
Frontiers in Oncology | www.frontiersin.org

Edited by:
Mohamed Rahouma,

Weill Cornell Medical Center,
NewYork-Presbyterian, United States

Reviewed by:
Jinhui Liu,

Nanjing Medical University, China
You Lang Zhou,

Affiliated Hospital of Nantong
University, China

Mohamed Emam Sobeih,
Cairo University, Egypt

*Correspondence:
Wenhui Li

wenhuili64@aliyun.com
Li Chang

changli1981@126.com

†These authors have contributed
equally to this work and share

first authorship

Specialty section:
This article was submitted to

Thoracic Oncology,
a section of the journal
Frontiers in Oncology

Received: 15 February 2022
Accepted: 29 April 2022
Published: 16 June 2022

Citation:
Lu F, Gao J, Hou Y, Cao K,

Xia Y, Chen Z, Yu H, Chang L
and Li W (2022) Construction of a

Novel Prognostic Model in
Lung Adenocarcinoma Based
on 7-Methylguanosine-Related

Gene Signatures.
Front. Oncol. 12:876360.

doi: 10.3389/fonc.2022.876360

ORIGINAL RESEARCH
published: 16 June 2022

doi: 10.3389/fonc.2022.876360
Construction of a Novel Prognostic
Model in Lung Adenocarcinoma
Based on 7-Methylguanosine-
Related Gene Signatures
Fei Lu1,2†, Jingyan Gao1†, Yu Hou1†, Ke Cao1†, Yaoxiong Xia1, Zhengting Chen1, Hui Yu1,
Li Chang1* and Wenhui Li1*

1 Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan
Province, Kunming, China, 2 Department of Oncology and Hematology, Southern Central Hospital of Yunnan Province, The
First People’s Hospital of Honghe State, Mengzi, China

Increasing evidence has implicated the modification of 7-methylguanosine (m7G), a type of
RNAmodification, in tumor progression. However, no comprehensive analysis to date has
summarized the predicted role of m7G-related gene signatures in lung adenocarcinoma
(LUAD). Herein, we aimed to develop a novel prognostic model in LUAD based on m7G-
related gene signatures. The LUAD transcriptome profiling data and corresponding clinical
data were acquired from the Cancer Genome Atlas (TCGA) and two Gene Expression
Omnibus datasets. After screening, we first obtained 29 m7G-related genes, most of
which were upregulated in tumor tissues and negatively associated with overall survival
(OS). According to the expression similarity of m7G-related genes, the combined samples
from the TCGA-LUAD and GSE68465 datasets were further classified as two clusters that
exhibit distinct OS rates and genetic heterogeneity. Then, we constructed a novel
prognostic model involving four genes by using 130 differentially expressed genes
among the two clusters. The combined samples were randomly divided into a training
cohort and an internal validation cohort in a 1:1 ratio, and the GSE72094 dataset was
used as an external validation cohort. The samples were divided into high- and low-risk
groups. We demonstrated that a higher risk score was an independent negative
prognostic factor and predicted poor OS. A nomogram was further constructed to
better predict the survival of LUAD patients. Functional enrichment analyses indicated
that cell cycle and DNA replication-related biological processes and pathways were
enriched in the high-risk group. More importantly, the low-risk group had greater
infiltration and enrichment of most immune cells, as well as higher ESTIMATE, immune,
and stromal scores. In addition, the high-risk group had a lower TIDE score and higher
expressions of most immune checkpoint-related genes. We finally noticed that patients in
the high-risk group were more sensitive to chemotherapeutic agents commonly used in
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LUAD. In conclusion, we herein summarized for the first time the alterations and
prognostic role of m7G-related genes in LUAD and then constructed a prognostic
model based on m7G-related gene signatures that could accurately and stably predict
survival and guide individualized treatment decision-making in LUAD patients.
Keywords: lung adenocarcinoma, 7-methylguanosine (m7G), RNA methylation, prognosis, tumor
immune microenvironment
INTRODUCTION

Lung cancer, although experiencing a modest reduction in new
cases globally, has remained the leading cause of cancer-related
deaths for many years according to the latest epidemiologic
statistics (1, 2). The 5-year survival rate of lung cancer
increased from about 10% in 2000 to nearly 20% in 2014
despite great progress in its screening, diagnosis, and treatment
(3). Based on histopathological classifications, lung
adenocarcinoma (LUAD) is the most common subtype,
affecting approximately 40% of lung cancer cases (4). Recent
studies have suggested that LUAD is a highly heterogeneous
disease at multiple levels, particularly at the molecular and gene
levels (5). Therefore, a novel and more precise prognostic model
based on genetic or epigenetic alterations is necessary to guide
therapeutic decision-making and predict patient prognosis.

Increasing evidence has suggested that RNA modifications
play a vital role among a variety of malignancies (6, 7). So far,
>170 types of RNA modifications have been documented. Of
these, RNA methylation, encompassing several types [N6-
methyladenosine (m6A), 5-methylcytosine (m5C), N6-2′-O-
dimethyladenosine (m6Am), N1-methyladenosine (m1A), and
N7-methylguanosine (m7G)], is a major epigenetic modification
(8). As one positively charged essential modification in
messenger RNA (mRNA), m7G is installed at the 5′ cap co-
transcriptionally during transcription initiation and can
modulate nearly every phase of the mRNA life cycle and
stabilize transcripts against exonucleolytic degradation (9–11).
Besides functioning as a part of the cap structure, recent studies
have further demonstrated the presence of internal mRNA m7G
modifications, which could impact mRNA translation, and also
confirmed methyltransferase-l ike 1 (METTL1) as a
methyltransferase capable of installing a subset of m7G within
mRNA (9, 12). In addition, m7G is one of the most common
transfer RNA (tRNA) modifications when installed byMETTL1–
WDR4 (WD repeat domain 4) at position 46 (m7G46) of tRNAs
in humans (13). Concomitantly, m7G also occurs at position
1639 of 18S ribosomal RNA in mammals, having been installed
by Williams–Beuren syndrome chromosome region 22
(WBSCR22) (14). These internal m7G modifications can
impact RNA function and processing. Pandolfini et al. (15)
recently showed that m7G methylation within microRNAs
mediated by METTL1 could regulate cell migration. Taken
together, these findings highlight the primary and critical role
of m7G modification in the fates of mRNA, tRNA, ribosomal
RNA, and microRNA in humans.
2

Recent studies have also implicated m7G in tumor
progression and development in lung cancer, intrahepatic
cholangiocarcinoma (ICC), hepatocellular carcinoma (HCC),
bladder cancer, and colon cancer (16–21). Using bioinformatic
analyses, accumulating studies have determined that the RNA
modification-related gene signatures, such as m6A, m1A, and
m5C, can predict the prognosis and guide therapeutic decisions
in most cancers, including LUAD (22–27). However, to the best
of our knowledge, there are no studies reporting the predictive
role of m7G-related regulatory genes in any malignancies. In this
study, by utilizing the expression data of m7G-related genes in
LUAD from The Cancer Genome Atlas (TCGA) database and
Gene Expression Omnibus (GEO) database, we comprehensively
analyzed the genetic characteristics and prognostic value of m7G-
related genes in LUAD, constructed a novel prognostic model
based on m7G-related gene signatures, and further investigated
the impacts on the tumor immune microenvironment (TIM),
eventually evaluating drug sensitivity in different risk groups.
Our findings contribute to a better understanding of the
significant role of m7G-related gene signatures and provide
novel insight for improving the clinical response to therapy in
LUAD patients in the future.
MATERIALS AND METHODS

Study Design
The flowchart of our study is depicted in Figure 1A.

Data Acquisition and Preprocessing
The transcriptome profiling data and corresponding clinical data
of LUAD were acquired from the TCGA database (https://portal.
gdc.cancer.gov) and GEO database (https://www.ncbi.nlm.nih.
gov/gds). In the TCGA cohort, the transcriptome data were
downloaded as FPKM (fragments per kilobase per million
mapped reads) and further converted to TPM (transcripts per
million) using the “limma” R package for analysis. Then the
“normalizeBetweenArrays” function of the R package “limma”
was performed for data standardization. The TCGA-LUAD
dataset including 535 tumor samples and 59 tumor-adjacent
samples was used to compare the difference in the expression of
m7G-related genes between tumor and normal tissues. For the
GEO datasets, probe IDs were converted to gene symbols
according to platform annotation files. Normalized expression
values were log2-transformed and scaled before being used in
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FIGURE 1 | Characteristics and differences of m7G-related genes in The Cancer Genome A
related gene expression between LUAD tumor and normal tissues. (C) The PPI network bet
related gene expression. (E) Genetic mutation frequency and types of m7G-related genes. *
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model validations. Using the “combat” algorithm in the “sva”
package of the R software, we correct the batch effect between the
TCGA and GEO datasets. Genome mutation data of TCGA-
LUAD [including somatic mutation and copy number variation
(CNV)] were downloaded from the TCGA database and the
UCSC Xena platform (https://gdc.xenahubs.net/). For the
analyses involving clinical data, samples with unknown
survival times were deleted.

Identification of Differential
Expression and Genetic Alterations in
m7G-Related Genes
We identified m7G-related genes from published literature (28)
and the gene sets named “m7G(5′)pppN diphosphatase activity”,
“RNA 7-methylguanosine cap binding”, and “RNA cap binding”
from the Molecular Signatures Database (MSigDB, https://www.
gsea-msigdb.org/gsea/msigdb/search.jsp) with the keyword “7-
methylguanosine.” To screen differentially expressed m7G-
related genes (DEMGs) with the threshold of p-value <0.05
between tumor and normal adjacent tissues from the TCGA-
LUAD dataset, the “limma” R package was used. After screening,
the “heatmap” R package was applied for generating heatmaps.
The immunohistochemistry (IHC) results from the Human
Protein Atlas (HPA, https://www.proteinatlas.org) were used to
validate the protein level of DEMGs in normal and tumor tissues.
Meanwhile, we observed genetic mutation frequency and types of
m7G-related genes in TCGA-LUAD samples by using the
“maftools” R package.

Construction of the Protein–Protein
Interaction Network and Correlation
Between m7G-Related Genes
Among proteins with co-expression coefficients >0.4, the
STRING database (https://string-db.org/) was used to construct
the protein–protein interaction (PPI) network. Cytoscape
software (version 3.9.1) was used to visualize the network;
moreover, the MCC algorithm of the cytoHubba plugin was
used to screen the hub genes. The “reshape2” R package was used
to identify the correlation between the expression of m7G-
related genes.

Identification of the Overall Survival-
Associated m7G-Related Genes
Overall survival (OS) was assessed by the Kaplan–Meier method.
The datasets of TCGA-LUAD and GSE68465 (29) were merged
to explore the overall survival predictive value of each m7G-
related gene. R packages “survival” and “survminer” were used.

Hierarchical Clustering
To classify LUAD samples into different subgroups based on the
m7G-related gene set, the R package “ConsensusClusterPlus” was
used. We combined transcriptome profiling data and
corresponding clinical data from the TCGA-LUAD and
GSE68465 datasets for this analysis. The maximum number of
clusters was nine. We selected 80% item resampling (pItem), 100%
gene resampling (pFeature), a maximum evaluated k of 9, 50
Frontiers in Oncology | www.frontiersin.org 4
resamplings (reps), kmeans (clusterAlg), Euclidean (distance),
and a specific random seed (seed = 123456) in the R package
“ConsensusClusterPlus” for this analysis. Based on the consensus
matrices and the cumulative distribution function (CDF) curves of
the consensus index, the optimum number of clusters was
determined. The differences of survival and distribution of
clinicopathologic characteristics were compared between different
clusters and visualized using the R packages “survival”,
“survminer”, “limma”, “ggplot2”, and “pheatmap”. “Gene set
variation analysis (GSVA)” R packages were further used to
explore the difference in biological processes between different
clusters. We downloaded the gene set “c2.cp.kegg.v7.4.symbols”
from the MSigDB database for this analysis. An adjusted p-value of
less than 0.05 was considered statistically significant. A single-
sample gene set enrichment analysis (ssGSEA) was used to quantify
the enrichment scores and to represent the relative abundance of 23
tumor-infiltrating immune cell types between different clusters.
The “maftools” R package was used to present mutational
differences of each cluster. The CNV of different clusters was
analyzed and visualized using the RCircos package in R.

Construction and Validation of a
Prognostic Model
Also, transcriptome profiling data and corresponding clinical
data from the TCGA-LUAD and GSE68465 datasets were
merged for this analysis. The combined data were randomly
divided into a training cohort and an internal validation cohort
in a 1:1 ratio. Meanwhile, the 442 LUAD samples from
GSE72094 (30) were used as an external validation cohort.
Briefly, by using the “limma” R package, the differentially
expressed genes (DEGs) with adjusted p-value <0.05 and |
log2FC| >0.585 between clusters were detected. Subsequently,
univariate Cox analysis was applied to explore the prognosis-
related DEGs. Then, we used the LASSO regression with 10-fold
cross-validation to narrow down the prognosis-related DEGs
applying the R package “glmnet,” and further performed the
multivariate Cox regression analysis to establish a signature for
evaluating the relationships between the DEGs and the survival
of LUAD patients. The IHC results from the HPA were used to
validate the protein level of this gene signature in normal and
tumor tissues. Finally, we calculated the risk scores of each
patient based on the following model formula: risk score = Si
Coefficient (mRNAi) × Expression(mRNAi). According to the
median risk scores in the training group, patients were
separated into high- and low-risk groups among both training
and validation cohorts. The Kaplan–Meier method was
performed to compare the OS between the high- and low-risk
groups. The predictive value of the prognostic model was
assessed through time-related receiver operating characteristic
(ROC). The heatmaps were used to compare and visualize the
distribution of clinicopathologic characteristics between the risk
cohorts. Multivariate Cox regression analysis was applied to test
the prognostic independence of risk score. The principal
component analysis (PCA) and t-distributed stochastic
neighbor embedding (t-SNE) which can get a low-dimensional
cluster distribution from high-dimensional gene sets were
June 2022 | Volume 12 | Article 876360
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utilized for validating the classification results. The risk scores of
each patient were further combined with clinical characteristics
to construct a nomogram through the “rms” R package.

Comparison of the Novel Prognostic
Model and Previously Reported
Models using ROC Curves and
Concordance Index Values
To compare our prognostic model with other models previously
reported in LUAD, four studies primarily focusing on m6A-
related signatures were selected (22, 31–33). We extracted the
genes included in these prognostic models and used ROC curves
and concordance index (C-index) values to compare the
predictive accuracy between different models. The R packages
“survcomp,” “survival,” “ggplot2,” “ggpubr,” “limma,”
“survminer,” and “timeROC” were applied.

Functional and Pathway
Enrichment Analyses
To explore the potential mechanisms and pathways between the
high- and low-risk groups, the Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG) functional
enrichment analysis, and gene set enrichment analysis (GSEA)
were conducted among DEGs between the high- and low-risk
groups using the R packages “clusterProfiler,” “enrichplot,”
“limma,” “ggplot2,” and “org.Hs.eg.db.”

Analyses of Immune Cells, Immune-
Related Functions, and the Tumor
Microenvironment
Using the ssGSEA through the “GSVA” R package, we compared
the enrichment scores, represented the relative abundance of 23
tumor-infiltrating immune cell types between the high- and low-
risk groups, and then visualized the results through the R
packages “limma,” “ggpubr,” and”reshape2.” The differential
analyses of stromal score, immune score, ESTIMATE score,
and immune cells were performed based on the results of
CIBERSORT and ESTIMATE using the R software packages
“CIBERSORT” and “estimate.” Moreover, the mRNA
expression-based stemness index (mRNAsi) scores of LUAD
were obtained from previous research (34). Spearman’s
correlation analyses were used to establish the relationship
between risk scores and immune cells as well as between risk
scores and mRNAsi scores. The tumor immune dysfunction and
exclusion (TIDE) score (35) was calculated online (http://tide.
dfci.harvard.edu/) to assess the immune checkpoint inhibitor
(ICI) response between the high- and low-risk groups. We also
compared the expressions of 47 immune checkpoint-related
genes (Supplementary Table 1) between the high- and low-
risk groups through the R software packages “limma,” “ggpubr,”
and “ggplot2.”

Chemotherapeutic and Small Molecule
Drug Screening and Prediction
The public dataset, Genomics of Drug Sensitivity in Cancer
(GDSC, https://www.cancerrxgene.org) (36), was chosen to
Frontiers in Oncology | www.frontiersin.org 5
evaluate the response to chemotherapeutic and small molecule
drugs between the high- and low-risk groups, which was done by
computing the half-maximum inhibitory concentration (IC50).
The analyses were conducted through the “pRRophetic”
R package.

Statistical Analyses
All analyses were completed by using R language (Version 4.1.2).
Student’s t-test, chi-squared test, or Wilcoxon test was applied to
compare the differences between groups. Spearman’s correlation
test was performed to evaluate the association between variables.
A p-value of <0.05 was considered statistically significant.
RESULTS

Screening and Genetic Landscape of
m7G-Related Genes
After screening, we found 29 m7G-related genes, namely, AGO2,
CYFIP1, DCP2, DCPS, EIF3D, EIF4A1, EIF4E, EIF4E1B,
EIF4E2, EIF4E3, EIF4G3, GEMIN5, IFIT5, LARP1, LSM1,
METTL1, NCBP1, NCBP2, NCBP2L, NCBP3, NSUN2,
NUDT10, NUDT11, NUDT16, NUDT3, NUDT4, NUDT4B,
SNUPN, and WDR4. Of these, 12 DEMGs with the threshold
of |log2FC| >0.585 and p <0.05 were observed between 535
tumor and 59 normal TCGA-LUAD tissues, which consisted of 2
downregulated (NCBP2L, EIF4E3) and 10 upregulated (DCPS,
EIF4E1B, EIF4G3, LARP1, LSM1, METTL1, NCBP1, NCBP2,
NSUN2, and WDR4) DEMGs in tumor samples (Figure 1B and
Table 1). The protein expressions of DEMGs in normal and
tumor tissues were further validated using the IHC results from
the HPA platform. As shown in Figure 2, the protein expressions
of METTL1, NSUN2, EIF4G3, LARP1, NCBP1, and NCBP2
were higher in tumor tissues than in normal tissues; however, the
protein expressions of WDR4, EIF4E1B, and NCBP2L were
negative in both tumor and normal tissues. The PPI network
between 24 DEMGs with the threshold of p <0.05 is shown in
Figure 1C; of these DEMGs, EIF4E, EIF4E1B, EIF4E2, NCBP1,
NCBP2, EIF4E3, AGO2, NCBP2L, CYFIP1, and EIF4A1 were
the top 10 hub genes. Spearman’s correlation analysis suggested
that EIF4E3 was most frequently and negatively correlated with
other DEMGs, as shown in Figure 1D. A total of 561 samples in
the TCGA-LUAD cohort were used for somatic mutation of
m7G-related genes; among them, 80 (14.26%) samples were
observed to have experienced mutation events. A missense
mutation was the most common type of variant classification,
and EIF4G3, LARP1, NSUN2, AGO2, and CYFIP1 were the top
5 most frequently mutated genes (Figure 1E).
Survival Analysis Based on the Expression
of Each m7G-Related Gene
To further verify the predictive role of each m7G-related gene, we
conducted survival analyses using the Kaplan–Meier method. As
shown in Figure 3, the high expression of most genes (including
CYFIP1, DCPS, EIF3D, EIF4E, EIF4E2, EIF4G3, LARP1,
June 2022 | Volume 12 | Article 876360
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METTL1, NCBP1, NCBP2, NUDT4, NUDT11, SNUPN, and
WDR4) portended a significantly poor OS. Conversely, a high
expression of NUDT3 predicted an improved OS (Figure 3).
Consensus Clustering Based on the
Expression of m7G-Related Genes
Based on the expression similarity of the 29m7G-related genes, the
consensus clustering method was applied to cluster the combined
LUAD samples of the TCGA and GSE68465 cohorts. The cluster
number k ranged from 2 to 9; when k = 2, a relatively clear-cut
boundary was shown in the heatmap of the consensus matrix
(Figure 4A, Supplementary Figure S1A), and a flat slope was
seen in the CDF curve of the consensus index score
(Supplementary Figure S1A). Hence, we selected k = 2 as the
appropriate number of clusters and divided 936 LUAD samples
into two clusters—namely, cluster 1 (C1, n = 400) and cluster 2
(C2, n = 536). Next, Kaplan–Meier survival analysis was applied to
evaluate the prognostic value of this clustering. A significant
difference in OS was observed between the two clusters (log-
rank p < 0.001). C1 had a worse median OS (Figure 4B).
Accordingly, the samples of C1 had higher levels of gene
expression compared with C2, as shown in the heatmap
(Figure 4D). Also, as seen in the heatmap, however, variations
in other clinicopathological characteristics did not show statistical
significance between the samples of each cluster. Similarly, C1 had
a higher expression of most m7G-related genes compared with C2
(Supplementary Figure S1B). The results of the GSVA
enrichment analysis based on the KEGG gene set showed that
Frontiers in Oncology | www.frontiersin.org 6
the process of cell cycle and DNA repair, such as non-homologous
end-joining, spliceosome, nucleotide excision repair, mismatch
repair, and cell cycle, was enriched in C1; C2 was prominently
enriched in metabolism-associated pathways, such as tyrosine
metabolism, arachidonic acid metabolism, drug metabolism
cytochrome P450, metabolism of xenobiotics by cytochrome
P450, sulfur metabolism, and alpha-linolenic acid metabolism
(Figure 4E). From the results of the ssGSEA, we found that the
scores of some immune cells, such as activated B cells, activated
CD8 T cells, activated dendritic cells (aDCs), CD56 dim nature
killer cells, myeloid-derived suppressor cells (MDSCs),
macrophages, mast cells, monocytes, neutrophils, T follicular
helper cells, type 1 T helper cells, and type 17 T helper cells,
were significantly enriched in C2 (Figure 4C). In addition, the
somatic mutations were more frequent in C1 than in C2
(Figure 4F). The frequencies and locations of the CNVs were
also different in C1 and C2 (Figures 4G, H), and the copy number
losses were more frequent in C2 than in C1.

Construction and Validation of a
Novel Prognostic Model Based on
DEGs Between Clusters
Using the “limma”R package, the DEGs were first screened between
the two clusters in a combined LUAD dataset of the TCGA and
GSE68465 cohorts, and 130 DEGs were finally obtained. Then, we
used the univariate Cox analysis to explore 112 prognosis-related
DEGs. To prevent model overfitting, LASSO penalized Cox
regression modeling was conducted to screen the key DEGs
associated with survival. With this method, a novel prognostic
gene model with four genes was constructed (Figures 5A, B).
Subsequently, risk scores per sample were calculated using the
following model formula: risk score = (0.1606739599952 ×
expression value of KIF20B) + (0.207218473949824 × expression
value of HMMR) + (0.157719134596455 × expression value of
ARNTL2) + (0.0802509860697548 × expression value of DKK1).
The combined LUAD dataset was randomly divided into a training
cohort and internal validation cohort in a 1:1 ratio, and the 442
LUAD samples from the GSE72094 dataset were used as an external
validation cohort. The samples were divided into high-risk and low-
risk groups according to the median threshold of risk scores in the
training group (Figures 5J–L). The expressions of most m7G-
related genes were significantly higher in the high-risk group than
in the low-risk group (Figure 5C). As shown by the Kaplan–Meier
analyses, patients in the high-risk group had significantly worse OS
than those in the low-risk group (p < 0.001, Figures 5D–F);
analogously, as the risk score increased, more patients died
(Figures 5J–L). In the training cohort, the AUC values of the
present risk model were 0.734, 0.691, and 0.676 for the 1-, 2-, and 3-
year prognoses, respectively (Figure 5G), with similar results
observed in the internal and external validation groups
(Figures 5H, I). The distribution patterns from t-SNE and PCA
analyses showed that samples could completely be distinguished
into high- and low-risk groups (Figures 5M–O). Taken together,
these findings demonstrated the prognostic robustness of the novel
prognostic model in patients with LUAD.
TABLE 1 | Differences in the expression of m7G-related genes in the TCGA-
LUAD cohort.

Gene Normal tissue Tumor tissue Log2FC p

METTL1 3.53626 10.15226 1.521504 9.60E−30
WDR4 2.104496 4.390468 1.0609 2.74E−25
NSUN2 8.98576 20.20226 1.168804 1.40E−29
DCPS 3.496315 6.175647 0.820755 1.79E−24
NUDT10 0.17005 0.199114 0.227639 0.000217
NUDT16 9.429715 8.582916 −0.13575 0.000331
NUDT3 2.28048 3.011322 0.401059 1.81E−09
AGO2 3.348328 4.644651 0.472129 0.002944
CYFIP1 15.10077 14.09259 −0.09968 0.001197
EIF4E 2.014382 2.535048 0.331676 9.25E−06
EIF4E1B 0.001917 0.188505 6.619734 0.000329
EIF4E2 9.342995 10.33663 0.14581 0.026165
EIF4E3 5.466021 2.852976 −0.93802 4.09E−26
GEMIN5 4.074254 5.318471 0.384475 2.69E−07
LARP1 17.49505 27.5081 0.65291 5.73E−17
NCBP1 5.233116 7.854471 0.585844 1.28E−15
NCBP2 11.49588 17.48301 0.604837 1.21E−20
EIF3D 37.79962 47.5054 0.32972 5.80E−09
EIF4A1 1.539405 2.132041 0.469863 0.001368
EIF4G3 6.026233 9.566647 0.666757 1.91E−16
IFIT5 10.44892 8.593445 −0.28205 4.65E−08
LSM1 8.176932 12.76115 0.642126 1.82E−12
NCBP2L 0.154783 0.060228 −1.36175 6.79E−06
SNUPN 3.814629 4.839386 0.343281 2.41E−07
m7G, 7-methylguanosine; TCGA-LUAD, The Cancer Genome Atlas- lung
adenocarcinoma; FC, fold change.
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Comparison of Our Prognostic Model and
Previously Reported Models Using ROC
Curves and C-Index Values
To compare our prognostic model with other models previously
reported in LUAD, we searched four studies primarily focusing on
m6A-related signatures (22, 31–33). The number of genes included
in these models varied from 3 to 27.We found that the AUC and C-
index values of our model were higher than those of other models
except for the model constructed by Ouyang et al. (32) (Figure 6A).

Independent Prognostic Factor Analysis,
Clinical Correlation Analysis, Nomogram
Construction, and Functional and Pathway
Enrichment Analyses
Univariate and multivariate Cox regression analyses were performed
by introducing age, gender, TNM stage, and risk scores to assess the
independence of risk scores in the survival prediction of LUAD
patients. Those variables with p <0.1 in the univariate analysis were
selected for multivariate analysis. Among the samples in the training
Frontiers in Oncology | www.frontiersin.org 7
cohort, the results showed that age, T stage, N stage, and risk score
were identified as independent negative prognostic factors for patients
with LUAD (Figure 6B), and similar results were observed in the
internal and external validation groups (Supplementary Figures
S2A, B). Meanwhile, in the internal validation cohort, risk score
was of greater assistance than the other clinical characteristics in
predicting prognosis (HR = 1.689, 95% CI: 1.376–2.075, p < 0.001;
Supplementary Figure S2A). As shown in Figure 6C, the heatmap
presented the distribution of clinicopathological features between the
high- and low-risk cohorts. There were significant differences in N
stage (p < 0.01), T stage (p < 0.001), and gender (p < 0.01) between the
different risk groups. To facilitate the utilization of our risk model, we
further constructed a nomogram using risk scores combined with
clinical characteristics, as shown in Figure 6D, and calibration curves
further verified this nomogram as reliable and accurate in predicting
1-, 3-, and 5-year OS (Supplementary Figure S2G).

By considering the DEGs between the high- and low-risk
groups from combined samples of the TCGA and GSE68465
cohorts, we conducted GO enrichment analysis, KEGG pathway
analysis, and GSEA to explore the potential biological functions
A B
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FIGURE 2 | Protein expressions of 11 differentially expressed m7G-related genes in the tumor and normal tissues from the Human Protein Atlas platform. (A)
METTL1 expression. (B) WDR4 expression. (C) DCPS expression. (D) NSUN2 expression. (E) EIF4E1B expression. (F) EIF4G3 expression. (G) NCBP2L expression.
(H) LARP1 expression. (I) NCBP1 expression. (J) NCBP2 expression. (K) EIF4E3 expression.
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of these genes. As shown in Figure 6E and Supplementary
Figure S2D, “nuclear division” and “organelle fission” were the
most enriched terms among the biological process categories,
and “spindle” and “tubulin binding” were the most enriched
terms among the cellular component and molecular function
categories, respectively. Cell cycle was identified to be the most
enriched among the KEGG pathways of the DEGs (Figure 6F
and Supplementary Figure S2C). GSEA was further performed
to identify the differential pathways enriched in GO and KEGG
between the high- and low-risk subgroups, and the results
revealed that cell cycle and DNA replication-related biological
Frontiers in Oncology | www.frontiersin.org 8
processes and pathways were enriched in the high-risk group;
however, the biological processes and pathways enriched in the
low-risk group were weakly associated with tumor initiation and
progression (Figure 6G and Supplementary Figure S2E).

Risk Signature-Based Immune
Cell Infiltration, Immune-Related
Pathways, Tumor Microenvironment,
and Stemness Analyses
ssGSEA was performed to quantify the enrichment scores of 13
immune cell-related functions and 16 immune cells between the
FIGURE 3 | The overall survival analysis based on the expression of each m7G-related gene.
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two risk groups. Intriguingly, the scores of some immune cells,
such as aDCs, immature dendritic cells (iDCs), mast cells, and
neutrophils, were significantly enriched in the low-risk group of
the training cohort (Figure 7A). However, the scores of some
immune functions, such as cytolytic activity, inflammation
Frontiers in Oncology | www.frontiersin.org 9
promoting, major histocompatibility complex (MHC) class I,
parainflammation, type-I interferon (IFN) response, and T-cell
co-inhibition, were significantly enriched in the high-risk group
(Figure 7B). Similar results were observed in the internal testing
dataset (Supplementary Figure S2F). We further analyzed the
A B

D E

F

G H

C

FIGURE 4 | Consensus clustering based on the expression of m7G-related genes. (A) The heatmap of the consensus matrix showing that 2 was the appropriate k
value. (B) Kaplan–Meier curves for the OS in patients with different clusters. (C) The differences in the scores of immune cells between the two clusters. (D) Heatmap
for the distribution of clinicopathologic characteristics and the difference of the expression of 130 DEGs between the two clusters. (E) Heatmap for the difference of
biological process in GSVA enrichment analysis based on the KEGG gene set. (F) The waterfall plot showing the differences in somatic genomic mutation between
cluster 1 (C1) and cluster 2 (C2). (G) Histogram reflecting the copy number variation (CNV) of the m7G-related genes in C1 (up) and C2 (down). (H) The location of
CNV alteration of m7G-related genes on 23 chromosomes in C1 (left) and C2 (right). **p < 0.01, ***p < 0.001.
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correlations between immune cell infiltration and the expression of
genes involved in the construction of the prognostic model, as
shown in Figure 7D. The high-risk group had a lower TIDE score
(Figure 7C) and higher expressions of most immune checkpoint-
related genes (Figure 7E), which suggested that patients in the
high-risk group may benefit from immunotherapy. In addition, we
observed that patients in the low-risk group had higher
ESTIMATE, immune, and stromal scores (Figure 7F).
Additionally, by using Spearman’s correlation analysis, a positive
and significant correlation was observed between risk score and
Frontiers in Oncology | www.frontiersin.org 10
tumormutation burden (TMB, R = 0.22, p < 0.001, Figures 7G, H)
as well as between risk score and mRNAsi score (RNAss, R = 0.35,
p < 0.001, Figure 7I), which demonstrated that LUAD patients
with higher risk scores had higher RNAss values and TMBs.

Drug Screening Based on the m7G-
Related Risk Signature
We further evaluated the response to chemotherapeutic and
small molecule drugs between the high- and low-risk groups,
as described previously. In the high-risk group, a total of 57 drugs
A B
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O

FIGURE 5 | Construction and validation of the prognostic model based on the m7G-related gene signatures in lung adenocarcinoma (LUAD). (A, B) LASSO analysis
with minimal lambda value. (C) The difference in the expression of m7G-related genes in the high- and low-risk groups. The Kaplan–Meier survival analysis showing
the difference in overall survival (OS) between the high- and low-risk groups in the training (D), internal validation (E), and external validation cohorts (F). Time-
dependent ROC curve analysis in the training (G), internal validation (H), and external validation cohorts (I). The distribution of risk score and survival status of LUAD
patients with different risk scores in the training (J), internal validation (K), and external validation cohorts (L). PCA and t-SNE analyses in the training (M), internal
validation (N), and external validation cohorts (O). **p < 0.01, ***p < 0.001.
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with obviously lower IC50 values were observed; concomitantly, a
total of 28 drugs were observed in the low-risk group (Table 2).
Based on the drugs commonly used to treat LUAD, we noticed
that patients in the high-risk group were more sensitive to
chemotherapeutic agents such as cisplatin, docetaxel,
etoposide, gemcitabine, paclitaxel, and vinorelbine.
DISCUSSION

With the growing in-depth understanding of RNA
modifications, m7G modifications have gradually become a
research hotspot in recent years. However, there is still a lack
of comprehensive analyses to summarize the role of m7G-related
Frontiers in Oncology | www.frontiersin.org 11
gene signatures in LUAD. In this study, we comprehensively
analyzed the genetic characteristics and prognostic value of m7G-
related genes in LUAD and then further constructed a novel
prognostic model based on m7G-related gene signatures to
predict survival and guide treatment decisions.

We first extensively screened the m7G-related genes and finally
obtained 29 genes, namely, AGO2, CYFIP1, DCP2, DCPS, EIF3D,
EIF4A1, EIF4E, EIF4E1B, EIF4E2, EIF4E3, EIF4G3, GEMIN5,
IFIT5, LARP1, LSM1, METTL1, NCBP1, NCBP2, NCBP2L,
NCBP3, NSUN2, NUDT10, NUDT11, NUDT16, NUDT3,
NUDT4, NUDT4B, SNUPN, and WDR4. Most genes have been
reported to modulate some phases of the RNA life cycle, especially
in mRNA (28, 37–41). In the TCGA-LUAD dataset, we found that
DCPS, EIF4E1B, EIF4G3, LARP1, LSM1, METTL1, NCBP1,
A

B D
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C

FIGURE 6 | Model comparison, independent prognostic factor analysis, clinical correlation analysis, nomogram construction, and functional and pathway
enrichment analyses in the different risk cohorts. (A) The comparison of our prognostic model and previously reported models using ROC curves and concordance
index (C-index) values. (B) The multivariate Cox regression analysis of the risk score and other clinical features in the training cohort. (C) Heatmap for the distribution
of clinicopathologic characteristics between the high- and low-risk groups in the combined lung adenocarcinoma (LUAD) dataset of the TCGA and GSE68465
cohorts. (D) A nomogram using risk scores combined with clinical characteristics. GO enrichment analysis (E) and KEGG pathway analysis (F) based on the
differentially expressed genes between the high- and low-risk groups in the combined LUAD dataset. (G) Gene set enrichment analysis (GSEA) based on KEGG and
GO in the high-risk group in the combined LUAD dataset. ** p <0.01, ***p < 0.001.
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FIGURE 7 | Risk signature-based immune cell infiltration, immune-related pathways, tumor microenvironment (TME), and stemness analyses. The differences in the
scores of immune cells (A) and immune functions (B) in the training cohort. (C) The differences in tumor immune dysfunction and exclusion (TIDE) score in The
Cancer Genome Atlas-lung adenocarcinoma cohort. (D) The correlations of immune cell infiltration and the four genes in the risk model in a combined lung
adenocarcinoma (LUAD) dataset of the TCGA and GSE68465 cohorts. (E) The differentially expressed immune checkpoint-related genes between the high- and low-
risk groups. (F) ESTIMATE, immune, and stromal scores between the high- and low-risk groups in the combined LUAD dataset. (G) The difference in tumor mutation
burden (TMB) between the high- and low-risk groups in the combined LUAD dataset. Spearman’s correlation analyses between the risk score and TMB (H), as well
as between the risk score and mRNAsi scores (RNAss) (I) in the combined LUAD dataset. *p < 0.05, **p < 0.01, ***p < 0.001.
TABLE 2 | The sensitive chemotherapeutic and small molecule drugs in the high- and low-risk groups.

Group Sensitive drugs

High
risk

A-443654, ABT-263, ABT-888, AG-014699, AICAR, ATRA, AUY922, AZD7762, BAY 61-3606, BI-2536, BI-D1870, BIBW2992, bleomycin, BMS-708163,
bortezomib, bosutinib, BX-795, camptothecin, CCT018159, CGP60474, CGP-082996, cisplatin, CMK, cytarabine, docetaxel, doxorubicin, epothilone B,
etoposide, gemcitabine, GW843682X, JNK inhibitor VIII, JW.7.52.1, KU-55933, midostaurin, mitomycin C, NU-7441, NVP-TAE 684, obatoclax mesylate,
paclitaxel, parthenolide, pazopanib, pyrimethamine, QS11, rapamycin, RO-3306, S-trityl-L-cysteine, SL 0101-1, thapsigargin, TW-37, vinblastine, vinorelbine,
vorinostat, VX-680, X17-AAG, X681640, Z-LLNle-CHO, ZM-447439

Low
risk

AMG-706, AS601245, AZ628, AZD6244, bexarotene, bicalutamide, bryostatin 1, CCT007093, DMOG, EHT-1864, erlotinib, FH535, GDC0941, GNF-2, GW
441756, imatinib, JNK 9L, lapatinib, LFM-A13, metformin, MK-2206, nutlin-3a, PAC-1, PD-0332991, roscovitine, salubrinal, VX-702, WO2009093972
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NCBP2, NSUN2, and WDR4 were significantly upregulated in
tumor tissues than in adjacent normal tissues (|log2FC| > 0.585, p
< 0.05), which were further validated in protein levels using the IHC
results from the HPA platform; moreover, high expressions of
DCPS, EIF4G3, LARP1, METTL1, NCBP1, NCBP2, and WDR4
predicted a significantly poor OS. METTL1, as one of the key
tRNA-modifying enzymes, has been extensively reported to
promote cancer development by mediating tRNA m7G
modifications in lung cancer, ICC, HCC, and bladder cancer (16–
20). Consistent with our results, Ma et al. (16) found that METTL1
and WDR4 were upregulated in lung cancer, and METTL1
promoted lung cancer growth and invasion via regulation of m7G
tRNA modification in-vitro and in-vivo assays. Also, METTL1
inhibition can improve the sensitivity of HeLa cells to 5-
fluorouracil (42). These results suggested that METTL1 may be a
target for LUAD therapy. In a study reported by Huang et al. (43),
EIF4G3, encoding a eukaryotic translation initiation factor involved
in mRNA cap recognition and transport of mRNAs to the
ribosome, was found to be a direct target of miR-375 in lung
squamous cell carcinoma cells, and silencing of EIF4G3 induced cell
apoptosis and suppressed tumor growth. LARP1 is an RNA-binding
protein that regulates the 5′-terminal oligopyrimidine tract mRNA
(44). Recent studies have revealed that LARP1 drives oncogenesis,
and higher levels of LARP1 protein correspond with a poor
prognosis in NSCLC, colorectal cancer, prostate cancer, ovarian
cancer, HCC, and ICC (45–51). Xu et al. (45) found that LARP1
knockdown inhibited cell proliferation, migration, invasion, and
tumorigenic potential in NSCLC cells, which can be regulated by the
XIST/miR-374a axis. In another study, LARP1 was established as a
target of miR-503 and further regulated by circ-BANP to promote
lung cancer progression. LARP1 can also regulate mTOR signaling
to contribute to cancer progression (52). These observations,
combined with ours, suggest that LARP1 should be acknowledged
as an oncogene and could be a promising therapeutic target in
LUAD. NCBP1, which can participate in transcriptional and post‐
transcriptional processes together with NCBP2 and NCBP3,
mediated the proliferation, migration, and invasion of LUAD cells
through upregulation of CUL4B (53). Interestingly, we noted that
NUDT3, as a Nudix protein possessing mRNA-decapping activity
in cells, was upregulated in tumor tissues of LUAD (|log2FC| = 0.4
and p < 0.001), but its high expression predicted significantly better
survival. Grudzien-Nogalska et al. (54) reported that a reduction in
NUDT3 protein levels in MCF-7 cells promoted cell migration.
Unfortunately, there is no evidence to suggest the underlying role of
NUDT3 in LUAD, which requires further investigations.

According to the expression similarity of the 29 m7G-related
genes, the combined LUAD samples were further classified into
two clusters, and C1 had a worse median OS than C2. Consistent
with the survival analysis, C1 had a higher level of gene
expression than C2. Concomitantly, the biological process
from the KEGG gene set, the scores of some immune cells, the
somatic mutations, and the frequencies and locations of the
CNVs between the two clusters were different. However,
differences in clinicopathological characteristics, such as T
stage, N stage, gender, and age, did not have statistical
significance between the clusters. These findings suggest that
Frontiers in Oncology | www.frontiersin.org 13
the prognostic variations of different clusters might mainly be
due to the genetic heterogeneity of LUAD patients. Therefore, we
used 130 DEGs between the two clusters to construct a novel
prognostic model with four genes (KIF20B, HMMR, ARNTL2,
and DKK1). Of these DEGs, KIF20B (also known as
MPHOSPH1), a kinesin protein that plays a critical role in
cytokinesis, has been found to promote the progression of
some cancers such as clear cell renal cell carcinoma (55),
pancreatic cancer (56), hepatocellular carcinoma (57, 58),
tongue cancer (59), and bladder cancer (60) by stimulating cell
proliferation. HMMR (hyaluronan-mediated motility receptor),
also called RHAMM/CD168, has been extensively reported to
promote the progression of LUAD and can serve as a key
prognostic biomarker for patients with LUAD (61–64).
Moreover, Brady et al. (65) have found a positive association
between the expression of the transcription factor ARNTL2 (aryl
hydrocarbon receptor nuclear translocator-like 2) and the
outcome of patients with LUAD. ARNTL2 is a paralog of the
circadian transcription factor ARNTL and has recently been
discovered to also act as a modifier of immune cell infiltration in
malignancies (66–68). Meanwhile, the Wnt antagonist DKK1
(Dickkopf-1) has been implicated in the modulation of
immune cell activities as well as the immunosuppressive
microenvironment in cancers and has become a promising
target for cancer immunotherapy (69, 70). Together, these
findings confirmed the reliability and precision of our
prognostic model. Subsequently, the combined LUAD dataset
of the TCGA and GSE68465 cohorts was randomly divided into
a training cohort and internal validation cohort in a 1:1 ratio, and
the dataset from GSE72094 was further used as an external
validation cohort. The samples were divided into high-risk and
low-risk groups according to the median threshold of the risk
score in the training group. By using survival, time-dependent
ROC, PCA, t-SNE, and univariate and multivariate Cox
regression analyses, we noticed that a higher risk score was a
negative predictive factor for survival and was identified as one of
the independent negative prognostic factors for patients with
LUAD. These findings further demonstrated the prognostic
robustness of the novel prognostic model in patients with
LUAD. Some clinicopathological characteristics, such as age, T
stage, and N stage, were also identified as independent negative
prognostic factors for patients with LUAD. Therefore, we further
constructed a nomogram using risk scores combined with
clinical characteristics to better predict the survival of
LUAD patients.

We also compared our prognostic model with other four
models previously reported in LUAD in studies primarily
focused on m6A-related signatures. We found that the AUC
and C-index values of our models were higher than those of the
other models, except for the signature by Ouyang et al. (32). The
study reported by Ouyang et al. (32) constructed a novel
prognostic model including 27 genes for LUAD based on
hypoxia, immunity, and epithelial–mesenchymal transition
gene signatures; the overall survival differed significantly
between the high-risk and low-risk groups (HR = 4.26), and
the AUC values for predicting 1-, 3-, and 5-year survival were
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0.763, 0.766, and 0.728, respectively. Despite a better precision,
this model was not conducive to clinical translation due to the
inclusion of too many genes.

We then conducted GO enrichment analysis, KEGG pathway
analysis, and GSEA, considering DEGs between the high- and
low-risk groups. The results implied that cell cycle and DNA
replication-related biological processes and pathways may
contribute to LUAD progression regulation by m7G-related
gene signatures. We also found that most immune cells,
ESTIMATE scores, immune scores, and stromal scores were
enriched in the low-risk group, which suggested that m7G-
related gene signatures may affect LUAD survival outcomes by
altering the TIM and tumor microenvironment (TME).
However, the high-risk group had a lower TIDE score and
higher expressions of most immune checkpoint-related genes,
which suggested that patients in the high-risk group may benefit
from immunotherapy. We finally screened chemotherapeutic
and small molecule drugs that were sensitive to different risk
groups. We noticed that patients in the high-risk group were
more sensitive to commonly used chemotherapeutic agents in
LUAD, such as cisplatin, docetaxel, etoposide, gemcitabine,
paclitaxel, and vinorelbine. This was presumably due to the
enrichment of cell cycle and DNA replication-related biological
processes and pathways in the high-risk group, and these drugs
may interfere with the cell cycle via different mechanisms.

To the best of our knowledge, this is the first bioinformatics
analysis to elucidate the prognostic roles of m7G gene signatures in
malignancies. However, some limitations should be considered in
the interpretation of our results. First, our study is a retrospective
study based on three public datasets, and further large-scale and
prospective studies are needed for validation. Second, the
biological process of m7G modification has not been illustrated
as thoroughly as that of m6A modification until now, so the m7G-
related genes in our study may not be able to fully summarize all
the processes of m7G modification. Third, further investigations
will be required to determine the role of m7G modifications in
LUAD development and progression.

In conclusion, we have summarized for the first time the
alterations and prognostic role of m7G-related regulatory genes
in LUAD and then constructed a prognostic model based on
m7G-related gene signatures involving four genes, which can
accurately and stably predict survival and guide individualized
treatment decisions in LUAD patients. We further found that
alterations in immune cell infiltration and TME characteristics
may be a potential mechanism of this model to predict the
prognosis of LUAD patients.
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