
(n = 53,315)

Validation
(n = 6664)

Test
(n = 6664)

Total
(n = 66,643)

Age
Mean (Standard deviation) 39.1 (11.9) 37.1 (11.8) 36.8 (11.8) 38.7 (11.9)

Median (Min, Max) 38.0 (20.0, 93.0) 35.0 (20.0, 86.0) 35.0 (20.0, 79.0) 37.0 (20.0, 93.0)
Sex

Female 29,104 (54.6%) 3490 (52.4%) 3440 (51.6%) 36,034 (54.1%)
Male 24,211 (45.4%) 3174 (47.6%) 3224 (48.4%) 30,609 (45.9%)

2.3. Study Population Demographics

In total, 47,060 individuals (22,144 men (47.1%) and 24,916 women (52.9%)) were
included. Image-based demographics are summarized in Table 1. Their mean chronological
age at the time of imaging and standard deviation was 38.7 ± 11.9 (age range, 20–93 years).
The distribution of the chronological age and sex of the training, validation, and test sets is
shown in Figure 3.
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Figure 3. Distribution of chronological ages of the training and validation sets (n = 59,979) and testing
set (n = 6664).

2.4. Deep Learning Algorithm Architecture

The neural network architecture used in this study was Inception-ResNet-v2 (https://
github.com/keras-team/keras/blob/master/keras/applications/inception_resnet_v2.py;
accessed on 1 July 2021) [28], which is the combination of two ideas: residual connec-
tions [29] and inception architecture [28,30,31]. Residual connections are necessary for
deeper networks to be successfully trained because the issue of vanishing gradients is
greatly alleviated. Inception networks leverage different kernel sizes to extract features in
different scales. The last fully connected layer of the original Inception-ResNet-v2 needed
to be adapted for our learning tasks. In the sex prediction model, the number of output
nodes was 2, whereas in the age prediction model, only one output node was needed
because the learning task was a regression. The activation functions and how to train the
networks are described in the following section.

2.5. Training of the Deep Learning Algorithm

Before being fed into the network, the images were resized to a resolution of 512× 512 pixels.
Grayscale values were normalized from (0, 255) to (−1, 1) by dividing the values by 127.5
and then subtracting 1.0. We used a CNN architecture (InceptionResNetV2) [32] with
parameters initialized by pretrained weights optimized for ImageNet [33]. Features were
selected to obtain the best model fit as follows. Ages are bounded values; therefore, the
activation function of the output layer had to be bounded as well. The use of the activation
function had an additional advantage: the underlying age constraint was inherent to the
model structure. The widely used sigmoid was selected as the activation function in the age
prediction model, whereas a softmax output function was used in the sex prediction model.

The codomain of sigmoid is (0, 1); therefore, the outputs were interpreted as min-max
normalized ages. Specifically, x, x̃, a, and b denote age, normalized age, minimum age, and
maximum age, respectively. The age was then normalized as

x̃ =
x− a
b− a

(1)

https://github.com/keras-team/keras/blob/master/keras/applications/inception_resnet_v2.py
https://github.com/keras-team/keras/blob/master/keras/applications/inception_resnet_v2.py
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If x ∈ (a, b), then x̃ ∈ (0,1). Therefore, we normalized the true ages by using
Equation (1) and fitted the model to the normalized ages. By inference, the outputs were
denormalized as

x = x̃(b− a) + a (2)

The oldest and youngest ages in the dataset were normalized to 0.9 and 0.1, respec-
tively. In our case, the youngest age was 21, whereas the oldest was 93. After these values
were substituted into Equation (2), a = 12 and b = 102, i.e., the predicted age range of our
model was 12–102 years.

For data augmentation, a rotation of up to 5◦ degrees was applied for each image in the
training set before being fed into the model. The loss function of the age prediction model
was the mean absolute error (MAE), and the model training goal was to minimize loss. The
overall model performance was also evaluated using MAE. We used an adaptive moment
estimation (ADAM) optimizer with a default parameter setting: β1 = 0.9 and β2 = 0.999.
The model was trained with minibatches of a size of 32 and an initial learning rate of 0.0001.
The open-source deep learning framework Tensorflow (https://www.tensorflow.org/;
accessed on 1 July 2021) was used to train and evaluate the algorithms.

2.6. Gradient-Weighted Class Activation Mapping

We used gradient-weighted class activation mapping (Grad-CAM) to visually explain
the most activated region produced by the model [34]. Although Grad-CAM was designed
to solve classification problems, it could be adapted to visualize regression activation with
a slight modification. Grad-CAM is a weighted combination of forward activation maps
followed by a rectified linear unit (ReLU). Applying a ReLU in a classification scenario
is reasonable because only the features that positively influence the targeted class are
of interest. In the case of regression, however, negative features also affect the output.
Therefore, we replaced the ReLU with an absolute value to generate an activation map
for regression.

To visualize the activated region variance across diverse age levels, individuals were
divided into separate 5-year age groups as follows: the bounding box coordinates contain-
ing the chest region of each individual were obtained using an in-house object detection
model developed based on YOLOv3 [35] to detect the coordinates, width, and height of
the lung field box. Average coordinates were then calculated for each corner of the box
bounding the lung field from the entire test set, and the averaged corner coordinates were
used as the reference lung field box in the template. Each individual was then registered
to the template space by using the moving least squares deformation method [36], with
the corners of the lung field bounding box as a control point set for each individual and as
the deformed positions in the template. Finally, the transformed images were averaged in
each age group to generate group radiograph templates and group summarized activation
maps (SAM) (Figure 4).

https://www.tensorflow.org/
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Figure 4. Flowchart for the summarized activation map (SAM): (A) Averaging the lung field bounding box coordinates,
which were derived from an in-house build model, to generate a lung field template. (B) Transforming and mapping each
individual activation map to the lung field template. (C) Averaging all the transformed activation maps to obtain the
presented SAM, by age group.

2.7. Statistical Analysis

Data are presented as means and standard deviations for continuous variables and as
percentages for categorical variables. The reported performance assessment of the model
used age predictions on the test set. The model performance was evaluated by calculating
the Pearson correlation coefficient (r) between chronological and predicted ages, the MAE,
and root mean square error (RMSE). A Bland-Altman plot was used to distinguish paired
differences of the model estimate from the chronological age over the paired means. The
area under the receiver-operating characteristic curve (AUC) and standard errors were
calculated to examine the validity of chest radiographs in sex prediction. The absolute
errors and squared errors between different sex groups were compared using the Student’s
t-test. A p-value less than 0.05 was considered significant, and Bonferroni adjustment was
conducted in the case of multiple comparisons. The statistical analysis was performed
using R (version 3.5.3).

3. Results
3.1. Age Prediction

Regarding the age prediction performance for the test set, when model predictions
were compared with chronological ages, the mean difference, MAE, and RMSE were 0.0,
2.1, and 2.8 years, respectively. Age prediction results are shown in Figure 5, and four
illustrated examples are shown in Figure 2A–D. Figure 6 demonstrates the Bland-Altman
plot for the difference versus mean between the model estimates and chronological ages
over the mean of the two estimates. The mean difference between model estimates and the
ground truth was close to 0 (−0.04) years, with a standard deviation of 2.77. The difference
was consistent for averages <60 years, but the difference decreased as the average increased
beyond 60 years. Both MAE and RMSE were slightly smaller in the female group (2.1 and
2.7, respectively) than in the male group (2.2 and 2.8, respectively), with p values = 0.08
and 0.04, respectively.
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Figure 5. Accuracy of the deep learning model for age prediction. The scatter plot displays chrono-
logical age versus predicted age in the test set. The solid red line is the regression line. The R is the
Pearson’s correlation coefficient of the model estimates with chronological ages.

Figure 6. Bland-Altman plot, depicting the difference versus the mean between model estimates and
chronological ages.
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3.2. Sex Prediction

The sex prediction model examined with the test set achieved an AUC of 0.9999943
(95% confidence interval = 0.9999876–1.0000000) (Figure 7).

Figure 7. The receiver-operating characteristic (ROC) curve for the best trained deep learn-
ing model in sex prediction. The optimal threshold was selected by minimizing the Eu-
clidean distance between the ROC curve and the (0, 1) point, which has a minimum value of
(1 − sensitivity)2 + (1 − specificity)2. The optimal threshold of 0.8516 was also plotted on the ROC
curve as the threshold (specificity, sensitivity).

3.3. Group Summarized Activation Maps

Figure 8 showed pairings of group-SAM, group-averaged template, and the corre-
sponding superimposed activation maps by age. The figure shows the key regions relevant
to the predictions highlighted. For the age prediction model, the most relevant anatomical
regions were the cervical, thoracic spines, first ribs, aortic arch, heart region, rib cage, and
soft tissue of the thoracic wall and flank. Regarding the sex prediction model, the most
relevant regions were the breast shadow and lower neck (image not shown).

Figure 8. Summarized activation map (SAM) by age group. (A) Activation maps (B), the corresponding chest radiograph
templates, and (C) the overlays across different age groups.



J. Clin. Med. 2021, 10, 4431 10 of 14

4. Discussion

This study developed a deep learning model for age and sex estimation based
on chest radiographs from a healthy adult cohort in a hospital-based real-world clin-
ical dataset. By using CNNs, our model predicted age and sex with high accuracy
(Age: MAE/RMSE = 2.1/2.8 years; Sex: AUC = 0.9999943) and the mean of the differ-
ences between model estimates of age and the ground truth was close to 0 years. In
addition, the modified Grad-CAM method with SAM demonstrated the variance across
different age groups in the most activated anatomical regions, containing critical features
for the age prediction model.

Under the assistance of a CNN, and using regression method, our chest radiography-
based age prediction model resulted in an MAE and an RMSE of <3 years and showed
a strong correlation between predicted and chronological ages. With a similar method,
Larson et al. [21] developed a hand-age assessment model with an MAE of 0.5 years and
RMSE of 0.63 years. Instead of chronological age, the evaluation target of the hand age
study was skeletal maturity, defined by image findings, and the ground truth was also
determined by human reviewers based on images. Therefore, compared to the prediction
of chronological age, a model predicting skeletal maturity may be easier to comprehend
because the evaluation target and ground truth are both image-based. In another brain-
age prediction study [22], the models were trained using a brain magnetic resonance
(MR) images dataset (N = 2001) with an MAE > 4 years and RMSE > 5 years. Although
speculative, it seems possible that our model, demonstrating greater accuracy, may extract
more relevant features for age prediction from the chest radiographs than those extracted
in brain MR images.

All prior studies predicting age and sex were based on open datasets, which have
been criticized for mislabeled or poor-quality images [37,38]. In those prior studies, re-
searchers did not distinguish images of disease conditions from those of healthy indi-
viduals [15,27]; therefore, image information from pathological changes may be mixed
with those from chronological and biological changes. To develop a model that min-
imizes the impacts of non-physiological changes, we used only high-quality chest ra-
diographs and excluded images from people with lung diseases, trauma, surgical con-
dition, or any type of implants in this study, which produced a relatively good accu-
racy (age: MAE/RMSE = 2.1/2.8 years; sex: AUC = 0.9999943) (Figures 5–7). However,
one should be cautious that the MAE/RMSE cannot be directly compared across dif-
ferent studies and the high accuracy results in the current study are not simply because of
the usage of high-quality images; instead, other factors including the usage of only images
from healthy subjects in the test dataset may also contribute to the high accuracy results.
In fact, the MAE and RMSE of age estimation were found slightly smaller in the female
group, and this reflects that any bias in data collection could have an impact on the model
performance. Therefore, additional representative image data with reasonable variation for
training could be considered in the future to minimize such biases. Furthermore, when
our pretrained model is transferred to make inference in unseen datasets, locally adapted
prediction models with the optimal predictive ability should be derived with the incor-
poration of local clinical images of the target population into the training set for better
generalization. As exemplified in Figure 2A–D, the prediction model estimates the exact
age, which is difficult for people to estimate from the images using the unaided eye. In this
regard, this current study provides the first performance results of how deep learning is
capable of extracting age information from CXR images and producing a prediction model
using real-world-based data of healthy adults from the same hospital.

For age prediction, we demonstrated a series of SAMs for people of different age
groups (Figure 8). We used Grad-CAM with regression method for visualization and aver-
aged the activation by mapping it to a lung field template to minimize misregistration error,
which we believe is more representative than to demonstrate only individual heatmaps.
Some studies have reported age estimation from CXR images [39]. Hirotaka reported
that the top of the mediastinum helps in predicting patients’ age [14]. Their results were
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similar to our study. However, they did not evaluate differences in heatmaps between
different age groups. Our study showed that the activated degree and area differed across
age groups. The first rib, cervical spine, lower thoracic spine, rib cage, and manubrium
were the hot zones in the chest radiographs for those in their 20s, and the weighting of
these regions decreased as people aged. The chondral ossification pattern of the skeleton
varied according to time in a young life. Previous research mentioned that costochondral
ossification of the first rib might start in the second decade and terminate at the third
decade [40]. Its morphology is widely used in predicting the age of death in forensic
fields [39,41]. Reports have mentioned that different ages have different thoracic kyphosis
degrees between adolescence and adulthood [42], and degenerative change in spines is
obvious in elderly persons. On the other hand, soft tissue of the thoracic wall and flank,
although not a major contributor, continued to play a substantial role in the model across
age groups. For radiographs of those older than 40, the group average of activation appears
at the aortic arch and heart. Aortic arch diameter and the prevalence of aortic arch calcifica-
tion increase with age. Aortic arch width progressively increases after four decades [43].
Therefore, it contributed more in patients aged over 40 years old. Considerable differences
in cardiac size depending on sex and age are reported. The size changes significantly
with increasing age [44]. Our study also showed that the heart region accounts more in
older age groups in SAMs. The incidence of metabolic disorders such as hypertension or
hyperlipidemia is higher in the elderly. Aortic arches begin to change first, followed by
the hypertrophic change of the myocardium or heart chambers; our heatmap reflected the
stages of physiological changes during aging. The incremental activation patterns across
different age groups are consistent with the anatomical evolution in the thoracic region
during the aging process, which proves the reliability of our model. In the current study,
we also developed an accurate sex prediction model (AUC = 0.9999943). The presence
of breast shadows and density, as well as the lower cervical spine, are the key activated
locations of the sex prediction model. These regions of interest are consistent with those in
previous studies [39,45]. Both MAE and RMSE were slightly smaller in the female group
than male. The presentation of CXR-age, as a result of different aging and pathological
processes, is expected to vary in different groups, also contributed to by different sexes.
In summary, by using a deep learning approach, the imaging features can be quantified,
and the model can jointly evaluate multiple anatomical systems, which thus enable more
accurate age and sex predictions.

The model can be particularly useful when a person’s name and age/sex are unknown
or unreliable, for instance, when a police officer or healthcare provider tries to help a
person who has lost their memory or when a patient needs rapid imaging services at an
emergency department with their name or age being unknown. Additionally, the model
can be used in various forensic fields for subjects of unknown ages and sexes [2]. Chest
radiographs are the most commonly used radiological test; therefore, they may be of
potential use for security checks in places such as airports where identification of a fake ID
is of critical importance.

The other significance is that age information in images is derived not only from
chronological change, but also from the cumulative effects of biological and/or patholog-
ical change. Although our model could predict very accurately overall, the differences
between predicted age and chronological age differed across individuals, which may con-
tain information from changes from environmental factors, lifestyle, or diseases overtime
for this individual. In fact, image-based age predictions have frequently been used to evalu-
ate clinical conditions. For instance, bone age studies from hand and wrist radiographs are
commonly used to evaluate the degree of skeletal maturity and diagnose growth disorders
or to predict final adult height in children. In various brain diseases, neuroimaging-derived
age predictions have been studied and the differences between the predicted brain and
chronological ages are potentially related to the accumulation of age-related changes in
pathological conditions [6–11] or protective influences on brain aging [46,47]. Similarly,
CXR-age derived from chest radiographs may be of potential use as an imaging biomarker
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to represent the condition of the thorax. In fact, there have been emerging studies using
CXR-age to successfully predict longevity, mortality, and cardiovascular risk [13,14,27],
which provides a sound base for the imaging biomarker hypothesis.

In conclusion, the present study developed a deep learning model which can estimate
age and sex in chest radiographs with a high accuracy than that in other radiographic
methods. Future research to compare the accuracy of age and sex prediction models based
on other imaging modalities and to further explore the relevance of CXR- age as an imaging
biomarker is warranted.

5. Limitations

Our study has several limitations. First, we used a dataset comprising healthy Asian
individuals from a single institution, which might introduce some potential biases in data
collection. Therefore, the generalizability of our study should be addressed with additional
studies on populations of different ethnicities, geographical regions, and socioeconomic
levels. Additional representative image data with reasonable variation for training should
also be considered to minimize such biases. Moreover, the deep learning model tenden-
tiously underestimated age in individuals aged >60 years, potentially because a relatively
low number of individuals from this age group were in the training set. Furthermore, the
age-related features learned from the dataset might not be expressed as much as expected
in older ages. Further investigation on a more balanced dataset may aid in clarifying
this issue. Finally, although our model had a 2.1-year MAE and a 2.8-year RMSE, a more
accurate and precise estimate for an individual is needed in the clinical settings. Further
research with optimization of data manipulation or deep learning algorithms to reduce the
error rate and to include different datasets to explore the relevance of CXR-age as a clinical
imaging biomarker is warranted.
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