
Page 1 of 7
(page number not for citation purposes)

Available online http://arthritis-research.com/content/8/4/213

Abstract
The autoimmune disease scleroderma (systemic sclerosis (SSc)) is
characterized by extensive tissue fibrosis, causing significant
morbidity. There is no therapy for the fibrosis observed in SSc;
indeed, the underlying cause of the scarring observed in this
disease is unknown. Transforming growth factor-β (TGFβ) has long
been hypothesized to be a major contributor to pathological fibrotic
diseases, including SSc. Recently, the signaling pathways through
which TGFβ activates a fibrotic program have been elucidated and,
as a consequence, several possible points for anti-fibrotic drug
intervention in SSc have emerged.

Introduction
During normal connective tissue repair, fibroblasts proliferate
and migrate into the wound, where they synthesize, adhere to
and contract extracellular matrix (ECM) proteins, resulting in
wound closure. It has been proposed that a failure to down-
regulate the normal tissue repair program causes the patho-
logical scarring characterizing fibrotic diseases [1,2]. Fibrotic
disease can affect individual organs, such as the kidney, liver,
pancreas or lung, or be systemic, affecting all organs [1-5]. In
its most severe forms, fibrosis results in organ failure and
death. The systemic autoimmune disease scleroderma
(systemic sclerosis (SSc)) possesses a significant fibrotic
component; indeed, pulmonary fibrosis is the cause of the high
mortality observed in SSc [6]. Identifying targets around which
to base selective, anti-fibrotic therapies is, therefore, essential.

The fundamental mechanism underlying the excessive
scarring observed in SSc is unknown. However, fibrosis is
generally considered to arise from a failure to down-regulate
the normal tissue repair program [2]. One of the major
cytokines induced during the tissue repair is transforming
growth factor (TGF)-β [7]. As TGFβ induces fibroblasts to
synthesize and contract ECM, this cytokine has long been
believed to be a central mediator in wound healing and

fibrotic responses, including SSc [5]; however, the exact
contribution of TGFβ to the fibrotic phenotype of SSc is
unclear. Furthermore, as TGFβ plays many roles in normal
physiology, including as a suppressor of the immune
response and epithelial proliferation, broadly targeting TGFβ
signaling for the treatment of disease is anticipated to be
problematic [8]. Thus, much interest exists, from both clinical
and pharmaceutical points of view, in identifying methods of
intervening within the TGFβ signaling cascade in such a
fashion that the pro-fibrotic aspects of TGFβ signaling are
blocked but other TGFβ-dependent processes are unaltered.

This review critically evaluates the evidence supporting the
notion that TGFβ is a critical mediator of fibrogenesis in SSc,
and assesses whether there are intervention points within the
TGFβ cascade that might be appropriate targets around
which to base selective anti-fibrotic therapies to treat SSc.

Transforming growth factor-ββ signaling
There are three TGFβ isoforms, TGFβ1, TGFβ2 and TGFβ3,
which are synthesized as latent precursors in complex with
latent TGFβ-binding proteins (for reviews, see [8-11]). When
these binding proteins are removed by proteolysis, TGFβ is
activated. The ‘TGFβ activators’ include the proteases
plasmin, matrix metalloproteinase (MMP)-2 and MMP-9,
thrombospondin-1, and the integrin αvβ6. Active TGFβ binds
to a heteromeric receptor complex, consisting of one TGFβ
type I and one TGFβ type II receptor. In the presence of
TGFβ ligand, the TGFβ receptor I kinase phosphorylates the
receptor-activated Smads (R-Smads), Smad2 and Smad3,
which are then able to bind the common mediator Smad,
Smad4, and translocate into the nucleus (Figure 1). The
Smad3-Smad4 pair binds promoters at the Smad consensus
sequence, CAGAC [12]. Smad2, on the other hand, is not
believed to bind DNA directly, but rather requires a nuclear
DNA-binding protein of the family Fast (Fast-1) to bind DNA
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[13]. The ability of this complex to activate transcription
depends on the ability of Smads to recruit common
transcriptional cofactors, such as p300, and basal
transcription factors, which vary depending on the promoter
of interest. A third group of Smad proteins, the inhibitory
Smads Smad6 or Smad7, prevents R-Smad phosphorylation
and subsequent nuclear translocation of R-Smad-Smad4
heterocomplexes; it appears that Smad7 competes with
Smad2 and Smad3 for binding to the TGFβ type I receptor
[14]. TGFβ also induces Smad7 through a Smad3 and
Smad4-dependent mechanism, suggesting that TGFβ can
suppress its own action via the induction of Smad7 [15]
(Figure 1). Overall, the Smads mediate immediate-early
responses to TGFβ, and their activity is tightly controlled.

In addition to the Smads, TGFβ also causes the activation of
other signaling pathways, for example the mitogen activated
protein kinase cascades. These cascades are not required for
Smad activity per se, but are required for the activation of
basal transcription factors and potentially for the enhancement
of TGFβ responses [10,16-18] (Figure 2). Thus, trans-
criptional responses to TGFβ generally require the type I and
type II TGFβ receptors and the Smads (Figure 2). Specificity
of transcriptional responses to TGFβ rely, therefore, on
ancillary signaling pathways induced by TGFβ, and the basal
transcription factors recruited to the promoter (Figure 2).

The evidence for TGFββ as a pro-fibrotic
cytokine in systemic sclerosis
Evidence supporting the contribution of TGFβ in fibrotic
responses has principally been derived using acute in vitro or

in vivo models. For example, treatment of fetal wounds with
TGFβ promotes wound closure and scarring [19,20]. In
addition, injection of TGFβ, either directly subcutaneously or
into metal chambers, results in enhanced deposition of ECM
[20-22]. Furthermore, incisional rat wounds treated with anti-
TGFβ antibodies or antisense oligonucleotides show a
marked reduction in ECM synthesis and scarring [23,24].
Although TGFβ1 deficient mice display markedly reduced
collagen deposition compared to control mice, such mice
also show a severe wasting syndrome accompanied by a
pronounced, generalized inflammatory response and tissue
necrosis, resulting in organ failure and death [25,26]. These
results are consistent with the fact that, as discussed above,
TGFβ is pleiotropic and that broad targeting of TGFβ in
humans is likely to have adverse side-effects. [8]. Indeed,
resistance to the antiproliferative effects of TGFβ is a hall-
mark of cancer cells [27].

Addition of TGFβ ligand to cells or mice causes only a transient
fibrotic response, which persists only as long as TGFβ ligand is
present [22,28]. TGFβ does promote persistent fibrotic
responses in vivo, but requires a cofactor, such as connective
tissue growth factor (CTGF, CCN2) [22]. This notion that other
factors are required to perpetuate fibrotic responses to TGFβ
is supported by observations using materials derived from SSc
patients. In dermal fibrotic lesions of scleroderma patients,
elevated TGFβ levels exist at the leading edge of the forming
scar tissue, but not within the established lesions [29]. In
addition, elevated serum TGFβ levels are found only in some
patients [30]. Finally, a recent report showed, paradoxically,
that TGFβ levels in patients with diffuse SSc showed lower
levels of active TGFβ in serum, relative to controls, and,
moreover, active TGFβ levels correlated inversely with the
severity of fibrosis [31]. These results may suggest, however,
that TGFβ might be preferentially sequestered, and consumed,
by the connective tissue in SSc [31]. The overexpression of
type I collagen by cultured SSc fibroblasts, which produce
neither elevated TGFβ levels nor increased latent TGFβ, is
nevertheless reduced by neutralizing TGFβ antibodies or
antisense RNA [32]. These results suggest that SSc
fibroblasts show an enhanced response to endogenous TGFβ
ligand. It is interesting to note, however, that an oral
presentation at the 2004 International Scleroderma Meeting at
Cambridge, UK, discussed a clinical safety trial using a
neutralizing anti-TGFβ antibody in SSc patients. This trial
showed that a neutralizing anti-TGFβ antibody showed neither
an anti-fibrotic ability nor a toxic side-effect. However, as only
one dose of antibody was used, it is difficult to evaluate from
this unpublished study whether targeting TGFβ ligand may be
an appropriate anti-fibrotic strategy in SSc.

A priori, the enhanced response to TGFβ in SSc fibroblasts
may arise through an elevation in TGFβ receptor levels.
Indeed, SSc fibroblasts possess increased levels of the
signaling TGFβ type I receptor, relative to the TGFβ type II
receptor [33]. As overexpression of TGFβ type I receptor in

Figure 1

Transforming growth factor (TGF)β signaling generally occurs through
TGFβ type I and type II receptors and Smads. TGFβ binds to the TGFβ
type I and type II receptors. The type I receptor contains kinase activity,
and phosphorylates receptor-activated Smads, Smad2 and Smad3,
which dimerize with Smad4. The resultant complex migrates into the
nucleus to activate target gene expression. TGFβ induces the
inhibitory Smads, Smad6 and Smad7, which block TGFβ receptor type
I-dependent Smad 2/3 activation.
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normal fibroblasts increased basal collagen expression in a
dose-dependent manner, it is conceivable that the over-
expression of type I collagen observed in SSc fibroblasts may
arise because of this defect [32]. Supporting the idea that
TGFβ signaling through the TGFβ type I receptor contributes
to the pathogenesis of SSc, the over-expression of type I
collagen by SSc fibroblasts is blocked by a TGFβ type I
receptor antagonist [34]. Similarly, the enhanced ECM
contraction and adhesion observed in SSc fibroblasts
depends on TGFβ type I receptor activity [34,35]. However, it
should be pointed out that TGFβ type I receptor inhibition
also reduced basal collagen synthesis, adhesion and
contraction in normal and SSc fibroblasts, consistent with the
notion that the contribution of TGFβ and TGFβ signaling to
the phenotype of SSc fibroblasts may arise from an
exaggeration of processes operating in normal fibroblasts
[34,35]. Further complicating the issue, TGFβ type I receptor
inhibition had no significant effect on the overexpression of
CTGF or α-smooth muscle actin by SSc fibroblasts [34].
Collectively, these results suggest that signaling through the
TGFβ receptors is likely to contribute to some aspects of
SSc but not others. Finally, as discussed above, although
these data strongly suggest that the TGFβ ligand-type I
receptor axis contributes to the fibrotic phenotype in SSc,
broad targeting of the type I TGFβ receptors is likely to be
problematic in SSc as the type I receptor generally mediates
TGFβ signaling [10]. Indeed, animals genetically deficient in
TGFβ receptor type I die in utero and display severe vascular
defects [36]. That said, the above data suggest that
identifying a method of reducing the type I/type II receptor
ratio to that of normal fibroblasts might be a viable method for
selective anti-fibrotic drug intervention in SSc.

Smads in systemic sclerosis
In addition to implicating TGFβ ligand, acute in vitro and in
vivo models have strongly supported the role of Smad3 in
fibrogenesis. Following incisional wounding, animals lacking
Smad3 show accelerated wound healing, reduced granula-
tion tissue formation, increased epithelialization, and reduced
inflammation, possibly due to an impaired chemotactic
response [37]. Smad 3-deficient mice display resistance to
cutaneous fibrosis caused by radiation injury [38] or
bleomycin [39]. Experiments using microarrays and western
blot analyses have compared gene expression profiles of
fibroblasts taken from adult Smad3–/– and Smad3+/+ mice,
and have shown that TGFβ was not able to induce
transcription in Smad3–/– fibroblasts, including the produc-
tion of matrix and proadhesive proteins such as collagen and
CTGF [40-42]. However, between four and six months of
age, Smad3 mutant mice become moribund, with chronic
inflammation and colorectal adenocarcinomas [43]. Smad 3
deficient mice also can develop degenerative joint disease
resembling human osteoarthritis, as characterized by
progressive loss of articular cartilage, decreased production
of proteoglycans, and abnormally increased number of type X
collagen-expressing chondrocytes in synovial joints [44].
These results strongly suggest that targeting Smad3 pharma-
cologically would be expected to have severe side-effects.

Within the context of SSc, leading edge SSc fibroblasts
show activation of Smad3; in some studies, this activation
has been shown to depend on TGFβ ligand, whereas other
studies have shown this may be ligand independent [45, 46].
Although both type I collagen and CTGF are induced by
TGFβ in a Smad-dependent fashion, the elevated activity of
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Figure 2

Schematic diagram of general and gene-specific transforming growth factor (TGF)β signaling in fibroblasts. TGFβ binds to the TGFβ type I and
type II receptors, activates Smad3, which activates target gene expression by binding the sequence CAGA. This pathway regulates virtually every
TGFβ responsive gene in fibroblasts. Conversely, TGFβ can act with endothelin-1 (ET-1), connective tissue growth factor (CTGF) and extra domain
A-fibronectin (EDA-FN) via the endothelin receptor A and B (ETA/B) receptors, syndecan 4 and integrins to activate ERK and focal adhesion
kinase (FAK), which are required for target gene expression, in a promoter-specific fashion (for details see text).



the type I collagen promoter in SSc cells is dependent on the
Smad element; however, the over-expression of CTGF is not
[31,40]. Lesional SSc fibroblasts overexpress the TGFβ
ancillary receptor endoglin in a fashion correlating with
disease severity [47]. Endoglin, when overexpressed in
fibroblasts, suppresses the ability of TGFβ to induce Smad
activation [47]. These results suggest lesional SSc
fibroblasts overexpress endoglin to block further Smad-
dependent gene induction. In this regard, one report showed
decreased levels of the inhibitory Smad7 in scleroderma
fibroblasts [48], albeit in unaffected skin. Other studies
showed no difference, or even an increase in Smad7 levels in
SSc fibroblasts [40,45,49]. In one study, Smad7 was
constitutively present on the TGFβ receptors [49]. The result
of this defect is likely to be a bias away from Smad-
dependent signaling in lesional scleroderma fibroblasts.
Indeed, SSc fibroblasts are relatively non-responsive to
exogenously added TGFβ ligand [50].

Collectively, the above observations reveal the complex role
that TGFβ plays in mediating fibrogenesis, and seems to
suggest that targeting generic TGFβ pathways (TGFβ ligand,
receptors, Smads, p300) is likely to be problematic, not only
due to the pleiotropic nature of these molecules, but also due
to the complex possibly stage-specific ways that cells have of
suppressing these responses. Thus, given the pleiotropic
nature of TGFβ, it is preferable to target gene- or function-
specific, as opposed to general, pathways mediating TGFβ
signaling. Therefore, much recent interest has focused on
identifying mediators of TGFβ signaling affecting fibrosis-
specific, or fibrosis-selective, endpoints.

Gene-specific pathways contributing to
fibrogenesis in SSc
It is likely, then, that targeting the ability of TGFβ to induce
specific pathways or genes will be of benefit in generating
selective therapies in SSc. In fibroblasts, TGFβ transiently
activates the ras/MEK/ERK cascade, which is required for the
induction of CTGF expression [16-18]. Intriguingly, in both
mesangial cells and fibroblasts, TGFβ induction of a generic
Smad3-responsive promoter occurs in the presence of either
dominant negative ras or the mitogen activated protein kinase
inhibitor U0126, indicating that the absolute requirement for
the ras/MEK/ERK cascade in the induction of TGFβ-
responsive genes seems to be restricted in a promoter-
specific fashion [16-18]. The stable prostacyclin analog
Iloprost, which alleviates symptoms of fibrosis in vivo and
reduces CTGF expression and TGFβ-induced collagen
deposition, acts at least in part by antagonizing the
ras/MEK/ERK cascade via the elevation of cAMP [18].
Consistent with this notion, reduction in ERK reduces the
overexpression of type I collagen, and the enhanced adhesive
and contractile ability of SSc fibroblasts [35].

The ability of TGFβ to induce ERK is prevented in fibroblasts
genetically deficient for the proteoglycan syndecan 4, and

small interfering RNA recognizing syndecan 4 reduces the
elevated ERK activation seen in SSc fibroblasts [35].
Syndecan 4 knockout mice appear phenotypically normal, but
show reduced tissue repair responses, indicating that
syndecan 4 is selectively required for the tissue repair
program [51]. Thus, although broadly targeting MEK/ERK
inhibition would be expected to have severe side-effects due
to the involvement of this signaling pathway in many
processes, targeting syndecan 4 is likely to be of benefit in
selectively targeting fibrogenic responses (Figure 2).
Syndecan 4 is a receptor for fibronectin, and is a focal
adhesion component and is required for focal adhesion
kinase (FAK) phosphorylation [52]. Recent data have
suggested that FAK and the extra domain A (EDA) form of
fibronectin mediate the ability of TGFβ to induce α-smooth
muscle actin (α-SMA) [53,54]. Anti-EDA antibody or
recombinant EDA protein suppresses α-SMA induction, but
not that of other TGFβ-responsive genes [54]. Consistent
with this notion, elevated FAK phosphorylation is observed in
SSc fibroblasts [55]. Over-expression of a kinase-defective
FAK mutant reduced α-SMA expression in SSc fibroblasts
[55]. These results emphasize the notion that although the
generic TGFβ signaling pathways may not be suitable targets
for selective drug intervention in SSc, examining how
individual target genes are selectively induced is likely to
provide clues as to how to interfere with appropriate
pathways with drugs. Indeed, targeting adhesive signaling
might be of benefit in combating SSc (Figure 2).

Synergy between TGFββ and other cytokines.
As mentioned above, in addition to signaling pathways
directly induced by TGFβ ligand, there is substantial evidence
for synergy between TGFβ and other extracellular ligands in
driving fibrogenic responses. These other ligands include
CTGF and endothelin (ET)-1.

Connective tissue growth factor (CTGF, CCN2)
CTGF, a member of the CCN family of proteins [56,57], is
induced by TGFβ in normal fibroblasts, but not in keratino-
cytes, through Smads, Ets-1, protein kinase C and ras/MEK/
ERK [16-18,40,58]. CTGF is constitutively expressed by
mesenchymal cells in development, and by kidney mesangial
cells and endothelial cells and is characteristically over-
expressed in fibrotic disease, including SSc, in a fashion
correlating with severity of fibrosis [59,60]. CTGF and TGFβ
act together to promote sustained fibrosis in rodents [22].
Consistent with this notion, CTGF-deficient embryonic
fibroblasts can respond to TGFβ through the Smad pathway,
but show impaired induction of adhesive signaling, as
visualized by the induction of FAK and Akt and the induction
of α-SMA and type I collagen [61]. These results are
consistent with the notion that CTGF executes its functions
through integrins [62-64], and with a previous hypothesis that
CTGF is a mediator of pro-fibrotic responses to TGFβ [65].
However, what is surprising is that the lack of responses
observed in CTGF-deficient embryonic fibroblasts were due
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to the absence of basal CTGF expression [61]. CTGF was
required for TGFβ to induce cell adhesion to fibronectin and
type I collagen [61]. These results suggest that CTGF acts
as a cofactor of TGFβ to induce adhesive signaling in cells
that are already activated and undergoing tissue remodeling
(e.g., embryonic and fibrotic fibroblasts), and also that
targeting basal CTGF expression, which is independent of
the TGFβ response element and is not blocked by inhibition
of the TGFβ type I receptor [33,38], might be of benefit in
SSc [66,67].

Endothelin-1
ET-1 is normally produced by endothelial cells, but is over-
expressed by SSc fibroblasts [68]. When added to fibro-
blasts, ET-1 independently induces a program of ECM
synthesis and contraction [68,69], and can act synergistically
with TGFβ [70,71]. Blockade of the endothelin receptors with
a dual endothelin receptor A and B (ETA/B) antagonist
significantly reduces α-SMA overexpression and ECM
contraction by SSc fibroblasts [68]. As addition of a TGFβ
receptor inhibitor to SSc fibroblasts does not affect α-SMA
expression but does impact ECM contraction [34,35], these
results suggest that ET-1 acts additively and cooperatively
with TGFβ. Significantly, and in contrast to TGFβ receptor
antagonism [34,35], ETA/B receptor blockade does not
block basal fibroblast activity [68]. ET-1 induces expression
of target genes through Akt and ras/MEK/ERK [68,69]. The
ET-1 response element in the CTGF promoter is distinct from
the TGFβ response element [16,17], and the ET-1 response
element, but not the TGFβ response element, is required for
the over-expression of CTGF in SSc [40]. Collectively, these
data support the notion that TGFβ and ET-1 act together to
promote fibrogenesis in SSc through differing yet
complementary pathways (Figure 1). The ETA/B receptor
antagonist bosentan is currently used clinically to treat
pulmonary hypertension and the formation of new digital
ulcers in SSc patients [72,73]. Thus ETA/B receptor
antagonism is well tolerated in patients, and is likely,
therefore, to be of clinical benefit in alleviating at least one
aspect of fibrosis in SSc, namely that of the persistently
activated fibroblast. A one-year, unpublished clinical trial in
which the efficacy of bosentan at alleviating pulmonary
fibrosis in SSc patients was tested was recently concluded,
and was negative. However, a non-fibrotic endpoint (a walk-
test) was used to evaluate the efficacy of bosentan on overall
lung function. Moreover, the length of the clinical trial may
have been too short to properly evaluate whether bosentan
has an anti-fibrotic effect. For final conclusions to be drawn
the published results are needed. Thus it remains unclear
whether bosentan may be effective in suppressing fibrosis in
patients.

Conclusion
TGFβ induces matrix synthesis in fibroblasts and fibrotic
responses in vivo and in vitro. The majority of the studies
conducted thus far has measured acute responses to TGFβ,

but suggest that TGFβ alone is insufficient for fibrogenesis.
Furthermore, genetic and pharmacological studies have
suggested that broad targeting of general TGFβ signaling
pathways, although perhaps of benefit in suppressing
aspects of the SSc phenotype, might be problematic for
treating SSc due to the pleiotropic nature of TGFβ. The past
several years have led to an appreciation that additional
pathways and receptors to the generic, universal TGFβ/TGFβ
type I and type II receptor/Smad axis are involved with fibro-
genic responses to TGFβ, including syndecan 4, EDA fibro-
nectin, ras/MEK/ERK, FAK, CTGF and ET-1 (Figure 2). By
manipulating these ancillary pathways, selective anti-fibrotic
effects might be achieved, for example, by identifying
inhibitors that block induction of fibrotic genes but leave other
pathways intact.
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