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Objectives: This review aimed to present studies that prospectively investigated biological 
effects in patients following diagnostic dentomaxillofacial radiology (DMFR).
Methods: Literature was systematically searched to retrieve all studies assessing radiobiolog-
ical effects of using X- ray imaging in the dentomaxillofacial area, with reference to radiobio-
logical outcomes for other imaging modalities and fields.
Results: There is a lot of variability in the reported radiobiological assessment methods and 
radiation dose measures, making comparisons of radiobiological studies challenging. Most 
radiological DMFR studies are focusing on genotoxicity and cytotoxicity, data for 2D dento-
maxillofacial radiographs, albeit with some methodological weakness biasing the results. For 
CBCT, available evidence is limited and few studies include comparative data on both adults 
and children.
Conclusions In the future, one will have to strive towards patient- specific measures by consid-
ering age, gender and other individual radiation sensitivity- related factors. Ultimately, future 
radioprotection strategies should build further on the concept of personalized medicine, with 
patient- specific optimization of the imaging protocol, based on radiobiological variables.
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Introduction

Ionizing radiation (IR) is ubiquitous in the environ-
ment and can be naturally occurring as well as man- 
made. It is well known that exposure to high doses of 
IR effect can cause health effects including tissue reac-
tions, previously termed ‘deterministic effects’, and 

stochastic effects. Tissue reactions were observed almost 
immediately after the discovery of X- rays.1–3 They are 
associated with high doses of IR and occur over a short 
period of time (i.e. within hours up to a few weeks). For 
tissue reactions, a threshold dose exists, below which 
no IR effect has been detected.4 At low doses, which 
are defined as being lower than 100 milligrays (mGy), 
mostly stochastic effects occur. These stochastic effects 
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(e.g. carcinogenesis) are observed over a longer period 
of time (i.e. months up to several years). For low doses, 
the uncertainty of the stochastic effects (e.g. radiation- 
induced cancer and hereditary disorders) increases.5 
This increase is caused by a lack of statistical signifi-
cance of the epidemiological data. Most of these data 
come from Japanese atomic bomb survivors, medically 
and occupationally exposed populations as well as 
environmentally exposed groups.6 For exposure to low 
doses, policymakers use models based on these epidemi-
ological data.

Currently, the linear non- threshold (LNT) model is 
used to estimate stochastic effects involved in the low 
dose range. The LNT model assumes that there is no 
threshold dose below which no additional health risk 
occurs and that the risk increases linearly with the 
absorbed dose.7 However, it is not the only model for 
exposure to low doses of IR (Figure 1).8–11 Besides the 
LNT model, a threshold model exists, that suggests 
that the IR dose must exceed a certain threshold dose 
in order to initiate a biological response. Per definition, 
no effects are expected to occur when exposed to doses 
below the threshold dose. A third model, the hormetic 
model, suggests that low doses of IR could induce bene-
ficial effects, resulting in a reduced risk.8 Finally, the 
hypersensitivity model assumes that due to hypersensi-
tivity of cells to very low doses, the biological risks may 
be greater when exposed to low doses of IR.12 Thus far, 
evidence definitely proving or disproving these models 
is lacking. Although, epidemiological data support the 
LNT model for doses higher than 100 mGy, there is no 
clear consensus about which model to use in the low 
dose range due to a lack of supporting data.9–11,13,14

Besides the models described in the previous para-
graph, other biological phenomena could occur. One 
such phenomenon is the presumption that organisms 
can ‘adapt’ to IR exposure. This is called an adaptive 
response.15 Low doses are thought to elicit a biolog-
ical response, which results in the activation of several 
genes/proteins that help the organism’s defence against 
a similar insult in the future. For example, after expo-
sure to low doses of IR, detoxification of free radicals 
and the DNA repair systems could improve, as well as 
the antioxidant production and cell cycle regulation. 
All these processes will improve the organism’s defence 
against future IR exposure, thereby increasing its 
radioresistance.15,16

In order to accurately estimate radiation- induced 
health risks, it is important to know how much energy 
or which dose is absorbed by the human body and 
its organs. Furthermore, it is important to know the 
dose–effect relationship. Different units are used in the 
international system of units (SI) to express radiation 
doses: the absorbed dose, the equivalent dose and the 
effective dose. Additionally, in medical diagnostics the 
dose–length product (DLP) is frequently used as well 
(Table 1).

Knowledge about low dose radiation induced health 
risks is particularly important in the field of diagnostic 
imaging using IR, in which typically doses much lower 
than 100 mGy are used. The amount of medical exam-
inations using IR (e.g. computed tomography scan, 
nuclear medicine, X- ray radiography …) has increased 
by a sixfold globally in the per capita medical radiation 
exposure over the previous 25–30 years.21 This increase 
in examinations coincides with an increase in the global 
average annual effective dose per caput from medical 
IR exposure, which increased from 0.35 millisieverts 
(mSv) per caput in 1988 to 0.62 mSv per caput in 2008, 
an increase of 77%.22 Therefore, medical exposure to IR 
accounts for about 14% of the total annual exposure 
worldwide, which makes it the largest man- made source 
of IR exposure to the general population.22,23

The rapid increase in the use of IR for medical diag-
nostics and associated health concerns, have led to 
several retrospective epidemiological studies that inves-
tigated whether IR exposure due to medical diagnostics, 
such as CT scans, is associated with an increase in cancer 
incidence later in life. Pearce et al.24 suggests that the use 
of CT scans in children could triple the risk of leukemia 
and brain cancers later in life.24 Additionally, a large 
Australian cohort study found an increase in cancer 
incidence that was 24% greater in children exposed 
to CT scans than in unexposed children.25 Despite 
the potential links between diagnostic radiology and 
radiation- induced malignancies, absolute evidence from 
prospective studies is lacking.10,26 This may also be true 
for dentomaxillofacial two- dimensional (2D) and three- 
dimensional (3D) imaging, which has been receiving 
far less attention in the current literature and of which 
reports have focused typically on stochastic models.27,28 

Figure 1 Graphical representation of the different models explaining 
the dose–response relationship in the low dose range. Four models are 
represented that show potential dose–response relationships for radi-
ation exposure below 100 milliGray. The linear- no- threshold model 
(black line), the linear- threshold model (pink line), the hormetic model 
(green line) and the hypersensitivity model (red line). As depicted by 
the linear part of the curve, the effects associated with doses higher 
than 100 milliGray are well understood. Thanks to epidemiological 
data that are available from the Hiroshima and Nagasaki bombings, 
as well as the Chernobyl disaster.
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Indeed, up to a 20- fold change in effective dose has been 
observed for different cone beam CT (CBCT) devices 
indicating a need for clinical recommendations as well 
as optimization of CBCT- based machine- dependent, 
patient- specific and indication- oriented variables.29,30 In 
this regard, age- dependent radiation sensitivity should 
be taken into account, as children are more radiosen-
sitive than adults.31–33 This has led to concerns about 
potential radiation- induced health effects associated 
with diagnostic radiology, especially in the young 
population.34–37

The purpose of this review is to present studies that 
prospectively investigated biological effects in patients 
following dentomaxillofacial diagnostic imaging with 
X- rays. In particular, genotoxic and cytotoxic effects 
induced by plain radiography and CBCT as opposed 
to CT will be covered. A specific focus will placed on 
potential patient- specificity as well as gender- and age- 
related differences. Ultimately, we propose a reflection 
on how the current knowledge on biological effects can 

drive optimization strategies, mainly in children and 
adolescents in need of dentomaxillofacial imaging.

Assessing biological effects following low dose ionizing 
radiation exposure

Assessing the biological effects of (low dose) IR expo-
sure is usually done via cytotoxicity and genotoxicity 
assays. Cytotoxicity means that IR exposure can be toxic 
to the cell, which usually leads to cell death or necrosis. 
This can be seen microscopically by observing nuclear 
changes. These changes include karyolysis (dissolution 
of chromatin), pyknosis (chromatin condensation) and 
karyorrhexis (fragmentation of pyknotic nuclei). If  
genotoxicity is detected, this indicates a potential risk 
of developing malignancies later in life. Genotoxicity 
markers that are mostly analyzed are chromosome aber-
ration frequency (i.e. dicentric chromosomes, ring chro-
mosomes), micronuclei (MN) frequency, single cell gel 

Table 1 Overview of different radiation dose units.17

Radiation dose Unit Symbol Calculation What does it mean?

Absorbed dose Gray (Gy) (J•kg−1) D
D =

 
ε
mT  

Represents the amount of 
radiation energy that is 

absorbed per unit of mass of 
a substance.17,18 (

Equivalent dose Sievert (Sv) (J•kg−1) HT HT = 
∑

RϖRDT,R 
Takes into account the type 

of radiation as well as its 
effectiveness. When exposed 
to multiple radiation types, 

the equivalent doses of 
each radiation type must 
be calculated and then 

summated.18,19

Effective dose Sievert (Sv) (J•kg−1) E E = 
∑

TϖTHT +ϖremHrem 
Takes into account the 
equivalent doses in all 

specified tissues and organs of 
the body, which is multiplied 
by a tissue- specific weighting 
factor. Represents the health 

risk, i.e. the probability of 
cancer induction and/or 

genetic effects.19

Dose- length product DLP Gy•cm CTDIvol ((1/3) x radiationcenter + 
(2/3) x radiationperiphery)/pitch)x 

scan length

Used to calculate the total 
absorbed dose of radiation 
a patient is exposed to in 
a computed tomography 

examination and is therefore 
directly related to the 

stochastic risk.20 Note: DLP is 
not equal to the effective dose.

Dose area product DAP Gy·cm² D x Scan area Dose Area Product (DAP) is 
a measure of the total amount 

of radiation delivered to a 
person, with the area of the 
irradiated tissue taken into 

account.

ε ̅, mean energy; D_(T,R), D in a target tissue (T) due to radiation type ‘R’; ω_R, radiation weighting factor; ω_T, tissue weighting factor; m_T, 
mass of volume of interest; rem, remainder tissues.
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electrophoresis assay (also known as comet assay), and 
histone H2AX phosphorylated on serine 139 (γH2AX) 
foci.

Dicentric chromosome frequencies in peripheral 
blood lymphocytes have been the golden standard to 
estimate recent IR exposure in radiation emergency 
medicine.38,39 The half- life of dicentric chromosomes is 
between 6 and 12 months. Similar to dicentric chromo-
somes, ring chromosomes are known to increase in a 
dose- dependent manner, from low to high doses39,40

The MN assay is the most frequently used assay for 
genotoxicity of chemicals/pharmaceuticals.41 A MN is 
formed during the anaphase of mitosis or meiosis and 
are cytoplasmic bodies having a portion of an acen-
tric chromosome or a whole chromosome that was not 
carried to the opposite poles during the anaphase. Their 
formation results in a daughter cell lacking a (part of 
a) chromosome.42 The MN assay has been successfully 
used as a biomonitoring tool, e.g. in industrial radiog-
raphers and hospital workers exposed to low doses of 
IR.43–45

The comet assay is a sensitive technique for the 
detection of DNA damage at the level of the individual 
eukaryotic cells. It is used as a standard technique for 
evaluation of DNA damage/repair, biomonitoring and 
genotoxicity testing. The results from the comet assay 
are a measure for the amount of DNA double strand 
breaks (DSBs) present within each cell.46 The comet 
assay has been used for many years to detect DNA 
damage induced by IR. For example, in nuclear medi-
cine personnel and other hospital staff.47,48 While the 
comet assay is mostly sensitivity to large amounts of 
DNA damage, it can also be used to detect the effects of 
diagnostic X- rays in Children and in stem cells.49,50

Finally, γH2AX is part of the DNA damage response, 
a signaling cascade that results in the recruitment of 
multiple proteins to the vicinity of DNA DSBs. γH2AX 
forms DNA damage foci and show a quantitative rela-
tionship between the number of foci and the number of 
DSBs.51–53 The γH2AX assay has been used frequently to 
assess IR- induced DNA damage. Because of its sensi-
tivity to low doses of ionizing radiation, it has been 
used in wide variety of studies: health workers, patients 
exposed to radionuclides, low dose biodosimetry 
purposes and even for in vitro and in vivo CBCT simu-
lations.54–60 Results from these assays will be discussed 
(if  data are available) for CT scans, CBCT scans, and 
plain radiographs. Attention will be given to dentomax-
illofacial imaging applications. In this literature review 
performed between January 2019 and March 2021, Web 
of Science was searched using the following key words: 
computed tomography, radiology, cone beam computed 
tomography, biological effects, health effects. These were 
filtered to only include publications who followed- up 
patients from the medical examination up to the point 
of testing (prospective studies). Epidemiological and/or 
retrospective studies were excluded from this literature 
review.

Radiobiologic effect in relation to computed tomography

Since its introduction in the 1970s, the use of CT 
scans has increased rapidly. For example, in 2008 
(Belgium), 180 examinations were performed per 1000 
capita, whereas in 2017, this increased to 200 per 1000 
capita.61 In 2017, the use of CT scans in Organisation 
for Economic Cooperation and Development (OECD) 
countries ranged from 37 per 1000 capita (Finland) to 
231 per 1000 capita (Japan).62 CT scans are mostly used 
to diagnose muscle and bone disorders, detect internal 
bleeding, localize a tumor, as a guide during surgery or 
radiotherapy and to monitor disease/treatment progres-
sion. Depending on various settings, the organ doses 
received per CT scans is about 15 mSv in adults, whereas 
it can be up to 30 mSv in neonates. Since multiple scans 
are often required to follow- up the patient, the accumu-
lated dose can increase rapidly.63

Several studies reported significant increases in the 
number of dicentric chromosomes in peripheral blood 
lymphocytes (PBLs) after CT scans in adult patients.64–66 
In children younger than 15 years old, similar results 
were also observed.32,67 Abe et al65 did not find a correla-
tion between the number of dicentric chromosomes and 
the effective dose.65 Furthermore, these studies suggest 
that younger children (<10 years old) in particular have 
increased radiosensitivity, especially at higher absorbed 
doses (mean dose of 12.9 mGy).67

In adults, significant increases in the number of ring 
chromosomes in PBLs were observed 15 min after a CT 
scan.64,68 To the best of our knowledge, no such studies 
in children were published so far.

Significant increases in the MN frequency were 
observed in PBLs from adults a few hours after CT 
exposure.66 In another study, Khattab et al69 showed that 
the number of MN does not increase significantly in 
infants that undergo CT followed by cardiac catheter-
ization.69 However, this was only the case if  the infant 
was never exposed to CT scans before. Interestingly, in 
infants exposed to previous CT scan(s), MN frequencies 
measured after a scheduled CT scan were significantly 
higher than before that CT scan. These results suggest 
that prior CT scans increase the cellular responses to 
subsequent CT exposures.69

Multiple studies in adults show that there are significant 
increases in the number of γH2AX foci in PBLs several 
minutes/hours after CT scans.70–85 An important obser-
vation is that exposure to multiple CT scans causes more 
DSBs as compared to single scan.85 In children, similar 
effects were observed.86,87 It is noteworthy that there are 15 
studies reporting increases in γH2AX foci after CT scans 
in adults, whereas so far only two studies investigated this 
in children. Also worth mentioning is that several of these 
studies found that the use of a contrast medium (CM), 
which is frequently used in CT examinations, can increase 
the amount of radiation- induced γH2AX foci.72,76,81,84 
Furthermore, Wang et al84 suggest that the use of a 
contrast agent itself can induce γH2AX foci.84

http://birpublications.org/dmfr
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Dentomaxillofacial cone beam computed tomography

CBCT is a relatively new and innovative diagnostic 
imaging technique introduced in oral health care at 
the turn of the century.88,89 Global numbers of the use 
of CBCT are not commonly available but a recent 
Belgian survey found that 20% of the Belgian dentists 
have access to a CBCT device, which is a remarkable 
increase compared to a decade before.90 It is noteworthy 
that only 9% of the general dental practitioners and 
12% of the orthodontists had access, while more than 
60% of the oral and maxillofacial surgeons and peri-
odontologists had access.90 As with CT and X- ray radi-
ography scans, a wide range of CBCT doses is used in 
the clinic, typically ranging from about 0.01–1.100 mSv 
per examination.36,91–96 CBCT doses are lower than CT 
doses, yet, they are higher than classical 2D dental radi-
ography techniques.29,97,98 Though, as with CT and radi-
ography, multiple scans might be required, which causes 
a rapid increase in the cumulative dose. More recently, 
the IR dose to pediatric patients has become a major 
concern among clinicians.92,99 In 2010, the New York 
Times brought this to the attention of the general public 
with the publication of the article entitled “Radiation 
Worries for Children in Dentists’ Chairs”.100 An over-
view of studies reporting on CBCT- related biological 
effects in patients are summarized in Table 2.

There is evidence that CBCT examinations can cause 
a significant increase in MN frequency in adults.104–106 
Contrary, there are studies that suggest that the MN 
frequency does not change in adults.101,103 So far, only 
one study investigated the biological effects of CBCT in 
children. In this study, no increase in MN frequency was 
observed following CBCT examination.102 However, as 
with CT and radiography, most studies found a signifi-
cant increase in cytotoxicity markers both in adults and 
children.101–105 To our knowledge, only one in vitro60 and 

no clinical studies exist that report on DNA DSB induc-
tion following CBCT. In this study, no DNA DSBs were 
found to be induced in buccal mucosal cells from either 
children or adults after a single CBCT examination.

Plain dentomaxillofacial radiography

X- ray radiographs have been used in medicine since 
the discovery of X- rays over 120 years ago. Ever since, 
radiographs have been widely used in medical diagnos-
tics and the effective dose ranges from 0.001 to 0.1 mSv.84 
Also, radiography is mostly used for bone examinations, 
dental examinations, mammography and orthopedic 
evaluations. In dentomaxillofacial radiography, plain 
radiographs refer mostly to panoramic, cephalometric 
and intraoral radiographs.107 These techniques give a 2D 
view of the maxilla, mandible, teeth, temporomandib-
ular joints and maxillary sinuses. Yet, these anatomical 
structures have complex 3D organizations. In conse-
quence, as in other fields, dentomaxillofacial imaging 
has moved towards 3D imaging in cases were the clin-
ical use is justified.108 Considering 3D images, CBCT has 
greatly reduced the absorbed dose compared to tradi-
tional CT.94 However, CBCT produces a greater X- ray 
dose than a panoramic radiograph.109 Furthermore, 
it is also becoming more preoccupant that there is a 
wide span of delivered effective doses to the patient for 
different CBCT devices.110,111 Nevertheless, as with CT 
scans, multiple radiographs are often required, resulting 
in a higher cumulative dose. Studies reporting on plain 
radiography- related biological effects in patients are 
summarized in Table 3.

It has been known since the first half  of the 20th 
century that exposure to X- ray radiographs causes 
chromosome aberrations.134 Since then, most studies 
that focus on biological effects following radiography, 

Table 2 Overview of the biological effects detected in patients following cone beam CT

Assay Gender Age (years) Dose Time of sampling Tissue examined Tissue used Biological effects References

MN assay 9 females 10 
males

26.8 ± 5.0 Not mentioned Before and 
10 days after cone 
beam computed 

tomography

Oral cavity Exfoliated oral 
mucosa cells

No induction of 
MN, but induction 

cytotoxicity 
(pyknosis, karyolysis, 

karyorrhexis)

Carlin et al. 
(2010)101

10 girls 14 boys 11 ± 1.2 Range: 287 µSv - 304 
µSv

Lorenzoni et al. 
(2013)102

39 females 
seven males

23–42 Range: 448.15–730.79 
mGy·cm2

Yang et al. 
(2017)103

17 females 12 
males

45.8 ± 12.5 Not mentioned Significant 
induction of MN, 
and cytotoxicity 

(pyknosis, karyolysis, 
karyorrhexis)

Da Fonte et al. 
(2018)104

70 females 28 
males

23.63 ± 6.64 Range: 0.18 mGy – 
3.54 mGy

Significant 
induction of MN, 
and cytotoxicity 

(pyknosis, karyolysis, 
karyorrhexis) above 

1 mGy. Below 1 
mGy, only significant 

induction of 
karyorrhexis.

Li et al. (2018)105

MN, micronucleus.
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Table 3 Overview of the biological effects detected in patients following X- ray radiography

Assay Gender Age (years) Dose Time of sampling
Tissue 

examined Tissue used Biological effects References

24 females7 males 24 ± 1.023 21.4 µSv Before and 10 days 
after examination

Oral cavity Exfoliated oral 
mucosa cells

No induction of 
MN, and cytotoxicity 
(pyknosis, karyolysis). 

Significant induction of 
karyorrhexis.

Cerqueira et al. 
(2004)112

31 females9 males 20 subjects ≤ 22.520 
subjects > 22.5

21.4 µSv keratinized mucosa 
of theupper dental 

arch

Significant induction 
of MN

Cerqueira et al. 
(2008) 113

nine girls8 boys 7.70 ± 1.50 0.08 Roentgen(Entrance 
dose)

Exfoliated oral 
mucosa cells

No induction of 
MN, and cytotoxicity 
(pyknosis, karyolysis). 

Significant induction of 
karyorrhexis.

Angelieri et al. 
(2007)114

42 males 18–40 0.057 mSv(Average dose) Cells of the lateral 
border of the 

tongue

No induction of 
MN, but increased 

cytotoxicity 
(pyknosis, karyolysis, 

karyorrhexis). The 
number of karyorrhexis 

and binucleated cells 
was greater after 
multiple X- rays

Da Silva et al. 
(2007)115

20 females12 males 24–73 Not mentioned Before and 10 
± 2 days after 
examination

Exfoliated oral 
mucosa cells

No induction of 
MN, but increased 

cytotoxicity 
(pyknosis, karyolysis, 

karyorrhexis).

Popova et al. 
(2007)116

31 females9 males 26 ± 9.18 21.4 µSv Before and 10 days 
after examination

Keratinized gingival 
cells

Significant induction of 
MN, and cytotoxicity 
(pyknosis, karyolysis, 

karyorrhexis)

Cerqueira et al. 
(2008)113

28 females11 males 39.6 ± 13 0.08 Roentgen(Entrance 
dose)

Exfoliated oral 
mucosa cells

No induction of 
MN, but increased 

cytotoxicity 
(pyknosis, karyolysis, 

karyorrhexis)

Ribeiro and 
Angelieri (2008)117

six females11 males9 
girls8 boys

39.6 ± 5.47.7±1.5 0.08 Roentgen(Entrance 
dose)

Both in adults 
and children, no 

induction of MN, but 
increased cytotoxicity 
(pyknosis, karyolysis, 

karyorrhexis)

Ribeiro et al. 
(2008)118

12 females20 males Mean: 38.65 0.08 Roentgen(Entrance 
dose)

No induction of 
MN, but increased 

cytotoxicity 
(pyknosis, karyolysis, 

karyorrhexis)

Angelieri et al. 
(2010a)119

12 females6 males 14.2 ± 1.4 Not mentioned Angelieri et al. 
(2010b)120

20 patients(gender not 
specified)

Children(Age not 
specified)

Not available Not mentioned El- Ashiry et al. 
(2010)121

13 girls7 boys Apr-14 Range: 0.13–0.29(entrance 
dose)

Before and 30 min 
after examination

Chest Peripheral blood 
lymphocytes

Significant induction 
of MN

Gajski et al. 
(2011)122

15 females15 males 20–23 0.046 Roentgen(Entrance 
dose)

Before and 10 days 
after examination

Oral cavity Exfoliated oral 
mucosa cells

No induction of 
MN, but increased 

cytotoxicity 
(pyknosis, karyolysis, 

karyorrhexis)

Ribeiro et al. 
(2011)123

10 females15 males 11.2 ± 1.4 Not available Lorenzoni et al. 
(2012)124

Micronucleus assay

80 patients Adults(age not 
specified)

Not available No induction of MN in 
buccal cells.Significant 

induction of MN in 
gingival epithelial cells.

Sheikh et al. 
(2012)125

90 patients Adults(age not 
specified)

Not available No induction of 
MN, but increased 

cytotoxicity 
(pyknosis, karyolysis, 

karyorrhexis)

Thomas et al. 
(2012)126

41 females19 males 27.63 ± 10.93 0.325 mGy/sec(no exact dose 
mentioned)

Significant induction 
of MN

Waingade and 
Medikeri (2012)127

(Continued)
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rely on the MN assay. Although many studies report 
no statistical differences in MN frequency following 
radiography examinations in adults,115–120,123,125,126 signif-
icant increases in cytotoxicity markers (i.e. pyknosis, 
karyolysis, and karyorrhexis) are observed. Other 
studies report significant increases in MN frequency as 
well as cytotoxicity markers following dental radiog-
raphy examinations.105,113,125,127,128 Contrary, Cerqueira et 
al found no changes in MN frequency and cytotoxicity 
markers in adults, except for karyorrhexis in exfoliated 
cells from oral mucosa..112 However, on keratinized 
mucosa cells Cerqueira et al.113 found changes in MN 
frequency and cytotoxicity marker.113 In children, an 
increase in MN frequency following dental radiography 
was reported.122,130 However, as with adults, there are 
also studies that only report an increase in cytotox-
icity.102,114,118,121,124,129,135 Ribeiro et al compared the MN 
frequency and cytotoxicity markers between adults and 
children following dental radiography. They found no 
evidence that children are more radiosensitive than 
adults.118 On the other hand, there are reports showing 
that there is a significant correlation between the age of 
subjects (mean age: 25.21 ± 12.67) and micronucleus 
count, contradicting previous results from Ribeiro et 
al.125,128 Note that these studies found this age correla-
tion in an adult patient group and that these results 
might not be extrapolated to children.

Comet assay data suggest that a radiography scan 
results in a significant increase in DNA DSBs in 
adults.131 Similar data were obtained from children.50 
To our knowledge, these are the only two studies that 
reported on this and therefore should be interpreted 
with caution, given the many observed contradictions 
from the other assays that are described in this section.

Increases in the amount of γH2AX after radiography 
in adults was reported.132,133,136 As with CT scans, it was 
shown for radiographs (i.e. mammography in this study) 
that there is a low- dose effect, and a low and repeated 
dose effect.136 To our knowledge, no studies reported 
changes in γH2AX foci in children following radiog-
raphy. Therefore no information is available on age- 
related differences (children vs adults).

Ongoing challenges

Health risks associated with exposure to high doses 
of IR (>100 mGy) are currently well- known thanks to 
epidemiological studies. While risks associated with 
exposure to low doses of IR, such as those used in 
medical diagnostics, have been suggested through retro-
spective epidemiological studies, controversy about low 
dose effects still exists.24,25 Furthermore, clear evidence 
from prospective studies is lacking.26 Only a few of them 

Assay Gender Age (years) Dose Time of sampling
Tissue 

examined Tissue used Biological effects References

32 females21 males 25.21 ± 12.67 0.325 mGy/sec(no exact dose 
mentioned)

Exfoliated oral 
mucosa cells and 

keratinized gingiva 
cells

Significant induction 
of MN in oral mucosa 
cells and a significant 

correlation was 
observed between the 

age of the subjects and 
number of MN

Arora et al. 
(2014)128

20 patients(gender not 
specified)

Children(age not 
specified)

21.4 mSv(average dose) Exfoliated oral 
mucosa cells

No induction of 
MN, but increased 

cytotoxicity 
(pyknosis, karyolysis, 

karyorrhexis)

Agarwal et al. 
(2015)129

20 girls20 boys 07- Dec Not mentioned Before and 10 
± 2 days after 
examination

Significant induction 
of MN

Preethi et al. 
(2016)130

70 females 23.63 ± 6.64 Range: Before and 10 days 
after

Significant induction of 
MN, and cytotoxicity

Li et al. (2018)102

28 males 0.18 mGy – 3.54 mGy examination (pyknosis, karyolysis, 
karyorrhexis) above 

1 mGy. Below 1 
mGy, only significant 

induction of 
karyorrhexis.

Comet

14 girls6 boys May-14 Range: 0–0.29 Before and 30 min 
after examination

Chest Peripheral blood 
lymphocytes

Significant increase of 
DNA damage following 

radiography.

Milkovic et al. 
(2009)50

20 patients(gender not 
specified)

Adults(age not 
specified)

Not available Before and 30 min 
or 24 h after 
examination

Oral cavity Exfoliated oral 
mucosa cells

Significant increase of 
DNA damage 30 min 

following radiography, 
but not after 24 h

Yanuaryska et al. 
(2018)131

γH2AX
45 females55 males 20–77 23.4 mGy(average dose) Before and 20 min 

after examination
Oral cavity Exfoliated oral 

mucosa cells
Increased number of 

γH2AX foci.
Yoon et al. 

(2009)132

20 females 39–71 Range: 7.1–41.1 Before and 5 min 
after examination

Breasts Systemic blood 
lymphocytes

Schwab et al. 
(2013)133

MN, micronucleus.

Table 3 (Continued)
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report a correlation between IR dose and the observed 
effect, which adds to both the controversy of the use 
of the LNT model for risk estimation and the low dose 
uncertainty. To further improve existing radioprotection 
guidelines, more biological data on health risks associ-
ated with exposure to low doses of IR are necessary.

Induction of DNA DSBs by several types of CT 
scans (e.g. whole body, thorax, abdomen, chest and 
head) has been clearly demonstrated in blood lympho-
cytes via the γH2AX assay: all studies found a significant 
increase in γH2AX foci following CT scans in lympho-
cytes. It was also shown that after 24 h, the amount of 
DNA DSBs returned to baseline levels. This indicates 
that although the DNA was severely damaged, the cells 
were still able to repair the DSBs. However, this does not 
mean that no mutations, such as base alterations, have 
occurred. Although data on dicentric chromosome and 
MN formation are available, these are less unanimous. It 
was shown that the frequency of dicentric chromosomes 
increases after CT scan, but data on MN are less clear. 
Kanagaraj et al66 reported an increase in MN frequency 
only a few hours after CT examination, while Khattab et 
al69 demonstrated that the MN frequency only increased 
if  prior CT examinations were conducted in a patient. 
Only a few studies conducted MN assays, most likely 
due to the technical difficulty of chromosome analysis 
on a larger scale. It would be interesting to use more 
‘localized’ samples, e.g. oral mucosa cells or even saliva 
samples in patients in which head and/or neck are exam-
ined. This is done for radiographs and CBCT patients, 
and could be very informative when applied in CT 
patients. It is clear that the (potential) adverse effects of 
CT examinations on human health have been subject of 
many studies, as is shown in this review. However, it is 
noteworthy that there is a lot of variation between these 
studies concerning doses used, patients included, and 
experimental set- up.

It has been shown that X- ray examinations, like CT 
scans, can induce significant increases in DNA DSBs 
in patients. This was shown by the γH2AX (performed 
in two studies) and comet assays (performed in two 
studies). Both assays showed a significant increase 
in DNA DSBs shortly after a radiograph was taken. 
Unlike the data from CT scans where mostly yH2AX 
assays were performed, data from radiographs mainly 
rely on the MN assay (performed in 21 studies) to assess 
genotoxicity following exposure. Although all studies 
agree that radiographs cause an increase in cytotoxicity, 
mostly through increases in the frequency of karyor-
rhexis, there is a lot of disagreement on whether or not 
the MN frequency is also increased after radiography. 
While 10 studies report no increase in MN frequency, 
there are 6 studies that do report an increase after 
radiography. These data illustrate the controversy and 
difficulty of low dose research and also show why it is 
important to study the effects of low doses of IR thor-
oughly. Unlike the CT studies, mostly ‘localized’ tissues, 
such as oral epithelial cells, were used when assessing 

genotoxicity after radiography. Of the 26 studies 
included in this review, only 3 used blood samples for 
analysis. Therefore, it is less likely that the local effect of 
radiography was underestimated.

So far, only a small number of  studies investigated 
potential biological effects associated with CBCT exam-
inations, and the majority rely on the MN assay. This 
small number of  studies is most likely due to the novelty 
of  the device (it is about 20 years old). Nevertheless, 
since it is very frequently used in a pediatric popula-
tion, data on age- related biological effects are necessary 
for radiation protection. As with CT and radiographs, 
data on genotoxicity are not unanimous. Two studies 
report an increase in MN frequency following CBCT 
examination, whereas three studies report no induction 
of  MN. All five studies, however, report an increase in 
cytotoxicity. It is clear that these data are conflicting 
and that additional research is needed. Furthermore, all 
five studies used exfoliated oral mucosa cells to perform 
the MN assay, while other cell types (e.g. cell of  the 
lateral border of  the tongue or gingival cells) and/
or biofluids (e.g. blood or saliva) may also be tissues 
worth investigating. Since there are a limited amount 
of  data on γH2AX foci formation or the comet assay, 
no decisive conclusion can be made about induction 
of  DNA DSBs following CBCT. One might expect 
an increase in DNA DSBs to occur, since it has been 
shown that radiographs induce DSBs and the IR doses 
used by CBCT devices are higher than those used in 
radiography. Monitoring γH2AX foci following CBCT 
examination in both adults and children is part of  the 
scope of  the European funded “Dentomaxillofacial 
paediatric imaging - an investigation towards low dose 
radiation induced risks” or DIMITRA study.137 In this 
context, our recent study demonstrated the absence of 
an increased amount of  DNA DSBs in buccal mucosal 
cells after CBCT examination (neither in children nor 
in adults).

Finally, a lot more studies were conducted in adults 
than in children. For CT, 23 studies were conducted 
in adults and only 5 studies included children. In one 
of  the latter, the sample size was three, which results 
in a lack of  statistical power on a population level.87 
Furthermore, data comparing adults and children in 
similar CT settings are lacking. Similarly, most studies 
on radiography were conducted on adults, whereas 
only four included children. As with CT scans and 
radiography, studies comparing genotoxicity in adults 
and children are lacking and those that are avail-
able contradict each other.114,118,122,130 For CBCT, the 
number of  studies including children is very low (i.e. 
one out of  five). None of  the above- mentioned studies 
followed the patients for longer than a few weeks. To 
better understand the extent of  the observed genotox-
icity following medical diagnostics, mostly in light of 
stochastic effects, long- term follow- up of  patients is 
warranted.
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Uncertainties on biological effects must drive 
optimization strategies

The sections above demonstrate how challenging it 
is to investigate the effects in dose levels compatible 
to dental and medical radiodiagnosis. The numerous 
variables that are combined in different manners, 
suffering effects of  different sources, can generate 
controversial results and contestable conclusions. The 
epidemiological data on higher dose levels, however, 
seem to remain irreplaceable until now. In the mean-
time, scientists, radiobiologists and independent orga-
nizations are continuously investigating and reviewing 
the knowledge in order to propose up- to- date models 
on low- dose effects138 Until proven the contrary, there-
fore, the LNT hypothesis remains the most reasonable 
track which means that justification and optimization 
principles must be strictly followed.

Justification and optimization, however, are chal-
lenging tasks in the daily practice. Despite many 
studies have proven the possibility to reduce consid-
erably the dose keeping the imaging quality for diag-
nosis purposes and/or treatment plan, the translation 
of  optimization, there is still room for improving the 
translation of  optimization in clinical practice..36 
Others have been shown over indication of  tridimen-
sional exams in the dental field, failure on justifi-
cation.33,139–142 In addition, optimization becomes 
even more challenging when high- resolution 3D 
images (mostly higher- dose) are chosen for unjusti-
fiable reasons. In this context, the ALADAIP prin-
ciple (As Low As Diagnostically Acceptable being 
Indication- oriented and Patient- specific) comes into 
play,96,143 proposing an exercise to ask what is the 
reason why the imaging exam is taken (indication) 
and who is the patient (age, sex, size and imaging 
exams history). It is well- known that X- ray diag-
nostic doses come from the most controllable source 
of  IR, and despite its growing and the undeniable 
needs, it is fully manageable on exposure parameters 
and field of  view.144

There is no doubt that a high level of  uncertainty 
on low- dose effects remains. Moreover, despite 
the strong evidence regarding the higher radia-
tion sensitivity of  younger individuals, it has been 
even discussed if  this this feature is applicable for 
low- dose. As already mentioned, however, studies 
demonstrated evident biological effects in sequential 
exams generating cumulative doses. In this regard, 
we cannot ignore the longer life expectancy of  young 
subjects that probably will be exposed to several IR 
sources (including CT exams) during their lifetimes. 
On this matter, the role of  radiologists, professors 
and researchers is to recognize the potential risks 
and demonstrate technical expertise to minimize 
them as far as the benefits are equally maximized, 
mainly for the more sensible population: children 
and adolescents.

Concluding remarks

Although it is clear that CT examinations cause DNA 
DSBs, which may lead/contribute to adverse health 
effects in patients, data about CBCT are limited. For 
2D dentomaxillofacial radiographs, data are available, 
albeit that one may need to consider some methodolog-
ical weakness biasing the results. Most data focusses on 
genotoxicity and cytotoxicity, but it might be interesting 
to look further at underlying mechanisms by using gene 
expression assays or by looking at specific proteins and 
their response to low doses of IR.

Furthermore, there is a lot of variability in the way 
radiation doses are reported. Some authors reported 
(estimated) effective doses, others reported absorbed 
doses or DLPs and even DAPs were used. This makes it 
very difficult to compare between studies and interpret 
the relative input. Therefore, it might be of interest to 
report doses in a standardized way, for example reporting 
absorbed dose or DLP. These two are least likely to be 
debated, since they can be measured accurately.

Also, the use of non- invasive detection methods, 
such as from saliva collection, to investigate the biolog-
ical effects of medical and dental diagnostic procedures 
would aid to answer the encountered uncertainties.

Moreover, a lot of advancements are made in biomed-
ical science (e.g. next- generation sequencing). These will 
allow to perform more high- throughput analyses and 
gather a lot of genomic/proteomic information, which 
is now often neglected in this type of studies. There-
fore, more in- depth studies, such as gene expression 
analysis or next- generation sequencing, can give more 
insight in the consequences of the genotoxic insults 
described above as well as increase our understanding 
of the potential health risks associated with medical and 
dental diagnostic procedures.

Finally, clinical studies that include both adults and 
children are lacking. Therefore, not a lot of information 
is available about differences in response to IR between 
these age categories; this warrants further investigation. 
It is important to gain insight in potential age- related 
differences in effects of medical diagnostic procedures 
as it is vital to be able to properly assess the correct 
diagnostic tool at each age. In addition, radiation effects 
and radiation sensitivity are gender- specific. Existing 
epidemiological and experimental data suggest that 
radiation sensitivity in the long run is much higher in 
females than in males receiving a comparable dose. In 
accordance, recent studies observed an increased cancer 
risk in (young) females when compared to (young) 
males when exposed to CBCT.28,33 To complicate things 
even more, radiation sensitivity also differs from one 
individual to another as also observed by our group in 
saliva samples of CBCT exposed children.60 In accor-
dance with the concept of personalized medicine, there 
is a need to consider the individual factor in the radia-
tion response by taking age gender and other individual 
radiosensitivity- related factors into account. In this way, 
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radiation sensitivity and radiation- related disease risk 
can be better evaluated. Ultimately, these insights on the 
basis of individual radiation responses rather than on 
population averages of organ tolerance can contribute 
to improved radiation protection guidelines, which, in 
the end, will benefit the patient.
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