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Protein kinase CK2 (formerly known as casein kinase 2) is abnormally elevated in

many cancers. This may increase tumor aggressiveness through CK2-dependent

phosphorylation of key proteins in several signaling pathways. In this work, we have

compiled evidence from the literature to suggest that CK2 also modulates a metabolic

switch characteristic of cancer cells that enhances resistance to death, due to either

drugs or to a microenvironment deficient in oxygen or nutrients. Concurrently, CK2

may help to preserve mitochondrial activity in a PTEN-dependent manner. PTEN,

widely recognized as a tumor suppressor, is another CK2 substrate in the PI3K/Akt

signaling pathway that promotes cancer viability and aerobic glycolysis. Given that

CK2 can regulate Akt as well as two of its main effectors, namely mTORC1 and

β-catenin, we comprehensively describe how CK2 may modulate cancer energetics by

regulating expression of key targets and downstream processes, such as HIF-1 and

autophagy, respectively. Thus, the specific inhibition of CK2 may lead to a catastrophic

death of cancer cells, which could become a feasible therapeutic strategy to beat this

devastating disease. In fact, ATP-competitive inhibitors, synthetic peptides and antisense

oligonucleotides have been designed as CK2 inhibitors, some of them used in preclinical

models of cancer, of which TBB and silmitasertib are widely known. We will finish by

discussing a hypothetical scenario in which cancer cells are “addicted” to CK2; i.e., in

which many proteins that regulate signaling pathways and metabolism-linked processes

are highly dependent on this kinase.

Keywords: casein kinase CK2, warburg effect, metabolic switch, aerobic glycolysis, mitochondrial function,

hypoxia, autophagy

HIGHLIGHTS

- Modulation of the Warburg effect and mitochondrial activity.
- Involvement in an Akt and β-catenin-associated metabolic switch.
- Modulation of cancer energetics through autophagy.
- Functional interaction with β-catenin and HIF-1α.

INTRODUCTION

Protein kinase CK2 (formerly known as casein kinase 2) is a constitutively-active kinase that is
expressed ubiquitously in eukaryotes (1–3). This butterfly-shaped enzyme is formed by catalytic
(α or α’) and regulatory (β) subunits and phosphorylates serine o threonine residues within an
acidic context (S/TXXD/E/pS/pT/pY), as found in hundreds of proteins in various subcellular
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compartments, signaling pathways, survival and metabolism-
linked processes. CK2 has been shown to be critical in embryonic
development, differentiation, immunity, cell survival, epithelial
homeostasis and circadian rhythms (4–7). CK2 is also involved
in the etiology of many diseases such as multiple sclerosis, cystic
fibrosis, chronic intestinal inflammation, cardiac hypertrophy,
atherosclerosis, thrombosis, diabetes mellitus, neurological and
psychiatric disorders (7–11). In cancer, although CK2 by itself is
not an oncogene, some studies have confirmed the tumorigenic
potential of this kinase by regulating cellular processes that
are characteristic of malignant transformation such as cell
cycle progression, tumor growth and death resistance (12).
CK2 has been implicated in the regulation of proteins and
survival pathways that support chemoresistance, for example,
by acquisition of a multi-drug resistance (MDR) phenotype,
favoring drug efflux and DNA repair mechanisms (13). Recently,
CK2 has been also shown to regulate expression of stemness
genes, surface markers and ATP-dependent pumps, accounting
for promotion of a stem-like phenotype in colorectal cancer
cells (14).

CK2 mRNA levels have been shown to be increased in
cancer cells, suggesting that transcriptional mechanisms may
play a role in the increase in their protein levels (15). However,
post-transcriptional and post-translational mechanisms may also
be involved (15–18). Elevated levels of CK2 can be taken as
an aggressiveness biomarker, especially the catalytic α subunit,
which has been associated to poor prognosis in hepatocellular
carcinoma, also correlating with metastatic risk in breast cancer
(19, 20). In addition, nuclear localization of CK2α correlates with
poor prognosis in renal, prostate and colorectal cancer (21–23),
while nuclear localization of CK2β is a marker for predicting
outcome of patients with gastric carcinoma (24). In line with
this, CK2 has been raised as an attractive therapeutic target
for treatment of solid tumors and hematologic malignancies
with different kinase inhibitors, including ATP-competitive
inhibitors, synthetic peptides and antisense oligonucleotides
in preclinical models (25). Moreover, different CK2 inhibitors
targeting the catalytic site have been designed, such as 4,5,6,7-
tetrabromobenzotriazole (TBB) and silmitasertib (formerly CX-
4945) (26). Silmitasertib and CIGB-300, a cell-permeable peptide
inhibitor of CK2 (25, 27), have been used in several clinical trials
for the treatment of different human cancers (www.clinicaltrials.
gov). Nevertheless, CK2 catalyzes the phosphorylation of more
than 300 substrates, defining it as the second most pleiotropic
member of the human kinome (26, 28), and it also modulates
several signal transduction pathways (29). Thus, this apparent
pleiotropy must be taken into account before CK2 inhibitors are
used to treat cancer or other diseases. Pharmacological inhibition
of CK2 may cause unexpected effects, for instance, widespread
alterations in alternative splicing of a wide number of genes
or inhibition of Cdc2-like kinases, as indeed has been reported
elsewhere (28, 30, 31).

More light on the latter could be shed by microRNA studies.
Several miRNAs have been reported to downregulate CK2
expression. For example, co-overexpression of miR-760, miR-
186, miR-337-3p, and miR-216b decreases CK2α protein levels
in IMR-90 human lung fibroblast cells (16). These miRNAs

are capable of binding to the 3’-UTR of CK2α mRNA and,
consequently, to inhibit its protein expression (16). On the
other hand, inhibition of CK2 by quinalizarin in 3T3-L1 pre-
adipocyte cells increased miR-27a and miR-27b levels, which
target the mRNA of PPARγ, a protein involved in regulation of
fatty acid storage and glucose metabolism (32, 33). Also, miR-
125b levels have been shown to be significantly decreased in
breast cancer (18). This miRNA binds to the 3’-UTR of CK2α
mRNA, leading to its decreased expression (18). Furthermore,
inhibition of CK2 activity with TBB decreases cell viability and
proliferation in MCF-7 breast cancer cells, which correlates with
changes in different miRNAs (34). Likewise, CK2β knockdown
leads to downregulation of different miRNAs related to cellular
processes such as EMT and invasion in MCF10A breast epithelial
cells (35). Nevertheless, whether the CK2-related miRNAs are
successful in modulating metabolism and bioenergetics in cancer
cells remains unknown.

Finally, a growing tumor has a high demand for energy and
metabolites necessary for macromolecule biosynthesis. Cancer
cells obtain energy mainly from aerobic glycolysis but generate
lactate as the final product. This metabolic switch, known as the
Warburg effect, is a widely accepted hallmark of cancer (36);
however, recent studies indicate that cancer cells may also fully
oxidize glucose, which suggests that mitochondrial function is
crucial for oncogenesis and progression (37). In any case, either
the Warburg effect or mitochondrial function is modulated by
the activity of signaling proteins, providing adaptive advantages
against a continuously-changing microenvironment. In this
review, we compile evidence from the literature suggesting
a plausible role for CK2 in modulating several processes
related to the energetic changes occurring in a cancer cell,
which may ultimately drive a metabolic switch that enhances
malignant progression.

MODULATION OF MITOCHONDRIAL
FUNCTION

CK2 has been proposed to modulate the Warburg effect in
colorectal, esophageal and bladder cancer cells (Table 1). The
presence of CK2 increases lactate dehydrogenase A (LDHA)
expression and activity as well as proliferation in some of
these cells (38–40). This CK2-dependent metabolic switch also
promotes in vitro invasiveness, partly due to the regulated
differential expression of two pyruvate kinase isoforms, PKM1
and PKM2 (39). The constitutively-active PKM1 isoform is
down-regulated in cells overexpressing CK2, while the PKM2
isoform is imported into the nucleus (39). PKM2 is a cofactor
of hypoxia-inducible factor-1 (HIF-1), whose transcriptional
targets are LDHA, glucose transporter 1 (GLUT1), and
pyruvate dehydrogenase kinase 1 (PDK1) (64). Of note, both
pharmacological inhibition and siRNA-mediated silencing of
CK2 lead to inhibition of the Warburg effect observed in bladder
cancer cells (40).

Mitochondrial function is essential to the metabolic switch
that is characteristic of cancer (Table 1). Qaiser et al. showed
that CK2 may help to preserve mitochondrial activity in
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TABLE 1 | Effect of CK2 activity alterations on both mitochondrial- and energetics-related components in several cancers.

CK2 alterations Effects Cancers References

Overexpression Increment of LDHA expression and activity, down-regulation of PKM1 isoform and

nuclear import of PKM2 isoform.

Colorectal, esophagus, bladder (38–40)

Overexpression Increased glucose consumption and extracellular lactate levels, which is blocked by

inhibition of LDHA.

Colorectal (38, 39)

siRNA silencing Inhibition of the Warburg effect. Bladder (40)

Inhibition (TBB) Mitochondrial membrane depolarization. Prostate (41)

NE β-catenin-dependent increased expression of MCT-1 and PDK1. Colorectal (42, 43)

Overexpression β-catenin-dependent increased expression of survivin. Colorectal (44–46)

NE Survivin increases the Warburg effect through mitochondrial complex II stability. Colorectal (47)

NE β-catenin-dependent increased expression of c-Myc, ASCT2, and glutaminase. Colorectal, breast (48)

NEa p27, p62, and probably ULK-1, are substrates of CK2. Colorectal (49–51)

Inhibition (TBB, quinalizarin) ATF4-regulated expression of proteins at autophagy, amino acid biosynthesis and

transport, lipid and glucose metabolisms.

Colorectal (52–57)

Inhibition (silmitasertib) Reduction of mTORC1 activity. Colorectal, squamous, lung (51, 58, 59)

Inhibition (TBB, siRNA) HIF1α-regulated expression of aldolase and p53. Hepatocellular, cervical (60–63)

NE, not experimentally demonstrated for this cancer.
aonly suggested for ULK1.

prostate cancer cells. They found CK2 enriched in mitochondria
from several prostate cancer cell lines, somehow supporting
membrane polarity, which is also essential for the electron
transport chain. Thus, pharmacological inhibition of CK2 may
generate rapid membrane depolarization just before the onset
of apoptosis (41). This effect may be dependent on the tumor
suppressor phosphatase and tensin homolog (PTEN), which
is also phosphorylated by CK2, promoting its stability and
cytoplasmic enrichment (65).

Indeed, phospho-PTEN mimics the tumorigenic effects
observed upon deletion or mutant inactivation of its coding
gene (66). Expression of a long PTEN isoform (PTENα) has
been observed in prostate cancer cells with loss of PTEN
function. This isoform is generated by alternative translation
at a non-canonical CUG initiation site in the 5’UTR. PTENα

is mainly located in the mitochondria and interacts with
normal PTEN. Together, these isoforms stabilize PTEN-induced
kinase 1 (PINK1), a serine/threonine kinase associated with
degradation of dysfunctional mitochondria (67). Interestingly,
ectopic PTENα expression in PTEN-null cell lines leads to
increased mitochondrial function accompanied by elevated ATP
production and cytochrome c oxidase activity (68). In this
alternative translation of PTEN, recognition of the start codon
is strongly regulated by the stoichiometry of various eukaryotic
initiation factors (eIF) that form the pre-initiation complex
(PIC) along with other proteins. CK2 and the mammalian target
of rapamycin complex 1 (mTORC1) coordinate PIC assembly,
promoting proliferation upon stimulation with growth factors
and nutrients (69). Here, the two kinases activate the translation
process by phosphorylation of eIF2β. Of note, CK2-mediated
phosphorylation of eIF5 has been deemed important for cell cycle
progression (70); however, recognition of CUG at the PTENα

5’UTR is mediated by eIF2α (68). Therefore, whether eIF2α is
a target of CK2 or has a role in the PTENα/PTEN complex in
supporting PINK1 stabilization at the mitochondrial membrane
remains entirely unknown.

PI3K/AKT AND β-CATENIN-RELATED
METABOLIC SWITCH

PTEN is a widely-known tumor suppressor in the PI3K/Akt
signaling pathway (Table 1), which plays a key role in cancer
due to its relationship with cellular processes involved in
proliferation, apoptosis, and invasiveness, as well as energetics
(71). Akt activation is achieved by phosphorylation at Thr-308
by the phosphoinositide-dependent kinase 1 (PDK-1) and at
Ser-473 by mTORC2 (mTOR complex 2). CK2 phosphorylates
Akt at Ser-129, a residue located in a linking region between
the PH and catalytic domains, which stabilizes and increases β-
catenin activity (44), suggesting an important role for CK2 in
regulating cancer energetics andmalignant progression of several
cancers. Once fully activated, Akt dissociates from the membrane
and phosphorylates various proteins, including tuberous sclerosis
complex 1/2 (TSC1/2) in the PI3K/Akt/mTORC1 signaling
pathway (72).

Akt also phosphorylates β-catenin at Ser-552 (73), an
essential component of the canonical Wnt signaling pathway
(Table 1). Thus, Akt may be sufficient to promote both the
metabolic switch and proliferation of several types of cancer
cells (71). The canonical Wnt signaling pathway is involved
in cell proliferation, migration, and other events traditionally
considered to be hallmarks of cancer. In unstimulated cells, β-
catenin is down-regulated by a multiproteic complex formed by
Axin, GSK-3β, and the tumor suppressor APC. Axin facilitates
the phosphorylation of β-catenin by GSK-3β at specific serine
and threonine residues at its N-terminal end, driving β-catenin
to its ubiquitination and degradation by the proteasome (74, 75).
Conversely, aberrant activation of the canonical Wnt pathway
in cancer leads to β-catenin stabilization, nuclear translocation,
and interaction with the TCF/LEF family of transcription factors
(76). Nuclear β-catenin thus drives expression of proteins such
as c-Myc, cyclin-D1, cyclooxygenase-2 (COX-2), and survivin
(45, 74, 77), which are primarily related to proliferation,
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apoptosis resistance, and metastasis, as well as other proteins
such as monocarboxylate transporter-1 (MCT-1) and pyruvate
dehydrogenase kinase-1 (PDK1), which are associated to cancer
energetics (42, 43). Interestingly, the β-catenin antagonist Chibby
is related to inhibition of the metabolic switch observed in
nasopharyngeal carcinoma (78).

Canonical Wnt pathway activity is increased when β-catenin
is phosphorylated at Ser-552 by the Akt kinase (73). Moreover,
Akt is phosphorylated by CK2 at Ser-129, which stabilizes
and increases β-catenin activity (44), strongly suggesting an
important role for CK2 in regulating cancer energetics and
malignant progression of several cancers. In addition to
Akt, CK2 can also directly up-regulate β-catenin activity by
phosphorylating it at Thr-393, which should impede its binding
to Axin and APC. Disruption of this binding would block
proteasomal degradation, increase stability, and boost nuclear
activity of β-catenin (79–82). Several findings have demonstrated
that the catalytic CK2α subunit indeed activates the canonical
Wnt pathway. This subunit increases β-catenin, COX-2, and
survivin expression at the transcriptional level, promoting
proliferation and apoptosis resistance in colorectal cancer cells
(44, 46, 83). Of note, survivin increases the Warburg effect in
PC3 prostate cancer cells by increasing mitochondrial complex
II stability (47). Likewise, increased survivin levels correlate
with enhanced aerobic glycolysis attributable to mitochondrial
function regulation in neuroblastoma cells (84).

Another target of CK2 and β-catenin, oncogenic c-Myc, also
has a role in the Warburg effect by inducing the expression
of genes related to glucose-derived energetics and glutamine-
dependent metabolism, such as the glutamine transporter
(ASCT2) and the enzyme glutaminase (48). Interestingly, in
colorectal and breast cancer cells, the canonical Wnt pathway
may contribute to the maintenance of stemness by regulating
the metabolic switch in cancer stem cells (48). Catalytic CK2α
subunit overexpression may also increase glucose consumption
and extracellular lactate levels in colorectal cancer cells (39).
Besides, glucose (but not glutamine) is necessary for the
maintenance of CK2α-dependent viability, migration, and
invasion in these cells, while those properties are blocked upon
inhibition of LDHA (38). This strongly suggests that reduction of
migration and invasion via LDHA inhibition could be used as a
potential therapy for CK2α-dependent tumors.

Upon silencing of β-catenin expression in breast cancer
cells, levels of proteins involved in glucose metabolism
and the tricarboxylic acid (TCA) cycle are decreased, while
levels of proteins associated with lipid metabolism are
increased (85). Additionally, β-catenin silencing promotes
the use of acetate while decreasing use of glucose for fatty
acid synthesis (85). Finally, β-catenin silencing in breast
cancer cells decreases mRNA levels of the peroxisome
proliferator-activated receptor gamma coactivator 1-α (PGC-
1α), mitochondrial transcription factor A (TFAM), nuclear
respiratory factor-1 (Nrf1), and GLUT-1, thus increasing
levels of acetyl-CoA carboxylase (ACC), fatty acid synthase
(FASN), and sterol regulatory element-binding protein 1
(Srebp1) (85). Interestingly, activation of EGFR induces
translocation of the PKM2 enzyme to the nucleus, where

it interacts with β-catenin and thereby increases c-Myc
expression (86).

MODULATION OF CANCER ENERGETICS
BY AUTOPHAGY

A key component of the PI3K/Akt/mTORC1 signaling pathway is
the mTOR subunit (Table 1), a Ser/Thr protein kinase frequently
deregulated in cancer (87, 88). As with the C1 complex, mTOR
regulates processes involved in growth-associated metabolism
such as protein synthesis through phosphorylation of the
effector S6 kinase 1 (S6K1), which promotes ribosomal
translation by phosphorylating the ribosomal protein S6 (88).
MTORC1 also stimulates translation of the mitochondrial fission
process 1 (MTFP1) protein, which controls mitochondrial
fission and apoptosis (89). Mitochondrial function is also
modulated by mTORC1 through regulation of TFAM levels,
promoting mitochondrial DNA replication, transcription, and
mitochondrial biogenesis (90). In addition, mTORC1 is crucial in
autophagy, a catabolic process of cellular response to low levels
of nutrients and growth factors, in which lysosomal enzymes
degrade intracellular components and molecules to maintain
energetic homeostasis and viability (88).

Despite the above, the role of autophagy as an oncogenic
factor or tumor suppressor is controversial and may depend
on the origin and progression of the tumor (91). The
molecular mechanism for regulating autophagy involves various
proteins, including mTORC1, which is down-regulated by the
TSC1/2 complex but up-regulated by the Akt kinase, which
phosphorylates and inactivates TSC1/2 (71). Consequently,
TSC1/2 inactivation favors activation of Rheb, a small GTPase
that induces autophagy through both p27/Kip1- and mTORC1-
dependent mechanisms. The cell-cycle inhibitor p27/Kip1 has
been shown to have a key role in the cellular effect of
Rheb in response to serum deprivation in colorectal cancer
cells (92). Rheb interacts with and activates mTORC1, which
then phosphorylates ULK-1, a kinase responsible for triggering
autophagic flux, which is characterized by decreased p62 levels
(87, 88, 93). Interestingly, both p27 (49) and p62 (50), and
probably also ULK-1 (51), are proteins phosphorylated by CK2.

Genetic and epigenetic alterations in some components of
the PI3K/Akt/mTORC1 pathway have been described, such as
activating mutations in oncogenes PI3KCA (94) and mTOR
(95), loss of function of tumor suppressor PTEN (96), and
overexpression of oncogene Akt (97). All of these alterations
contribute to an aberrant activation of the pathway, leading to
increased tumor growth and ultimately a metastatic phenotype
(98). CK2 phosphorylates Akt at Ser-129, and the mutation of
this residue to alanine causes a marked decrease in Akt activity.
Furthermore, pharmacological inhibition of CK2 or siRNA-
mediated reduction of CK2α diminish Akt activity, which is
independent of its phosphorylation at Thr-308 and Ser-473 (99).
In addition, phosphorylation at Ser-129 has been suggested to
play a key role in promoting proliferation of colorectal cancer
cells in a β-catenin-dependent way (44), but also in glioblastoma
and lung cancer cells through mTORC1 activation (58, 100).
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FIGURE 1 | CK2 modulates the Warburg effect in cancer cells under unfavorable conditions. CK2 (PDB: 1JWH) may have a central role in regulating the activity and

stability of various proteins including Akt, PTEN, β-catenin, and HIF-1α, under physiological and pathological conditions. CK2-dependent activation of the

Wnt/β-catenin, PI3K/Akt/mTORC1, and p53/HIF-1α signaling pathways in cancer cells leads to a metabolic switch that supports proliferation and resistance to death

due to either neoplastic drugs or an oxygen- and nutrient-deficient microenvironment, as a result of increased expression of genes that collectively enhance

mitochondrial function and glucose metabolism. Altogether, this may be heavily altered upon inhibition with very specific compounds like the CK2 inhibitor,

silmitasertib, or alternatively some miRNAs (more details in text). However, whether the latter are able to modulate metabolism and bioenergetics in cancer cells

remains yet unknown.

Evidence in the literature suggests that CK2 modulates
mTORC1 activity, and decreasing CK2α expression leads
to increased autophagy-dependent cell death (ADCD)
in glioblastoma cells, which correlates with decreased
phosphorylation of S6K1 and Akt (100). Interestingly,
expression of proteins that participate in autophagy, amino
acid biosynthesis and transport, lipid and glucose metabolism
are regulated by Activating Transcription Factor 4 (ATF4)
(52, 53). Indeed, CK2 neutralizes the function of ATF4 by
phosphorylation; however, under CK2 inhibition, protein
levels and transcriptional activity of ATF4 increase (54–
56). Moreover, ATF4 promotes the expression of the
transcriptional C/EBP Homologous Protein (CHOP) factor,
which induces apoptosis via ER stress signaling in colon
cancer cells (55, 57). Of note, ATF4 participates, together
with the protein kinase RNA-like endoplasmic reticulum
kinase (PERK) and eIF2α, in the formation of respiratory
chain supercomplexes by increasing levels of SR-related

CTD-associated factor 1 (SCAF1), consequently enhancing
mitochondrial respiration (101).

In addition, CK2 inhibition with silmitasertib induces
autophagy-triggered apoptosis when used alone in rat and
human chondrocytes (102). Silmitasertib treatment correlates
with decreased mTORC1 activity and massive formation of large
acidic LC3-negative cytoplasmic vacuoles in colorectal cancer
cells (Figure 1). However, while there has been no significant
evidence of enhanced autophagy in the presence of silmitasertib,
studies have shown elevated levels of a macropinocytosis-
linked cell death known as methuosis after silmitasertib
treatment (51). In this context, modest levels of autophagy and
macropinocytosis should coexist to promote survival in adverse
energetic conditions (i.e., unfavorable levels of nutrients, oxygen,
etc.); however, CK2 inhibition may cause a shift toward aberrant
macropinosome formation, ultimately leading to increased cell
death. On the other hand, silmitasertib combined with the
EGFR inhibitor erlotinib produces a complete inhibition of the
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PI3K/Akt/mTORC1 pathway, inducing apoptosis in squamous
carcinoma and lung cancer cells (58). Moreover, a combination
of silmitasertib and another EGFR inhibitor, gefitinib, decreases
proliferation and induces apoptosis in lung cancer cells (59).

A HARMFUL LINKAGE WITH β-CATENIN
AND HIF-1α

Tumors progress in a hypoxic or low-oxygen microenvironment.
In this cellular context, the protein HIF-1 plays an essential role
in the metabolic switch that promotes the survival of cancer
cells (103, 104). HIF-1 is a transcription factor formed by two
subunits, HIF-1α, whose expression is inducible, and HIF-1β,
also known as aryl hydrocarbon receptor nuclear translocator
(ARNT), whose expression is constitutive. In the presence
of oxygen, the HIF-1α subunit is cytosolically hydroxylated
at prolines, allowing for recruitment of a ubiquitin-ligase
complex that contains the Von Hippel-Lindau (VHL) tumor
suppressor protein, promoting HIF-1α degradation. Under
hypoxia, enhanced HIF-1 stability and activity help tumor cells
to survive (105). Stable HIF-1α translocates to the nucleus
and interacts with HIF-1β for binding to hypoxic response
elements (HRE) at promoter sequences, inducing expression of
genes linked to the metabolic switch and other hallmarks of
cancer, such as aldolase, LDHA, PDK1, hexokinase 2 (HK2),
enolase-α, VEGF, GLUT-1, survivin, and COX-2 (104, 106).
Consequently, VHL inactivation also increases the stability of
HIF-1α, its nuclear translocation, and expression of target genes
(107). For example, over 90% of renal cell carcinomas (RCC)
harbor a biallelic inactivation of the VHL gene, becoming
highly dependent on aerobic glycolysis for ATP production.
Thus, pharmacological impairment of glucose transport results
in specific death of RCCs (107, 108).

CK2 activity and levels are elevated in hepatocellular
and cervical cancer cells grown under hypoxia,
concomitant with increased nuclear localization (60, 61).
Interestingly, CK2 inhibition with TBB, 5,6-dichloro-1-β-
D-ribofuranosylbenzimidazole (DRB), or apigenin, as well
as overexpression of a dominant negative form of CK2α or
siRNA-mediated silencing, are all capable of decreasing the
transcriptional activity of HIF-1 without altering its protein
levels or HRE-binding capacity (60). However, other CK2
inhibitors, such as E9 and silmitasertib, induce a significant
decrease in HIF-1α levels in the same cells (62). In addition,
CK2 decreases the stability of the tumor suppressor VHL in
embryonic kidney cells, while its inhibition with TBB leads
to its stabilization, triggering HIF-1 degradation and thereby
diminished HRE-associated transcriptional activity (109). These
findings strongly suggest an important role for CK2 in regulating
HIF-1 stability and activity (Figure 1).

Low levels of oxygen inhibit the canonical Wnt pathway
in colorectal cancer cells, thereby decreasing expression of its
target genes. Here, HIF-1α may be able to interact with β-
catenin, preventing its interaction with Tcf-4 (105). Likewise,
the HIF-1α/β-catenin complex may bind to the HRE of target
genes. Moreover, β-catenin silencing significantly decreases the

viability of colorectal cancer cells, likely through inhibition of
HIF-1-dependent transcriptional activity (105). On the other
hand, COX-2 expression is increased under hypoxia in colorectal
cancer cells. The binding of HIF-1α to the HRE of the COX-2
promoter has been observed under these conditions, increasing
prostaglandin E2 (PGE2) synthesis and favoring cell proliferation
(110). Similar β-catenin-dependent regulated COX-2 expression
and PGE2 synthesis have been observed in colorectal and breast
cancer cells, as well as in embryonic kidney cells growing
under normal oxygen levels, where CK2 expression was either
up- or down-regulated (83). While expression of HRE target
genes associated with the metabolic switch was not assessed in
this study, a role for the HIF-1α/β-catenin complex cannot be
ruled out (Figure 1). In fact, an in silico analysis showed that
HIF-1α contains five putative phosphorylation sites for CK2,
namely Ser-551, Ser-581, Ser-786, Thr-700, and Thr-796 (60).
Moreover, pharmacological inhibition of CK2 with DRB and
apigenin decreases aldolase mRNA levels and VEGF secretion
in hepatocellular cancer cells exposed to hypoxia (60). Likewise,
CK2 inhibition in cervical and hepatocellular cancer cells grown
under hypoxia drives an increase in the tumor suppressor
p53, its interaction with HIF-1α, and blockage of interaction
with HIF-1β, thereby inhibiting HRE-dependent transcriptional
activity (63).

CONCLUDING REMARKS/PERSPECTIVES

CK2 catalyzes the phosphorylation of more than 300 substrates,
thereby constituting the second most pleiotropic member of the
human kinome (26, 28). Some CK2 protein substrates are crucial
in various signaling pathways linked to hallmarks of cancer.
Thus, it is easy to understand how this kinase may modulate
cancer malignancy. In this respect, CK2 is thought of as a non-
oncogene target to which some cancers may become “addicted,”
as proposed early on by Ruzzene and Pinna (29). We have here
compiled evidence from the literature suggesting an important
role for CK2 in the capacity of some cancer cells to undergo a
metabolic switch that confers resistance to death by therapeutic
drugs or in response to an unfavorable microenvironment. It
is possible that CK2 inhibition may be catastrophic for cancer
cells addicted to CK2, leading to massive cell death directly or
indirectly perhaps by modulating the function of key targets
responsible for the Warburg effect, such as β-catenin or HIF-
1, or even by regulating mitochondrial activity via PTEN or
autophagy via mTORC1 (Figure 1). Something like this seems to
happen in colorectal cancer cells treated with the CK2 inhibitor
silmitasertib. These cells fall into an irreversible process of self-
destruction known as methuosis, a massive entry of extracellular
material by macropinocytosis (51).

In a scenario in which cells are addicted to CK2, many
proteins that modulate signaling pathways might be highly
dependent upon this kinase, along with other key factors
modulating glucose metabolism. This fact highlights a putative
role of CK2 as an aggressiveness biomarker. Indeed, the catalytic
α subunit may serve as a poor prognosis factor in liver
and breast cancer (19, 20), while nuclear localization of both
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catalytic α and regulatory β subunits may be independently
used for predicting the outcome of patients with gastric, renal,
prostate or colorectal cancer (21–23). Consequently, specific
CK2 inhibition may lead to a loss of viability and metabolic
catastrophe in cancer cells. The ubiquitous expression of CK2
and its role in many physiological processes raise some doubts
concerning its feasibility as a therapeutic target. However,
inhibition of CK2 with silmitasertib, when combined with other
drugs such as cisplatin, paclitaxel, temozolomide, gemcitabine
or gefitinib, among others, has shown synergistic effects in
preclinical models of cancer by decreasing tumor growth (13).
Moreover, addiction to CK2 would seem to make cancer cells
very susceptible to highly specific inhibitors. In fact, several
preclinical studies of newly specific CK2 inhibitors have yielded
very promising results. Thus, inhibition of CK2 in CK2-addicted
tumors, i.e., cells with markedly elevated CK2 expression
and activity, may offer a real therapeutic opportunity in
the future.
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