<u>Multimedia Appendix 1.</u> Educational and clinical applications of immersive reality in anesthesia summary tables.

Table S1. Educational interventions – Technical skills

Overview of studies using immersive reality for anesthesia-related teaching of technical skills, including key study outcomes. 3D, 3-Dimensional; AR, Augmented Reality; CPR, Cardiopulmonary Resuscitation; RCT, Randomized Controlled Trial; VR, Virtual Reality.

Study	Intervention	Educational scenario	Key Outcome(s)
Cailleau, et al., 2023 (RCT, n=86)[1]	Non- immersive VR simulator (ORSIM)	Fiberoptic intubation	VR training on simulated difficult airways provided no benefit relative to additional VR training on simulated normal airways
Chuan, et al., 2023 (validity, n=21 novice, 15 experienced)[2]	Immersive VR simulator (Oculus Rift S)	Ultrasound guided regional anesthesia	Demonstrated initial construct validity, scores for experienced participants were significantly higher than for novices
Huang, et al., 2023 (feasibility, n=40)[3]	MR simulator (Hololens)	Lumbar puncture	Improved success rate and time for participants
Kim, et al., 2023 (RCT, n=20)[4]	Immersive VR simulator (Oculus Quest 2)	Spinal anesthesia (Lumbar transforaminal epidural block)	VR group showed improved global rating score, procedural time and overall satisfaction relative to control (video/written materials)
Peek, et al., 2023 (RCT, n=31)[5]	Immersive VR simulator (headset not specified)	ACLS	Primary outcomes (time to reach specific clinical endpoints) were significantly worse in VR group.
Moll-Khosrawi, et al., 2022 (RCT, n=88)[6]	Immersive VR simulator (VIREED MED)	CPR (Basic Life Support)	Significantly improved outcomes (lower no flow time and overall performance) in VR group
Rochlen, et al., 2022 (observational, n=62)[7]	MR simulator (HoloLens 1)	Peripheral IV catheter placement	Demonstrated usability and positive user feedback.
White & Jung, 2022 (pre-post test, n=14)[8]	Non- Immersive VR simulator (SPINE Mentor)	Spinal cord stimulator placement	VR simulator led to improved confidence and performance scores compared to pre-test
Issleib, et al., 2021 (RCT, n=56 VR, 104 Control)[9]	Immersive VR simulator (+ CPR manikin) (headset not specified)	CPR (basic life support)	No flow time (primary outcome), an indicator of technical skill level, was improved in the control group relative to VR.
Lee, et al., 2021 (RCT Protocol, n=154 planned)[10]	MR simulator (HTC Vive Pro and CPR manikin)	CPR (Basic Life Support)	Primary outcome is mean compression depth

Mah, et al., 2021 (RCT, n=32)[11]	Immersive VR Video (Samsung Gear VR)	Central venous catheter insertion	No change in procedural time or scores with immersive video compared to standard video instruction.
Bube, et al., 2020 (RCT, n=32)[12]	Non- Immersive VR simulator	Cystoscopy	No difference in clinical outcomes (cystoscopy on two patients 3 weeks after training) between traditional and self-directed training (both groups used VR simulator) Only 32% of participants performed acceptable cystoscopy after training
Nas, et al., 2020 (RCT, n=381)[13]	Immersive VR simulator (Zeiss VR One Plus)	CPR	VR group had inferior performance compared to face-to-face training
Ameri, et al., 2019 (preliminary, n=5)[14]	Non- immersive 3D AR simulator	Ultrasound-guided epidural injection	AR training had a higher success rate than using ultrasound only using a phantom trainer
Sappenfield, et al., 2019 (non- randomized, n=76)[15]	MR simulator (3D printed mannequin + emulated ultrasound imaging + instruments tracked via magnetic sensors)	Supraclavicular central vein access	Following MR training, participants were able to use this new technique to access the central vein in less attempts and shorter times compared to the standard approach
Aebersold, et al., 2018 (RCT, n=69)[16]	Non- immersive AR training via mobile device	Nasogastric tube placement	AR was well received and led to improved technical skills compared to traditional didactic teaching
Casso, et al., 2019 (Validity, n=22)[17]	Non- immersive VR simulator	Bronchoscopy	Generally positive face validity results following testing by senior anesthesiologists, although some concerns were noted
Jensen, et al., 2018 (observational, n=25)[18]	Non- immersive VR simulator	Point-of-care ultrasonography	23 out of 25 novice practitioners attained mastery in a median time of 1h 46m
Jiang, et al., 2018 (RCT, n=46)[19]	Non- Immersive VR simulator vs. high-fidelity mannequin training	Fibreoptic intubation	No difference in procedure outcomes between groups

Wong, et al., 2019 (RCT, n=34)[20]	Non- Immersive VR simulator	Fibreoptic intubation	VR group showed improved skills, following training, while the control group did not.
Rochlen, et al., 2017 (feasibility, n=40)[21]	AR simulator (mannequin with projected anatomical landmarks) (Epson Moverio BT- 200 Smart Glasses)	Central line insertion	Positive feedback from participants regarding usability and utility
Mahmood, et al.,	AR simulator	Transthoracic and	Design features discussed, and
2018	(Hololens)	transesophageal	opportunities for improvement
(feasibility)[22]		echocardiography	identified
Latif, et al., 2016	Non-	Fibreoptic bronchoscopy	Novice learners could be trained to
(observational,	Immersive VR	and intubation	proficiency (relative to practicing
n=15)[23]	simulator (2x)		anesthiologists) using simulator
Nilsson, et al., 2015	Non-	Fibreoptic intubation	Positive training effects were
(RCT, n=23)[24]	Immersive VR		observed in both groups (both
	simulator		groups used VR simulator, no
			difference between partial-task and
Failer at al. 2014	Nan	Lungialation	whole-task training)
Failor, et al., 2014	Non- immersive VR	Lung isolation	Participants rated training highly and had increased procedural
(feasibility, n=13)[25]	simulator		confidence after training
11-13/[23]	Simulator		confidence after training
O'Sullivan, et al.,	Non-	Ultrasound-guided axillary	No difference between standard
2014 (Pilot,	Immersive VR	brachial plexus block	training with our without additional
n=10)[26]	simulator	·	VR simulation training
Robinson, et al.,	MR simulator	Subclavian venous access	Residents showed improvements in
2014 (pre-post test,	(3D-printed		procedural skills following training
n=54)[27]	model with 3D		
	virtual model		
	underlaid)		
De Oliveira, et al.,	Non-	Fibreoptic intubation	Fewer failed attempts and
2013 (RCT,	Immersive VR		continued improvement with
n=20)[28]	simulator		simulation relative to no additional
	(tablet-based)		training
Kulcsar, et al., 2013	Immersive VR	Spinal anesthesia/dural	VR group performed better when
(RCT, n=27)[29]	simulator	puncture	performing supervised procedures in clinic
Grottke, et al., 2009	Non-	Regional anesthesia	Discussion of regional anesthesia
(feasibility, n=5)[30]	immersive VR		VR simulator capable of integrating
	simulator		personalized patient models

Goldmann, et al., 2006 (Observational, n=11 novices, 4 experienced)[31]	Non- Immersive VR simulator	Fibreoptic intubation	Novices trained with simulator performed faster than those without (and similar to experienced anesthesiologists)
Reznek, et al., 2002 (validity, n=41)[32]	Non- immersive VR simulator	Intravenous insertion	VR simulator demonstrated adequate validity and was appealing to users

Table S2. Educational interventions – Non-technical skills

Overview of studies using immersive reality for anesthesia-related education of non-technical skills, including key outcomes. AR, Augmented Reality; CPR, Cardiopulmonary Resuscitation; IPC, Infection Prevention and Control; RCT, Randomized Controlled Trial; VR, Virtual Reality.

Study	Intervention	Educational scenario	Key Outcome(s)
Hoek, et al., 2023	Immersive VR	Therapeutic	Qualitative feedback on different
(qualitative,	video (Oculus	communication skills	communication styles and
n=10)[33]	Go)		participant reflection was
			encouraged
Hoxbro Knudsen,	Immersive VR	Emergency medicine	Construct validity established
et al., 2023	simulator		using experienced, intermediate
(validity,	(Oculus Quest		and novice learners.
n=61)[34]	1 and 2)		
Liaw, et al., 2023	Non-	Managing stress response	No difference in stress response,
(RCT, n=120	immersive VR	(Clinical deterioration,	participant confidence or
working in teams	simulator	sepsis)	performance outcomes between
of 4)[35]	(screen-based)		groups (VR vs. face-to-face
			conventional simulation)
Speidel, et al.,	Immersive VR	Surgical unit virtual tour	VR 360 video effectively conveys
2023 (RCT,	video (HTC		spatial orientation and factual
n=61)[36]	Vive)		information simultaneously in the
			same learning scenario
Hess, et al., 2022	AR simulator	Communication skills (ACLS	Medical students reported the
(observational,	(Magic Leap	scenario)	simulation was acceptable and
n=18)[37]	One)		enjoyable
Truong, et al.,	Immersive VR	Operating room fire	4.4% of participants responded
2022	simulator (HTC		safely to an operating room fire on
(Observational,	Vive)		the first simulation, compared to
n=180, including			79% after VR training
18			
anesthesiologists)			
[38]			
Chheang, et al.,	Multiuser	Intraoperative	System described and feedback
2020 (pilot study,	immersive VR	communication (surgeon	gathered from pilot participants
n=3)[39]	simulator (HTC	and anesthesiologist)	regarding sense of presence,
	Vive)		accuracy, etc.
Katz, et al., 2020	Immersive VR	Advanced cardiac life	Control group (high-fidelity
(Observational,	simulator	support team leadership	mannequin) performed better
cross-over,	(non-specified		with regard to technical processes,
n=23)[40]	Samsung and		but no difference in decision
	HP headsets)		making or communication
			between groups.
Lerner, et al.,	Immersive	Airway crisis scenario	Participants reported training as
2020 (feasibility,	multiuser VR		effective, small increased in post-
n=9 groups of	simulator (HTC		training knowledge was observed
2)[41]	Vive)		

Masson, et al., 2020 (RCT protocol, planned n=330)[42]	Immersive VR simulator (Oculus Rift)	Operating room infection prevention measures	Primary outcome is end of term IPC exam results (VR training vs standard slide-based lecture)
Wunder, et al., 2020 (Observational, n=32)[43]	MR simulation (Magic Leap One AR)	Operating room fire	Utility and limitations of this simulation approach were established
Abbas, et al., 2019 (RCT, n=20)[44]	Immersive VR simulator (headset not specified)	Anesthesia crisis management (local anesthetic systemic toxicity)	VR group showed improvement in some metrics, but not others after training
Erlinger, et al., 2019 (RCT, n=39)[45]	Non- immersive virtual simulator (screen-based)	Recognition of clinical intraoperative events	Students using high-fidelity mannequin simulation recognized an intraoperative event faster than when using the virtual simulation
Semeraro, et al., 2019 (feasibility, n=22)[46]	Immersive VR simulator (HTC Vive and Oculus Go)	CPR (basic life support)	A blended curriculum with traditional teaching, mannequinbased simulation and VR environments was well received by both lay people and healthcare practitioners
Sankaranarayana n, et al., 2018 (RCT, n=20)[47]	Immersive VR simulator (Oculus Rift)	Operating room fire	VR group performed better in mock OR fire scenario than those with didactic teaching alone
Cordar, et al. 2017 (observational, n=53)[48]	MR simulator (Virtual humans)	Operating room communication	Communication behaviors of anesthesia residents were positively affected by positive behaviors in virtual teammates
Dorozhkin, et al., 2017 (validity, n=49)[49]	Immersive VR simulator (Oculus Rift)	Operating room fire	Face validity was successfully established, high participant rankings for usefulness and effectiveness
Real, et al., 2017 (RCT, n=45)[50]	Immersive VR simulator (Oculus Rift)	Persuasion training (pediatric influenza vaccine hesitancy)	Vaccine refusal rate was significantly lower in the 3months after training for those in the VR group.
Cordar, et al., 2015 (RCT, n=22)[51]	MR simulator (Virtual humans)	Operating room conflict resolution	Conflict resolution behaviors were positively or negatively affected by corresponding behavior in virtual teammates.

Table S3. Patient-based immersive reality interventions in anesthesia

Overview of studies using immersive reality for patient-based, clinical interventions relevant to anesthesia. HMD, Head-mounted Display; IV, Intravenous; RCT, Randomized Controlled Trial; VR, Virtual Reality.

Study	Timing	Intervention	Patient Population	Key Outcome(s)
Baytar, et al., 2023 (observational, n=40)[52]	Pre- procedure	Immersive VR video (Samsung Gear VR)	Septorhinoplasty	VR intervention reduced pre-operative anxiety
Kim, et al., 2023 (RCT, n=40)[53]	Pre- procedure	Immersive VR Video (Samsung Gear VR)	GI endoscopy	Mean pre-procedure anxiety did not differ between control and VR group
Le Du, et al., 2023 (RCT, n=126)[54]	Intra- procedure	Immersive VR environment (Samsung Gear VR)	Bone Marrow Biopsy	Pain and anxiety scores were similar between VR and Nitrous Oxide groups
Lind, et al., 2023 (RCT, n=117)[55]	Intra- procedure	Immersive 2D VR video (HappyMed)	Transcatheter aortic valve implanation	Pain and anxiety scores were similar between groups.
Lopes, et al., 2023 (observational, n= 53 VR and 46 control)[56]	Intra- procedure	Immersive VR environment (HypnoVR)	Regional anesthesia block (upper limb orthopaedic surgery)	No difference between groups in anxiety before and after block.
Pelazas- Hernandez, et al., 2023 (RCT, n=154)[57]	Intra- procedure	Immersive VR environment (Oculus Go)	Outpatient hysteroscopy	Reduced pain scores in VR group. No change in physiological outcomes.
Barry, et al., 2022 (non- randomized, n=18 VR, 2:1 with controls)[58]	Intra- procedure	Guided Relaxation (PICO G2 4K Enterprise)	Total hip or knee arthroplasty with spinal anesthesia	VR procedures used less intraoperative sedation. Postoperative outcomes were similar between groups
Boonreunya, et al., 2022 (RCT, n=96)[59]	Intra- procedure	Immersive VR video (Oculus Go)	GI Endoscopy	No difference in pain scores or physiological metrics between groups
Faruki, et al., 2022 (RCT, n=40)[60]	Intra- procedure	Immersive VR environment (Oculus Go)	Hand surgery (regional anesthesia)	Less supplemental anesthesia (propofol) was required in VR group vs. control
Fouks, et al., 2022 (RCT, n=82)[61]	Intra- procedure	Interactive VR environment (AppliedVR)	Awake, outpatient operative hysteroscopy	No change in pain scores with VR relative to standard of care

Goergen, et al.,	Intra-	Immersive VR	Pigid cystoscopy under	VR group had reduced
2022 (RCT,	procedure	video (Exos	Rigid cystoscopy under local anesthesia	heart rate variability,
n=159)[62]	procedure	3D VR	וטכמו מוופטנוופטומ	shorter procedures and
11-133/[02]		headset)		less pain in some cases.
Krish, et al., 2022	Intra-	Immersive VR	Hand surgery (awake,	Positive feedback on
(case report,	procedure	video (Oculus	local anesthesia)	the VR process from
n=2)[63]	procedure	Go)	local artestricsia)	participants
Lame, et al.,	Intra-	Immersive VR	Endovascular aneurysm	Patient underwent a
2022 (Case	procedure	video	repair	successful surgery free
report, n=1)[64]	p. cocaac	(headset not	. opa	of complications
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		specified)		
Rousseaux, et al.,	Pre-	Immersive VR	Perioperative cardiac	No significant
2022 (RCT,	procedure	environment	surgery	difference between
n=100)[65]	and post-	+/- guided		groups (control,
	procedure	relaxation		hypnosis, VR, VR +
		(no headset		hypnosis) in pain,
		reported)		anxiety or opioid use
Soret, et al., 2022	Intra-	Immersive VR	Bone marrow aspiration	No difference in anxiety
(observational,	procedure	video (Oculus		or pain scores between
n=36 – 12 VR, 24		Go)		groups.
control)[66]				
Yesilot, et al.,	Intra-	Immersive VR	Lipoma excision with	VR and communication
2022 (RCT,	procedure	video	local anesthesia	intervention reduced
n=100)[67]		(smartphone-		pain during procedure
		based		
		headset not		
		specified)		
Karaman, et al.,	Intra-	Immersive VR	Fine needle aspiration	Post-procedure pain
2021 (RCT,	procedure	video	breast biopsy	and average anxiety
n=60)[68]		(smartphone-		were significantly
		based headset not		reduced in VR group.
		specified)		
Ledford, et al.	Intra-	Guided	Total hip arthroplasty	Patient reported
2021	procedure	relaxation	with neuraxial anesthesia	positive experience
(case report,	procedure	(PICO G2 4K	With heard and an estilesia	positive experience
n=1)[69]		Enterprise)		
Luczak, et al.,	Intra-	Immersive VR	Rigid cystoscopy under	VR group had lower
2021 (RCT,	procedure	environment	local anesthesia	pain scores and
n=100)[70]		(headset not		physiological markers,
		specified)		but higher levels of
				nausea
Peuchot, et al.	Intra-	VR hypnosis	Total knee arthroplasty	VR patients required
2021	procedure	(HypnoVR)	with spinal anesthesia	less sedation
(Observational				No change in
study, n=20)[71]				postoperative anxiety

Roxburgh, et al. 2021 (observational, n=99)[72]	Intra- procedure	Guided breathing and music (Deepsen)	Atrial fibrillation ablation with awake sedation	Pain improved in VR group No change in morphine consumption
Tharion, et al., 2021 (RCT, n=90)[73]	Intra- procedure	Immersive video (Smartphone + PRO1 HMD)	Arthroscopic knee surgery with spinal anesthesia	Significantly higher patient satisfaction an no change in anxiety using VR vs IV midazolam
Touil, et al., 2021 (observational, n=48)[74]	Pre- procedure /Intra- procedure	Immersive VR/Guided relaxation (Gear VR)	Loco-regional (axillary plexus) anesthesia block for hand surgery	Pre-operative anxiety was significantly reduced after VR session.
Turrado, et al., 2021 (RCT, n=126)[75]	Pre- procedure	Immersive VR video (OR Tour) (BlueBee Genuine VR)	Colorectal cancer	Pre-operative anxiety was reduced using VR operative process tour
Vogt, et al., 2021 (RCT, n=84)[76]	Pre- procedure	Immersive video (OR tour) (Oculus Go)	Elective surgery with general anesthesia	No change in anxiety with VR, but high patient satisfaction
Alaterre, et al., 2020 (before- after study, n=100)[77]	Intra- procedure	Guided meditation (Oculus Go)	Upper limb surgery, peripheral nerve block	Higher patient satisfaction and lower intraoperative anxiety with VR
Chan, et al., 2020 (Observation study, n=108)[78]	Pre- procedure	Guided relaxation (Gear VR)	Minor elective gynecological surgery	Anxiety and depression were reduced post-intervention, relative to before
Huang, et al., 2020 (RCT, n=50)[79]	Intra- procedure	Immersive video (Gear VR or Oculus Rift DK2)	Total hip/knee arthroplasty, regional anesthesia	No difference in sedation requirements in VR group
Kist, et al., 2020 (Case report, n=3)[80]	Intra- procedure	Guided relaxation (Gear VR)	Epidural placement for labour	VR helpful for self- reported pain and anxiety
Sridhar, et al., 2020 (Pilot RCT, n=30)[81]	Intra- procedure	Immersive environment (unspecified device)	First trimester pregnancy termination	Decreased anxiety during and after procedure with VR
Faruki, et al., 2019 (RCT protocol,	Intra- procedure	Guided relaxation (Oculus Go)	Upper extremity orthopaedic surgery with peripheral nerve block	Study ongoing (primary outcome difference in propofol use)

.1	1		1	
planned				
n=40)[82]				
Hoxhallari, et al.,	Intra-	Immersive	Awake hand surgery	Lower anxiety reported
2019 (RCT,	procedure	video (Gear	under local anesthesia	with VR, no change in
n=41)[83]		VR)		pain scores
Moon, et al.,	Intra-	Guided	Endoscopic urologic	VR distraction with no
2018 (RCT,	procedure	relaxation	surgery with spinal	sedatives increased
n=37)[84]		(Gear VR)	anesthesia	patient satisfaction and
				reduced respiratory
				side effects relative to
				midazolam.
Thomas, et al.,	Intra-	Interactive	Lumbar puncture	Reduced sedative
2018 (Case	procedure	game		requirements,
report, n=1)[85]		(Playstation		procedure time and
		VR)		recovery time relative
				to previous procedures
				in same patient
Chan, et al., 2017	Intra-	Immersive	Joint replacement with	Sedative use was lower
(pilot study,	procedure	video (Oculus	regional anesthesia	in the VR group
n=19)[86]		Rift DK2)		
Mosso, et al.,	Intra-	Interactive	Upper GI endoscopy	VR distraction reduced
2017 (RCT,	procedure	environment		subjective pain scores
n=115)[87,88]		(eMagin		and corresponding
		HMD)		physiological responses
Pandya, et al.,	Intra-	Interactive	Preoperative adductor	VR group received less
2017	procedure	environment	canal catheter insertion	IV sedation and
(retrospective,		(Hypervision		reported less pain
n=14)[89]		2D VR		
		glasses)		
Bekelis, et al.,	Pre-	Immersive	Elective cranial and	Higher satisfaction and
2016 (RCT,	procedure	video (Peri-	spinal procedures	lower anxiety observed
n=127)[90]		operative		with VR
		process)		
		(unspecified		
		Oculus		
		device)		
Jahani Shoorab,	Intra-	Immersive	Episiotomy repair	Reduced pain in VR +
et al., 2015 (RCT,	procedure	video (Wrap		lidocaine group vs
n=30)[91]		920, Vuzik)		lidocaine alone
Mosso, et al.,	Intra-	Immersive	Ambulatory surgery with	Reduced anxiety in VR
2009 (RCT,	procedure	video (Vuzik	local/regional anesthesia	group
n=21)[92]		iWear AV		
		920)		

Table S4. Healthcare provider-focused clinical immersive reality interventions

Overview of studies using immersive reality for healthcare-provider-focused clinical interventions relevant to anesthesia. 3D, 3-Dimensional; AR, Augmented Reality; HMD, Head-mounted Display

Study	Use	Intervention	Clinical scenario	Key Outcome(s)
Bergauer, et al.,	Vital Signs	Immersive VR	Arterial Blood Gas	Correct perception of ABG
2023 (RCT, n=50	Monitoring	HMD (Visual	(ABG) monitoring	parameters was similar between
anesthesiologists		Blood, Oculus Quest 2)		Visual Blood VR and standard
)[93] Berger, et al.,	AR	AR HMD	Percutaneous	printouts AR-assisted fluoroscopy guided
2023 (case	guidance	(Medivis	rhizotomy	percutaneous glycerol
report, n=1)[94]	galadrice	SurgicalAR)	THIZOCOTTY	rhizotomy was successfully
				performed on 1 patient.
Hayasaka, et al.,	AR	AR HMD	Epidural anesthesia	Optimal needle placement was
2023 (RCT,	guidance	(HoloLens2)	•	significantly improved in AR
n=30)[95]				group vs control
Jun, et al., 2023	AR	AR HMD	Epidural injection	Procedure duration was shorter
(proof-of-	guidance	(HoloLens2)	(Lumbosacral	in using AR, but no significant
concept, n=1			transforaminal	difference in needle accuracy
anesthesiologist)[epidural injection)	
96]	AD	ADJIMD	Fairland an arthuria	Consequents distance from
Reinacher, et al.,	AR	AR HMD	Epidural anesthesia	Success rate, distance from
2023 (RCT, n=4,	guidance	(Magic Leap 1)		optimal placement and
20 attempts each (10 normal, 10				procedure time were improved with AR.
with AR)[97]				with AK.
lliff, et al., 2022	Pre-	HMD (HTC	Difficult airway	CT and MRI imaging form 1
(case report,	procedure	Vive)	planning	patient was visualized using VR,
n=1)[98]	planning	,	P	resembling virtual endoscopy
Moon & Barua,	Pre-	MR HMD	Awake craniotomy	Acceptable usability
2022 (usability,	procedure	(Magic Leap 1)	planning	demonstrated for multi-
n=10, including 2	planning			disciplinary team
anesthetists)[99]				
Seong, et al.,	Pre-	Non-immersive	Regional anesthesia	Three challenging regional
2022 (Case	procedure	virtual		anesthesia blocks were
Report,	planning	simulation		successfully preformed using
n=3)[100]				the simulation
Tanwani, et al.,	MR	MR HMD	Ultrasound guided	Preliminary results suggest
2022 (proof-of-	guidance	(HoloLens1)	regional anesthesia	technique is easy for novice and
concept, n=7 anesthesia			(neuraxial)	experienced learners
resident/staff)[10				
1]				
Follmann, et al.,	Technical	AR glasses	Triage decisions in	AR took more time per
2021 (crossover	Guideline	(Recon Jet)	mass casualty event	assessment than tablet PC, but
trial, n=40)[102]	presentatio	(122211 700)		was reduced with practice. No
, -,, - 1	n			difference in accuracy.

Romare, et al.,	Vital Signs	HMD (Google	Nurse anesthetists	Feedback gathered and
2021 (qualitative,	Monitoring	Glass)	administering	opportunities for improvement
n=7)[103]			anesthesia care	identified.
Schlosser, et al.,	Vital Signs	HMD (Vuzix	Supervising	Significantly more patient
2019 (proof-of-	Monitoring	M300 HWD)	anesthesiologist,	alarms were noticed using the
concept, n=8)[104]			simulated operating rooms	HMD
Hetherington, et	Real Time	AR overlay	Ultrasound-guided	Successful identification of
al., 2017 (validity,	Guidance	(PicoPro	epidural/spinal	vertebral levels in real time
n=20)[105]		Projector)	anesthesia	
Kaneko, et al.,	Real Time	AR HMD	Ultrasound guided	No difference in procedural
2017 (proof-of-	Guidance	(Moverio BT-	fine-needle	outcomes (time, needle
concept,		200)	aspiration in neck	redirections), but potentially
n=32)[106]				improved ergonomics (reduced
Kanaka at al	Dool Time	ADLINAD	Cimerulated	number of head turns)
Kaneko, et al., 2016 (pilot study,	Real Time Guidance	AR HMD (Moverio BT-	Simulated ultrasound-guided	No difference in procedural outcomes (time, needle
n=5)[107]	Guidance	200)	central venous	redirections), but potentially
11-3/[107]		200)	catheterization	improved ergonomics (reduced
				number of head turns)
Przkora, et al.,	Real Time	AR HMD	Simulated	HMD improved procedure time
2015 (validity,	Guidance	(Wrap, Vuzik)	ultrasound-guided	and reduce head and probe
n=20)[108]			peripheral nerve	movements
			block	6.11
Ashab, et al.,	Real Time	AR overlay	Ultrasound-guided	AR was more successful in
2012 (validation, n=10)[109]	Guidance	(MicronTracker SDK + 3D	epidural	identifying vertebral levels than manual methods
11-10/[105]		Slicer)		mandarmethous
Udani, et al.,	Real Time	AR HMD	Simulated	Confirmed feasibility of their
2012 (Feasibility,	Guidance	(MicroOptical	ultrasound-guided	approach
n=2)[110]		CV-3)	popliteal-sciatic	
			nerve blocks	
Liu, et al., 2009	Vital Signs	HMD	Simulated operating	Participants were able to detect
(repeated	Monitoring	(Microvision	room scenarios	some clinical events faster using
measures,		Nomad)		HMD, especially when physically constrained by another task.
n=12)[111]				However, some events were
				detected more slowly.
Sanderson, et al.,	Vital Signs	HMD, vs	Supervision of	Participants were able to detect
2008 (repeated	Monitoring	advanced	simulated junior	more clinical events of
measures,		auditory	anesthesia resident	interested using audio-based
n=16)[112]		monitoring	during simulated	vital signs monitoring than HMD
		(Sony U50	operation	or traditional visual monitors
Own out of all all	Vital Circu	Palmtop PD)	Amanthesislasis	A postbook a signatura de substitutione
Ormerod, et al., 2003 (feasibility,	Vital Signs	HMD (Microvision	Anesthesiologists,	Anesthesiologists had reduced
ZUUS (TEASIDIIILY,	Monitoring	(Microvision Nomad)	simulated operating room scenario	shifts in attention with HMD,
		ivoillau)	TOUTH SCENATIO	

n=unknown)[113				allowing more time spent
]				looking at patient
Block, et al., 1995	Vital Signs	Data projected	Anesthesiologists,	Generally favorable response,
(feasibility,	Monitoring	directly into	general surgical list	but technical issues were
n=11)[114]		one eye		identified
		("Private Eye,		
		Reflection		
		Technology)		

References

- Cailleau L, Geeraerts T, Minville V, Fourcade O, Fernandez T, Bazin JE, Baxter L, Athanassoglou V, Jefferson H, Sud A, Davies T, Mendonca C, Parotto M, Kurrek M. Is there a benefit for anesthesiologists of adding difficult airway scenarios for learning fiberoptic intubation skills using virtual reality training? A randomized controlled study. PLoS One 2023;18(1):e0281016. PMID:36706107
- Chuan A, Qian J, Bogdanovych A, Kumar A, McKendrick M, McLeod G. Design and validation of a virtual reality trainer for ultrasound-guided regional anaesthesia. Anaesthesia 2023 Jun;78(6):739–746. PMID:37010989
- 3. Huang X, Yan Z, Gong C, Zhou Z, Xu H, Qin C, Wang Z. A mixed-reality stimulator for lumbar puncture training: a pilot study. BMC Med Educ 2023 Mar 22;23(1):178. PMID:36949483
- 4. Kim JY, Lee JS, Lee JH, Park YS, Cho J, Koh JC. Virtual reality simulator's effectiveness on the spine procedure education for trainee: a randomized controlled trial. Korean J Anesthesiol 2023 Jun;76(3):213–226. PMID:36323305
- 5. Peek JJ, Max SA, Bakhuis W, Huig IC, Rosalia RA, Sadeghi AH, Mahtab EAF. Virtual Reality Simulator versus Conventional Advanced Life Support Training for Cardiopulmonary Resuscitation Post-Cardiac Surgery: A Randomized Controlled Trial. J Cardiovasc Dev Dis 2023 Feb 4;10(2):67. PMID:36826563
- 6. Moll-Khosrawi P, Falb A, Pinnschmidt H, Zöllner C, Issleib M. Virtual reality as a teaching method for resuscitation training in undergraduate first year medical students during COVID-19 pandemic: a randomised controlled trial. BMC Med Educ 2022 Jun 22;22(1):483. PMID:35733135
- 7. Rochlen LR, Putnam E, Levine R, Tait AR. Mixed reality simulation for peripheral intravenous catheter placement training. BMC Med Educ 2022 Dec 17;22(1):876. PMID:36528576
- 8. White WW, Jung MJ. Three-Dimensional Virtual Reality Spinal Cord Stimulator Training Improves Trainee Procedural Confidence and Performance. Neuromodulation 2022 May 12;S1094-7159(22)00631–6. PMID:35570148
- 9. Issleib M, Kromer A, Pinnschmidt HO, Süss-Havemann C, Kubitz JC. Virtual reality as a teaching method for resuscitation training in undergraduate first year medical students: a randomized

- controlled trial. Scand J Trauma Resusc Emerg Med 2021 Dec;29(1):27. doi: 10.1186/s13049-021-00836-y
- Lee DK, Im CW, Jo YH, Chang T, Song JL, Luu C, Mackinnon R, Pillai S, Lee CN, Jheon S, Ahn S, Won SH. Comparison of extended reality and conventional methods of basic life support training: protocol for a multinational, pragmatic, noninferiority, randomised clinical trial (XR BLS trial).
 Trials 2021 Dec 20;22(1):946. PMID:34930418
- 11. Mah E, Yu J, Deck M, Lyster K, Kawchuk J, Turnquist A, Thoma B. Immersive Video Modeling Versus Traditional Video Modeling for Teaching Central Venous Catheter Insertion to Medical Residents. Cureus 2021 Mar 2;13(3):e13661. PMID:33824812
- 12. Bube S, Dagnaes-Hansen J, Mahmood O, Rohrsted M, Bjerrum F, Salling L, Hansen RB, Konge L. Simulation-based training for flexible cystoscopy A randomized trial comparing two approaches. Heliyon 2020 Jan;6(1):e03086. PMID:31922043
- 13. Nas J, Thannhauser J, Vart P, van Geuns R-J, Muijsers HEC, Mol J-Q, Aarts GWA, Konijnenberg LSF, Gommans DHF, Ahoud-Schoenmakers SGAM, Vos JL, van Royen N, Bonnes JL, Brouwer MA. Effect of Face-to-Face vs Virtual Reality Training on Cardiopulmonary Resuscitation Quality: A Randomized Clinical Trial. JAMA Cardiol 2020 Mar 1;5(3):328–335. PMID:31734702
- 14. Ameri G, Rankin A, Baxter JSH, Moore J, Ganapathy S, Peters TM, Chen ECS. Development and Evaluation of an Augmented Reality Ultrasound Guidance System for Spinal Anesthesia: Preliminary Results. Ultrasound in Medicine & Biology 2019 Oct;45(10):2736–2746. doi: 10.1016/j.ultrasmedbio.2019.04.026
- 15. Sappenfield J, Grek S, Cooper LA, Lizdas DE, Lampotang S. Reduced Complications of Supraclavicular Approach in Simulated Central Venous Access: Applicability to Military Medicine. Military Medicine 2019 Mar 1;184(Supplement_1):329–334. doi: 10.1093/milmed/usy381
- 16. Aebersold M, Voepel-Lewis T, Cherara L, Weber M, Khouri C, Levine R, Tait AR. Interactive Anatomy-Augmented Virtual Simulation Training. Clin Simul Nurs 2018 Feb;15:34–41. PMID:29861797
- 17. Casso G, Schoettker P, Savoldelli GL, Azzola A, Cassina T. Development and Initial Evaluation of a Novel, Ultraportable, Virtual Reality Bronchoscopy Simulator: The Computer Airway Simulation System. Anesth Analg 2019 Nov;129(5):1258–1264. doi: 10.1213/ANE.000000000003316
- 18. Jensen JK, Dyre L, Jørgensen ME, Andreasen LA, Tolsgaard MG. Simulation-based point-of-care ultrasound training: a matter of competency rather than volume. Acta Anaesthesiol Scand 2018 Jul;62(6):811–819. PMID:29392718
- 19. Jiang B, Ju H, Zhao Y, Yao L, Feng Y. Comparison of the Efficacy and Efficiency of the Use of Virtual Reality Simulation With High-Fidelity Mannequins for Simulation-Based Training of Fiberoptic Bronchoscope Manipulation. Sim Healthcare 2018 Apr;13(2):83–87. PMID:29621098
- 20. Wong DT, Mehta A, Singh KP, Leong SM, Ooi A, Niazi A, You-Ten E, Okrainec A, Patel R, Singh M, Wong J. The effect of virtual reality bronchoscopy simulator training on performance of

- bronchoscopic-guided intubation in patients: A randomised controlled trial. European Journal of Anaesthesiology 2019 Mar;36(3):227–233. doi: 10.1097/EJA.000000000000890
- 21. Rochlen LR, Levine R, Tait AR. First-Person Point-of-View—Augmented Reality for Central Line Insertion Training: A Usability and Feasibility Study. Sim Healthcare 2017 Feb;12(1):57–62. doi: 10.1097/SIH.000000000000185
- 22. Mahmood F, Mahmood E, Dorfman RG, Mitchell J, Mahmood F-U, Jones SB, Matyal R. Augmented Reality and Ultrasound Education: Initial Experience. J Cardiothorac Vasc Anesth 2018 Jun;32(3):1363–1367. PMID:29452879
- 23. Latif R, Bautista A, Duan X, Neamtu A, Wu D, Wadhwa A, Akça O. Teaching basic fiberoptic intubation skills in a simulator: initial learning and skills decay. J Anesth 2016 Feb;30(1):12–19. PMID:26493397
- 24. Nilsson PM, Russell L, Ringsted C, Hertz P, Konge L. Simulation-based training in flexible fibreoptic intubation: A randomised study. Eur J Anaesthesiol 2015 Sep;32(9):609–614. PMID:24809483
- 25. Failor E, Bowdle A, Jelacic S, Togashi K. High-fidelity simulation of lung isolation with double-lumen endotracheal tubes and bronchial blockers in anesthesiology resident training. J Cardiothorac Vasc Anesth 2014 Aug;28(4):865–869. PMID:24231196
- 26. O'Sullivan O, Iohom G, O'Donnell BD, Shorten GD. The effect of simulation-based training on initial performance of ultrasound-guided axillary brachial plexus blockade in a clinical setting a pilot study. BMC Anesthesiol 2014;14:110. PMID:25844062
- 27. Robinson AR, Gravenstein N, Cooper LA, Lizdas D, Luria I, Lampotang S. A Mixed-Reality Part-Task Trainer for Subclavian Venous Access. Simulation in Healthcare: The Journal of the Society for Simulation in Healthcare 2014 Feb;9(1):56–64. doi: 10.1097/SIH.0b013e31829b3fb3
- 28. De Oliveira GS, Glassenberg R, Chang R, Fitzgerald P, McCarthy RJ. Virtual airway simulation to improve dexterity among novices performing fibreoptic intubation. Anaesthesia 2013 Oct;68(10):1053–1058. PMID:23952805
- 29. Kulcsár Z, O'Mahony E, Lövquist E, Aboulafia A, Šabova D, Ghori K, Iohom G, Shorten G. Preliminary evaluation of a virtual reality-based simulator for learning spinal anesthesia. Journal of Clinical Anesthesia 2013 Mar;25(2):98–105. doi: 10.1016/j.jclinane.2012.06.015
- 30. Grottke O, Ntouba A, Ullrich S, Liao W, Fried E, Prescher A, Deserno TM, Kuhlen T, Rossaint R. Virtual reality-based simulator for training in regional anaesthesia. Br J Anaesth 2009 Oct;103(4):594–600. PMID:19706630
- 31. Goldmann K, Steinfeldt T. Acquisition of basic fiberoptic intubation skills with a virtual reality airway simulator. J Clin Anesth 2006 May;18(3):173–178. PMID:16731318
- 32. Reznek MA, Rawn CL, Krummel TM. Evaluation of the educational effectiveness of a virtual reality intravenous insertion simulator. Acad Emerg Med 2002 Nov;9(11):1319–1325. PMID:12414488

- 33. Hoek KB, van Velzen M, Sarton EY. Patient-embodied virtual reality as a learning tool for therapeutic communication skills among anaesthesiologists: A phenomenological study. Patient Educ Couns 2023 May 6;114:107789. PMID:37230038
- 34. Knudsen MH, Breindahl N, Dalsgaard T-S, Isbye D, Mølbak AG, Tiwald G, Svendsen MBS, Konge L, Bergström J, Todsen T. Using Virtual Reality Head-Mounted Displays to Assess Skills in Emergency Medicine: Validity Study. J Med Internet Res 2023 Jun 6;25:e45210. PMID:37279049
- 35. Liaw SY, Sutini null, Chua WL, Tan JZ, Levett-Jones T, Ashokka B, Te Pan TL, Lau ST, Ignacio J. Desktop Virtual Reality Versus Face-to-Face Simulation for Team-Training on Stress Levels and Performance in Clinical Deterioration: a Randomised Controlled Trial. J Gen Intern Med 2023 Jan;38(1):67–73. PMID:35501626
- 36. Speidel R, Schneider A, Walter S, Grab-Kroll C, Oechsner W. Immersive medium for early clinical exposure knowledge acquisition, spatial orientation and the unexpected role of annotation in 360° VR photos. GMS J Med Educ 2023;40(1):Doc8. PMID:36923314
- 37. Hess O, Qian J, Bruce J, Wang E, Rodriguez S, Haber N, Caruso TJ. Communication Skills Training Using Remote Augmented Reality Medical Simulation: a Feasibility and Acceptability Qualitative Study. Med Sci Educ 2022 Oct;32(5):1005–1014. PMID:35966166
- 38. Truong H, Qi D, Ryason A, Sullivan AM, Cudmore J, Alfred S, Jones SB, Parra JM, De S, Jones DB. Does your team know how to respond safely to an operating room fire? Outcomes of a virtual reality, Al-enhanced simulation training. Surg Endosc 2022 May;36(5):3059–3067. PMID:34264400
- 39. Chheang V, Fischer V, Buggenhagen H, Huber T, Huettl F, Kneist W, Preim B, Saalfeld P, Hansen C. Toward interprofessional team training for surgeons and anesthesiologists using virtual reality. Int J Comput Assist Radiol Surg 2020 Dec;15(12):2109–2118. PMID:33083969
- 40. Katz D, Shah R, Kim E, Park C, Shah A, Levine A, Burnett G. Utilization of a Voice-Based Virtual Reality Advanced Cardiac Life Support Team Leader Refresher: Prospective Observational Study. J Med Internet Res 2020 Mar 12;22(3):e17425. PMID:32163038
- 41. Lerner D, Mohr S, Schild J, Göring M, Luiz T. An Immersive Multi-User Virtual Reality for Emergency Simulation Training: Usability Study. JMIR Serious Games 2020 Jul 31;8(3):e18822. doi: 10.2196/18822
- 42. Masson C, Birgand G, Castro-Sánchez E, Eichel VM, Comte A, Terrisse H, Rubens-Duval B, Gillois P, Albaladejo P, Picard J, Bosson JL, Mutters NT, Landelle C. Is virtual reality effective to teach prevention of surgical site infections in the operating room? study protocol for a randomised controlled multicentre trial entitled VIP Room study. BMJ Open 2020 Jun;10(6):e037299. doi: 10.1136/bmjopen-2020-037299
- 43. Wunder L, Gomez NAG, Gonzalez JE, Mitzova-Vladinov G, Cacchione M, Mato J, Foronda CL, Groom JA. Fire in the Operating Room: Use of Mixed Reality Simulation with Nurse Anesthesia Students. Informatics 2020 Sep 30;7(4):40. doi: 10.3390/informatics7040040

- 44. Abbas S, Chan V, Jin R, Kim E, Lorello G, Niazi A, Singh M, Unger Z. ESRA19-0614 Virtual reality simulation for teaching and assessment of anesthesia crisis management. Late Breakers BMJ Publishing Group Ltd; 2019. p. A262–A262. doi: 10.1136/rapm-2019-ESRAABS2019.480
- 45. Erlinger LR, Bartlett A, Perez A. High-Fidelity Mannequin Simulation versus Virtual Simulation for Recognition of Critical Events by Student Registered Nurse Anesthetists. AANA J 2019 Apr;87(2):105–109. PMID:31587722
- 46. Semeraro F, Ristagno G, Giulini G, Kayal JS, Cavallo P, Farabegoli L, Tucci R, Scelsi S, Grieco NB, Scapigliati A. Back to reality: A new blended pilot course of Basic Life Support with Virtual Reality. Resuscitation 2019 May;138:18–19. PMID:30844415
- 47. Sankaranarayanan G, Wooley L, Hogg D, Dorozhkin D, Olasky J, Chauhan S, Fleshman JW, De S, Scott D, Jones DB. Immersive virtual reality-based training improves response in a simulated operating room fire scenario. Surg Endosc 2018 Aug;32(8):3439–3449. PMID:29372313
- 48. Cordar A, Wendling A, White C, Lampotang S, Lok B. Repeat after me: Using mixed reality humans to influence best communication practices. 2017 IEEE Virtual Reality (VR) Los Angeles, CA, USA: IEEE; 2017. p. 148–156. doi: 10.1109/VR.2017.7892242
- 49. Dorozhkin D, Olasky J, Jones DB, Schwaitzberg SD, Jones SB, Cao CGL, Molina M, Henriques S, Wang J, Flinn J, De S, SAGES FUSE Committee. OR fire virtual training simulator: design and face validity. Surg Endosc 2017 Sep;31(9):3527–3533. PMID:28039649
- 50. Real FJ, DeBlasio D, Beck AF, Ollberding NJ, Davis D, Cruse B, Samaan Z, McLinden D, Klein MD. A Virtual Reality Curriculum for Pediatric Residents Decreases Rates of Influenza Vaccine Refusal. Acad Pediatr 2017 Jun;17(4):431–435. PMID:28126612
- 51. Cordar A, Robb A, Wendling A, Lampotang S, White C, Lok B. Virtual Role-Models: Using Virtual Humans to Train Best Communication Practices for Healthcare Teams. In: Brinkman W-P, Broekens J, Heylen D, editors. Intelligent Virtual Agents Cham: Springer International Publishing; 2015. p. 229–238. doi: 10.1007/978-3-319-21996-7 23
- 52. Baytar A, Bollucuo Lu K. Effect of virtual reality on preoperative anxiety in patients undergoing septorhinoplasty. Braz J Anesthesiol 2023;73(2):159–164. PMID:34562488
- 53. Kim Y, Yoo SH, Chun J, Kim J-H, Youn YH, Park H. Relieving Anxiety Through Virtual Reality Prior to Endoscopic Procedures. Yonsei Med J 2023 Feb;64(2):117–122. PMID:36719019
- 54. Le Du K, Septans A-L, Maloisel F, Vanquaethem H, Schmitt A, Le Goff M, Clavert A, Zinger M, Bourgeois H, Dupuis O, Denis F, Bouchard S. A New Option for Pain Prevention Using a Therapeutic Virtual Reality Solution for Bone Marrow Biopsy (REVEH Trial): Open-Label, Randomized, Multicenter, Phase 3 Study. J Med Internet Res 2023 Feb 15;25:e38619. PMID:36790852
- 55. Lind A, Ahsan M, Totzeck M, Al-Rashid F, Haddad A, Dubler S, Brenner T, Skarabis A, El Gabry M, Rassaf T, Jánosi RA. Virtual reality-assisted distraction during transcatheter aortic valve implantation under local anaesthesia: A randomised study. Int J Cardiol 2023 Sep 15;387:131130. PMID:37355243

- 56. Lopes K, Dessieux T, Rousseau C, Beloeil H. Virtual Reality as a Hypnotic Tool in the Management of Anxiety During the Performance of the Axillary Block. J Med Syst 2023 Mar 1;47(1):31. PMID:36856907
- 57. Pelazas-Hernández JA, Varillas-Delgado D, González-Casado T, Cristóbal-Quevedo I, Alonso-Bermejo A, Ronchas-Martínez M, Cristóbal-García I. The Effect of Virtual Reality on the Reduction of Pain in Women with an Indication for Outpatient Diagnostic Hysteroscopy: A Randomized Controlled Trial. J Clin Med 2023 May 24;12(11):3645. PMID:37297840
- 58. Barry KS, Nimma SR, Spaulding AC, Wilke BK, Torp KD, Ledford CK. Perioperative Outcomes of Immersive Virtual Reality as Adjunct Anesthesia in Primary Total Hip and Knee Arthroplasty. Arthroplast Today 2022 Dec;18:84–88. PMID:36312886
- 59. Boonreunya N, Nopawong E, Yongsiriwit K, Chirapongsathorn S. Virtual reality distraction during upper gastrointestinal endoscopy: a randomized controlled trial. J Gastroenterol Hepatol 2022 May;37(5):855–860. PMID:35080055
- 60. Faruki AA, Nguyen TB, Gasangwa D-V, Levy N, Proeschel S, Yu J, Ip V, McGourty M, Korsunsky G, Novack V, Mueller AL, Banner-Goodspeed V, Rozental TD, O'Gara BP. Virtual reality immersion compared to monitored anesthesia care for hand surgery: A randomized controlled trial. PLoS One 2022;17(9):e0272030. PMID:36129891
- 61. Fouks Y, Kern G, Cohen A, Reicher L, Shapira Z, Many A, Yogev Y, Rattan G. A virtual reality system for pain and anxiety management during outpatient hysteroscopy—A randomized control trial. European Journal of Pain 2022 Mar;26(3):600–609. doi: 10.1002/ejp.1882
- 62. Goergen DI, Freitas DMDO. Virtual Reality as a distraction therapy during cystoscopy: a clinical trial. Rev Col Bras Cir 2022;49:e20223138. PMID:35584530
- 63. Krish G, Immerman I, Kinjo S. Virtual reality may reduce anxiety and enhance surgical experience during wide-awake local anaesthesia no tourniquet surgery: A report of two cases. J Perioper Pract 2022 Jun;32(6):136–141. PMID:34190639
- 64. Lame C, Mougin J, Postiglione TJ, Fabre D, Haulon S. Virtual Reality to Ease Endovascular Repair of Thoracoabdominal Aneurysms Under Local Anesthesia. J Endovasc Ther 2023 Apr;30(2):312–315. PMID:35184605
- 65. Rousseaux F, Dardenne N, Massion PB, Ledoux D, Bicego A, Donneau A-F, Faymonville M-E, Nyssen A-S, Vanhaudenhuyse A. Virtual reality and hypnosis for anxiety and pain management in intensive care units: A prospective randomised trial among cardiac surgery patients. Eur J Anaesthesiol 2022 Jan 1;39(1):58–66. PMID:34783683
- 66. Soret L, Gendron N, Rivet N, Chocron R, Macraigne L, Clausse D, Cholley B, Gaussem P, Smadja DM, Darnige L. Pain Assessment Using Virtual Reality Facemask During Bone Marrow Aspiration: Prospective Study Including Propensity-Matched Analysis. JMIR Serious Games 2022 Oct 12;10(4):e33221. PMID:36222814

- 67. Bozdoğan Yeşilot S, Ciftci H, Yener MK. Using a Virtual Reality and Communication Intervention to Reduce Pain and Anxiety in Patients Undergoing Lipoma Excision With Local Anesthesia: A Randomized Controlled Trial. AORN J 2022 May;115(5):437–449. PMID:35476192
- 68. Karaman D, Taşdemir N. The Effect of Using Virtual Reality During Breast Biopsy on Pain and Anxiety: A Randomized Controlled Trial. J Perianesth Nurs 2021 Dec;36(6):702–705. PMID:34686402
- 69. Ledford CK, VanWagner MJ, Sherman CE, Torp KD. Immersive Virtual Reality Used as Adjunct Anesthesia for Conversion Total Hip Arthroplasty in a 100-Year-Old Patient. Arthroplast Today 2021 Aug;10:149–153. PMID:34401418
- 70. Łuczak M, Nowak Ł, Chorbińska J, Galik K, Kiełb P, Łaszkiewicz J, Tukiendorf A, Kościelska-Kasprzak K, Małkiewicz B, Zdrojowy R, Szydełko T, Krajewski W. Influence of Virtual Reality Devices on Pain and Anxiety in Patients Undergoing Cystoscopy Performed under Local Anaesthesia. J Pers Med 2021 Nov 16;11(11):1214. PMID:34834565
- 71. Peuchot H, Khakha R, Riera V, Ollivier M, Argenson J-N. Intraoperative virtual reality distraction in TKA under spinal anesthesia: a preliminary study. Arch Orthop Trauma Surg 2021 Dec;141(12):2323–2328. doi: 10.1007/s00402-021-04065-x
- 72. Roxburgh T, Li A, Guenancia C, Pernollet P, Bouleti C, Alos B, Gras M, Kerforne T, Frasca D, Le Gal F, Christiaens L, Degand B, Garcia R. Virtual Reality for Sedation During Atrial Fibrillation Ablation in Clinical Practice: Observational Study. J Med Internet Res 2021 May 27;23(5):e26349. doi: 10.2196/26349
- 73. Tharion JG, Kale S. Patient Satisfaction Through an Immersive Experience Using a Mobile Phone-Based Head-Mounted Display During Arthroscopic Knee Surgery Under Spinal Anesthesia: A Randomized Clinical Trial. Anesth Analg 2021 Oct 1;133(4):940–948. PMID:34283040
- 74. Touil N, Pavlopoulou A, Momeni M, Van Pee B, Barbier O, Sermeus L, Roelants F. Evaluation of virtual reality combining music and a hypnosis session to reduce anxiety before hand surgery under axillary plexus block: A prospective study. Int J Clin Pract 2021 Dec;75(12):e15008. PMID:34811860
- 75. Turrado V, Guzmán Y, Jiménez-Lillo J, Villegas E, de Lacy FB, Blanch J, Balibrea JM, Lacy A. Exposure to virtual reality as a tool to reduce peri-operative anxiety in patients undergoing colorectal cancer surgery: a single-center prospective randomized clinical trial. Surg Endosc 2021 Jul;35(7):4042–4047. PMID:33683433
- 76. Vogt L, Klasen M, Rossaint R, Goeretz U, Ebus P, Sopka S. Virtual Reality Tour to Reduce Perioperative Anxiety in an Operating Setting Before Anesthesia: Randomized Clinical Trial. J Med Internet Res 2021 Sep 1;23(9):e28018. PMID:34252034
- 77. Alaterre C, Duceau B, Sung Tsai E, Zriouel S, Bonnet F, Lescot T, Verdonk F. Virtual Reality for PEripheral Regional Anesthesia (VR-PERLA Study). JCM 2020 Jan 13;9(1):215. doi: 10.3390/jcm9010215

- 78. Chan JJI, Yeam CT, Kee HM, Tan CW, Sultana R, Sia ATH, Sng BL. The use of pre-operative virtual reality to reduce anxiety in women undergoing gynecological surgeries: a prospective cohort study. BMC Anesthesiol 2020 Dec;20(1):261. doi: 10.1186/s12871-020-01177-6
- 79. Huang MY, Scharf S, Chan PY. Effects of immersive virtual reality therapy on intravenous patient-controlled sedation during orthopaedic surgery under regional anesthesia: A randomized controlled trial. Scherag A, editor. PLoS ONE 2020 Feb 24;15(2):e0229320. doi: 10.1371/journal.pone.0229320
- 80. Kist M, Bekemeyer Z, Ralls L, Carvalho B, Rodriguez ST, Caruso TJ. Virtual reality successfully provides anxiolysis to laboring women undergoing epidural placement. Journal of Clinical Anesthesia 2020 May;61:109635. doi: 10.1016/j.jclinane.2019.109635
- 81. Sridhar A, Shiliang Z, Woodson R, Kwan L. Non-pharmacological anxiety reduction with immersive virtual reality for first-trimester dilation and curettage: a pilot study. Eur J Contracept Reprod Health Care 2020 Dec;25(6):480–483. PMID:33140989
- 82. Faruki A, Nguyen T, Proeschel S, Levy N, Yu J, Ip V, Mueller A, Banner-Goodspeed V, O'Gara B. Virtual reality as an adjunct to anesthesia in the operating room. Trials 2019 Dec 27;20(1):782. PMID:31882015
- 83. Hoxhallari E, Behr IJ, Bradshaw JS, Morkos MS, Haan PS, Schaefer MC, Clarkson JHW. Virtual Reality Improves the Patient Experience during Wide-Awake Local Anesthesia No Tourniquet Hand Surgery: A Single-Blind, Randomized, Prospective Study. Plastic and Reconstructive Surgery 2019 Aug;144(2):408–414. doi: 10.1097/PRS.000000000005831
- 84. Moon JY, Shin J, Chung J, Ji S-H, Ro S, Kim WH. Virtual Reality Distraction during Endoscopic Urologic Surgery under Spinal Anesthesia: A Randomized Controlled Trial. J Clin Med 2018 Dec 20;8(1):2. PMID:30577461
- 85. Thomas JJ, Albietz J, Polaner D. Virtual reality for lumbar puncture in a morbidly obese patient with leukemia. Paediatr Anaesth 2018 Nov;28(11):1059–1060. PMID:30284748
- 86. Chan PY, Scharf S. Virtual Reality as an Adjunctive Nonpharmacological Sedative During Orthopedic Surgery Under Regional Anesthesia: A Pilot and Feasibility Study. Anesth Analg 2017 Oct;125(4):1200–1202. PMID:28598921
- 87. Mosso Vázquez JL, Wiederhold BK, Miller I, Wiederhold MD. Virtual Reality Assisted Anaesthesia During Upper Gastrointestinal Endoscopy: Report of 115 Cases. EMJ Innov 2017 Jan 10;75–82. doi: 10.33590/emjinnov/10314545
- 88. Mosso Vázquez J, Wiederhold B, Miller I, Lara D, Wiederhold M. Virtual Reality Assisted Anesthesia (VRAA) during Upper Gastrointestinal Endoscopy: Report of 115 Cases— Analysis of Physiological Responses. Surgical Research Updates 2017 Mar 6;5. doi: 10.12970/2311-9888.2017.05.01
- 89. Pandya PG, Kim TE, Howard SK, Stary E, Leng JC, Hunter OO, Mariano ER. Virtual reality distraction decreases routine intravenous sedation and procedure-related pain during

- preoperative adductor canal catheter insertion: a retrospective study. Korean J Anesthesiol 2017;70(4):439. PMID:28794840
- 90. Bekelis K, Calnan D, Simmons N, MacKenzie TA, Kakoulides G. Effect of an Immersive Preoperative Virtual Reality Experience on Patient Reported Outcomes: A Randomized Controlled Trial. Ann Surg 2017 Jun;265(6):1068–1073. PMID:27906757
- 91. Jahani Shoorab N, Ebrahimzadeh Zagami S, Nahvi A, Mazluom SR, Golmakani N, Talebi M, Pabarja F. The Effect of Virtual Reality on Pain in Primiparity Women during Episiotomy Repair: A Randomize Clinical Trial. Iran J Med Sci 2015 May;40(3):219–224. PMID:25999621
- 92. Mosso Vázquez JL, Gorini A, De La Cerda G, Obrador T, Almazan A, Mosso D, Nieto JJ, Riva G. Virtual reality on mobile phones to reduce anxiety in outpatient surgery. Stud Health Technol Inform 2009;142:195–200. PMID:19377147
- 93. Bergauer L, Akbas S, Braun J, Ganter MT, Meybohm P, Hottenrott S, Zacharowski K, Raimann FJ, Rivas E, López-Baamonde M, Spahn DR, Noethiger CB, Tscholl DW, Roche TR. Visual Blood, Visualisation of Blood Gas Analysis in Virtual Reality, Leads to More Correct Diagnoses: A Computer-Based, Multicentre, Simulation Study. Bioengineering (Basel) 2023 Mar 8;10(3):340. PMID:36978731
- 94. Berger A, Choudhry OJ, Kondziolka D. Augmented Reality-Assisted Percutaneous Rhizotomy for Trigeminal Neuralgia. Oper Neurosurg (Hagerstown) 2023 Jun 1;24(6):665–669. PMID:36815787
- 95. Hayasaka T, Kawano K, Onodera Y, Suzuki H, Nakane M, Kanoto M, Kawamae K. Comparison of accuracy between augmented reality/mixed reality techniques and conventional techniques for epidural anesthesia using a practice phantom model kit. BMC Anesthesiol 2023 May 20;23(1):171. PMID:37210521
- 96. Jun EK, Lim S, Seo J, Lee KH, Lee JH, Lee D, Koh JC. Augmented Reality-Assisted Navigation System for Transforaminal Epidural Injection. J Pain Res 2023;16:921–931. PMID:36960464
- 97. Reinacher PC, Cimniak A, Demerath T, Schallner N. Usage of augmented reality for interventional neuraxial procedures: A phantom-based study. Eur J Anaesthesiol 2023 Feb 1;40(2):121–129. PMID:36121289
- 98. Iliff HA, Ahmad I, Evans S, Ingham J, Rees G, Woodford C. Using virtual reality for difficult airway management planning. Anaesth Rep 2022;10(2):e12175. PMID:35813404
- 99. Moon RDC, Barua NU. Usability of mixed reality in awake craniotomy planning. Br J Neurosurg 2022 Dec 20;1–5. PMID:36537230
- 100. Seong H, Yun D, Yoon KS, Kwak JS, Koh JC. Development of pre-procedure virtual simulation for challenging interventional procedures: an experimental study with clinical application. Korean J Pain 2022 Oct 1;35(4):403–412. PMID:36175339
- 101. Tanwani J, Alam F, Matava C, Choi S, McHardy P, Singer O, Cheong G, Wiegelmann J. Development of a Head-Mounted Holographic Needle Guidance System for Enhanced

- Ultrasound-Guided Neuraxial Anesthesia: System Development and Observational Evaluation. JMIR Form Res 2022 Jun 23;6(6):e36931. PMID:35737430
- 102. Follmann A, Ruhl A, Gösch M, Felzen M, Rossaint R, Czaplik M. Augmented Reality for Guideline Presentation in Medicine: Randomized Crossover Simulation Trial for Technically Assisted Decision-making. JMIR Mhealth Uhealth 2021 Oct 18;9(10):e17472. PMID:34661548
- 103. Romare C, Enlöf P, Anderberg P, Jildenstål P, Sanmartin Berglund J, Skär L. Nurse anesthetists' experiences using smart glasses to monitor patients' vital signs during anesthesia care: A qualitative study. PLoS One 2021;16(4):e0250122. PMID:33882100
- 104. Schlosser PD, Grundgeiger T, Sanderson PM, Happel O. An exploratory clinical evaluation of a head-worn display based multiple-patient monitoring application: impact on supervising anesthesiologists' situation awareness. J Clin Monit Comput 2019 Dec;33(6):1119–1127. doi: 10.1007/s10877-019-00265-4
- 105. Hetherington J, Lessoway V, Gunka V, Abolmaesumi P, Rohling R. SLIDE: automatic spine level identification system using a deep convolutional neural network. Int J Comput Assist Radiol Surg 2017 Jul;12(7):1189–1198. PMID:28361323
- 106. Kaneko N, Tsunoda M, Mitsuhashi M, Okubo K, Takeshima T, Sehara Y, Nagai M, Kawai K. Ultrasound-Guided Fine-Needle Aspiration in the Neck Region Using an Optical See-Through Head-Mounted Display: A Randomized Controlled Trial. J Ultrasound Med 2017 Oct;36(10):2071–2077. PMID:28504313
- 107. Kaneko N, Sato M, Takeshima T, Sehara Y, Watanabe E. Ultrasound-guided central venous catheterization using an optical see-through head-mounted display: A pilot study. J Clin Ultrasound 2016 Oct;44(8):487–491. PMID:27297681
- 108. Przkora R, McGrady W, Vasilopoulos T, Gravenstein N, Solanki D. Evaluation of the Head-Mounted Display for Ultrasound-Guided Peripheral Nerve Blocks in Simulated Regional Anesthesia. Pain Med 2015 Nov;16(11):2192–2194. PMID:25930716
- 109. Ashab HA-D, Lessoway VA, Khallaghi S, Cheng A, Rohling R, Abolmaesumi P. AREA: an augmented reality system for epidural anaesthesia. Annu Int Conf IEEE Eng Med Biol Soc 2012;2012:2659–2663. PMID:23366472
- 110. Udani AD, Harrison TK, Howard SK, Kim TE, Brock-Utne JG, Gaba DM, Mariano ER. Preliminary study of ergonomic behavior during simulated ultrasound-guided regional anesthesia using a head-mounted display. J Ultrasound Med 2012 Aug;31(8):1277–1280. PMID:22837293
- 111. Liu D, Jenkins SA, Sanderson PM, Watson MO, Leane T, Kruys A, Russell WJ. Monitoring with head-mounted displays: performance and safety in a full-scale simulator and part-task trainer. Anesth Analg 2009 Oct;109(4):1135–1146. PMID:19762741
- 112. Sanderson PM, Watson MO, Russell WJ, Jenkins S, Liu D, Green N, Llewelyn K, Cole P, Shek V, Krupenia SS. Advanced auditory displays and head-mounted displays: advantages and disadvantages for monitoring by the distracted anesthesiologist. Anesth Analg 2008 Jun;106(6):1787–1797. PMID:18499611

- 113. Ormerod DF, Ross B, Naluai-Cecchini A. Use of an augmented reality display of patient monitoring data to enhance anesthesiologists' response to abnormal clinical events. Stud Health Technol Inform 2003;94:248–250. PMID:15455902
- 114. Block FE, Yablok DO, McDonald JS. Clinical evaluation of the "head-up" display of anesthesia data. Preliminary communication. Int J Clin Monit Comput 1995 Feb;12(1):21–24. PMID:7782663