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spectroscopic analysis of ceramo metal interface at different firing 
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Abstract

Objective: Porcelain chipping from porcelain fused to metal restoration has been Achilles heel till date. There has been advent 
of newer ceramics in past but but none of them has been a panacea for Porcelain fracture. An optimal fi ring is thus essential 
for the clinical success of the porcelain-fused to metal restoration. The aim of the present study was to evaluate ceramo-metal 
interface at different fi ring temperature using XRD and SEM-EDS analysis. Clinical implication of the study was to predict the 
optimal fi ring temperature at which porcelain should be fused with metal in order to possibly prevent the occasional failure of the 
porcelain fused to metal restorations. Materials and Methods: To meet the above-mentioned goal, porcelain was fused to metal 
at different fi ring temperatures (930990°C) in vacuum. The microstructural observations of interface between porcelain and metal 
were evaluated using X-ray diffraction and scanning electron microscopy with energy dispersive spectroscopy. Results: Based 
on the experimental investigation of the interaction zone of porcelain fused to metal samples, it was observed that as the fi ring 
temperature was increased, the pores became less in number as well as the size of the pores decreased at the porcelain/metal 
interface upto 975°C but increased in size at 990°C. The least number of pores with least diameter were found in samples fi red 
at 975°C. Several oxides like Cr2O3, NiO, and Al2O3 and intermetallic compounds (CrSi2, AlNi3) were also formed in the interaction 
zone. Conclusions: It is suggested that the presence of pores may trigger the crack propagation along the interface, causing 
the failure of the porcelain fused to metal restoration during masticatory action. 
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Introduction

Occasional chipping of porcelain from metal surface in PFM 
restorations has been the continued problem till date. The 
failure of porcelainmetal bond leads to restoration failure. 
This failure can occur cohesively within porcelain, in metal 
or at porcelainmetal interface. Several studies have been 
conducted to determine the strength of porcelain–metal 
bonds[1-10] porcelainmetal interface,[11-15] fracture resistance 
of Porcelain Fused to Metal restorations,[16,17] porcelain-
metal thermal compatibility,[18] effect of heat treatment and 
firing cycle,[19-21] adhesion of porcelain to other metal[22,23]. 
Present study deals with failure of porcelain metal interface. 
Porcelain fused to metal restoration failure can occur due to 
multiple reasons. This paper will focus on the effect of various 
firing temperatures on porcelainmetal interface.

Poorly controlled firing temperature is supposed to be 
potential cause to PFM restoration failure. An optimal firing 
temperature for porcelain is supposed to be one of the 

major factors for the restorations to be clinically successful. 
The aim of this study was to characterize the microstructure 
of oxide layer formed on metal surface before firing and 
after firing the PFM samples at different firing temperatures. 
The interaction zone formed along the interface was studied 
and evaluated.

The objective of the study was to predict the optimal firing 
temperature at which porcelain should be fused with metal 
in PFM restorations.

Material and Method
Casting of base metal alloy
Casting of base metal alloy was done [Chart 1]. Sample A 
was casted but not oxidised.Sample B was casted,oxidised 
but Porcelain was not applied.Sample C to G were casted, 
oxidised and Porcelain was applied.All the samples were 
evaluated microstructurally [Chart 2]. X-ray diffraction was 
done for Sample A,B and control sample. XRD and SEM-EDS 
analysis was done for samples C to G.

Results and Discussion

Porcelain fused to metal sample preparation (Samples C 
to G)
Figure 1 showed the relative X-ray diffraction (XRD) 
patterns for commercial base metal alloy (Niadur), Sample 
A and Sample B. Commercial base metal alloy showed the 
presence of delta phase chromium, nickel [(Cr, Ni)] in it. 
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Chart 2: Microstructural evaluation of sample. 
§Lectra, UGIN, France, ||KRISH (Cold setting compound liquid and 
powder) for metallurgical specimen mounting, Chennai, **Emery Paper 
No. 1/0,2/0, 3/0 <SIA> 1600 SAINOR B Swiss made; Emery Paper 
No. 4/0, John Oakey and Sons Limited, Made in England, ††ISO-
DEBYEFLEX-2002, Germany *JEOL JSM-840

Figure 2: Diffraction pattern for sample C (opaque layer fi red 
at 930°C)

Figure 1: Relative X-ray diffraction analysis for commercial 
base metal alloy sample, Sample A and sample B

Chart 1: Casting of Base Metal Alloy. 
*Begosol, Bego, Germany †NIOM – Made in Germany, DFS

Sample A showed the presence of intermetallic compound 
Cr3Ni2 besides  (Cr, Ni) phase whereas Sample B showed 
the presence of Cr3Ni2, nickel oxide (NiO), chromium oxide 
(Cr2O3) and delta phase. Since this sample was oxidized, the 
formation of these metallic oxides was quite reasonable.

The XRD pattern [Figures 2-6] and EDS patterns were 
recorded for samples C to G. [Table 1] shows the various 
oxides and inter metallic compounds formed in different 
samples and [Table 2] shows distribution of major elements 
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Figure 5: Diffraction pattern for sample F (opaque layer fi red 
at 975°C)

Figure 6: Diffraction pattern for sample G (opaque layer fi red 
at 990°C)

Figure 4: Diffraction pattern for sample E (opaque layer fi red 
at 960°C)

X-RAY DIFFRACTION (XRD) OBSERVATIONS
Table 1: Oxides and intermetallic compounds formed in 
different samples
Sample Oxides Intermetallic compounds
Commercial base-
metal alloy

– Delta (Cr, Ni)

Sample A – Cr3Ni2, Delta (Cr, Ni)
Sample B NiO, Cr2O3 Cr3Ni2, Delta (Cr, Ni)
Sample C NiO, Cr2O3 CrSi2, AlNi3
Sample D Al2O3, Cr2O3, NiO –
Sample E Al2O3, Cr2O3 AlNi3
Sample F Al2O3, Cr2O3, NiO Al2Cr3

Sample G Cr2O3, NiO, Al2O3 –
The EDS analysis was done for elemental recordings at the 
locations described above. The results were qualitatively 
correlated with XRD observations, which led to the evaluation 
of interaction zone.

Samples CG showed the presence of oxides of Ni, Cr, and 
Al. Various intermetallic compounds like CrNi2, CrSi2, AlNi3, 
and Al2Cl3 were also formed.

Table 2: Distribution of major elements observed in SEM- 
EDS analysis
Sample Interface region Metal region Porcelain region
C Ni, Cr, O Ni, Cr, O Si, Al, K, O
D Al, Ni, Cr, O Ni, Cr, O Si, Al, K, O
E Ni, Cr, Al Ni, Cr Si, Al, K
F Si, Al, O, Cr Ni, Cr, O Si, Al, O
G Ni, Cr, O Ni, Cr, O Si, Al, K, O

Figure 3: Diffraction pattern for sample D (opaque layer fi red 
at 945°C)

observed in SEM-EDS analysis. The EDS analysis was recorded 
in the region around the interface of metal and porcelain, at 
an interval of 20 m on either side of interface. This region 
formed the integral part of the interaction zone.
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of observed pores was found to be 43 m. These large-sized 
pores were triangular to irregular in shape [Figure 8]. This 
observation can be explained by the studies of Anusavice.
[24] They observed that during firing, the voids between 
porcelain particles were occupied by the furnace atmosphere. 
The vacuum, created during firing, pushes the air out of the 
porcelain particles. During firing, porcelain particles bond at 
their point of contact as the sintering of porcelain particles 
occur. The sintered porcelain particles try to flow and fill up 
the pore spaces. It might be presumed that large number 
of pores in this sample were due to incomplete sintering of 
porcelain particles and inability of particles to flow and fill 
up the air spaces completely. This can be also predicted from 
the fact that the commercial porcelain, used in the present 
study, is usually densified/sintered in the temperature range 
of 8501100°C. Therefore, it can be said that due to lower 
temperature of 930°C, the sintering of porcelain particles was 
not complete, which resulted in large-sized pore formation.

As the firing temperature was increased to 975°C (sample 
F), both the number of pore and average diameter of pores 
[Figure 9] and [Figure 10] decreased due to better fusion of 
porcelain particles. Also, the flow of particles was increased 
causing increased filling of air space among the particles. In 
sample G, the number of pore and average diameter of pores 
did not decrease because fusion ability of porcelain particle 
did not increase at this temperature and tend to remain 
constant. On the contrary, pore size was increased. It was 

Figure 7: SEM images of porcelain fused to metal samples at 
different fi ring temperatures

Figure 8: SEM images of porcelain fused to metal samples 
(opaque porcelain layer) fi red at different fi ring temperatures

Sample E observations were well supported by the findings 
of Anusavice (1977) who showed NiCr interactions with 
ceramic complexes. The presence of Al2Cr3 in Sample 
F further supported the studies of KJ Anusavice, RD 
Ringle, and CW Fairhurst,[5] who showed the presence of 
predominant Al-Cr interactions. The Cr ions were supplied 
by Cr2O4 oxide layer of metal surface and Al was provided 
by porcelain surface.

The XRD pattern and EDS analysis of various samples from 
A to G reconfirmed the fact that the oxidation of casted 
commercial base metal alloy led to the formation of oxides 
of major elements present in it (Ni, Cr) and during firing, the 
major elements from porcelain (K, Si, Al) interacted with metal 
oxide to form various oxides and intermetallic compounds. 
This resulted in the formation of interaction zone between 
metal and porcelain.

SEM image [Figure 7] of porcelain fused to metal sample C 
(opaque porcelain layer fired at 930°C) showed large number 
of pores ranging from 2530. The size of average diameter 
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clearly noted that as the firing temperature was increased, 
the pores became less in number as well as the size of pores 
decreased. The least number of pores with least diameter 
were found at 975°C. It shows that porcelain particles flowed 
and filled up the air spaces between them optimally at 975°C, 
which results in better sintering, leading to very few numbers 
of pores. Another reason of the observation of less number 
of pores at 975°C might be the optimal match of coefficient 
of thermal expansion of porcelain and metal.

Also noted was the fact that the pores were present only 
in the porcelain side and not in the metal side. The pores 
present in porcelain side are susceptible to crack formation 
at the edges. These cracks can form when PFM restoration 
comes under pressure; for example, during mastication, 
during which an average load of 2 N is transferred along the 
long axis of PFM crown or bridge. During mastication, the 
presence of pores can lead to the formation of cracks from 
its edges. These cracks possibly can coalesce together to 
form a longer crack. These longer cracks can subsequently 
propagate parallel to the interface, potentially leading to 
chipping of the porcelain layer, and hence, failure of the 
PFM restorations. Slow crack growth phenomenon[25] is most 
commonly observed in samples with large-sized pores as 
compared to samples with small-sized pores. 

Scope for Future Work

The firing of porcelain on metal in inert atmosphere like argon 
can be done to observe the influence of different atmosphere 
on the microstructural changes in the interaction zone. 
Studies correlating mechanical properties such as strength, 
with voids number and size can be performed in future to 
evaluate the nature of porcelainmetal interface.

Conclusions

Based on the experimental investigations of the interaction 
zone of porcelain fused to metal samples, the following 

conclusions can be drawn:
1. XRD and SEM – EDS analysis indicated that porcelain

metal interaction occurred during the firing of opaque 
porcelain layer at varying temperatures of 930°C to 990°C. 
Another important observation was the presence of pores 
of varying size, shape, and numbers on the porcelain side 
at the interaction zone, dependent on firing temperatures 
of opaque porcelain layers. As the firing temperature was 
increased, the pores became less in number as well as the 
size of the pores decreased. The least number of pores 
with least diameter was found for the sample in which 
opaque porcelain layer fired at 975°C

2. Several oxides like Cr2O3, NiO, and Al2O3 and intermetallic 
compounds (CrSi2, AlNi3) were formed in the interaction 
zone.

3. The experimental studies indicate that an optimum firing 
temperature of 975°C is preferred for better adhesion 
properties of porcelain to NiCr base metal alloy. 
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