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MEDICAL HYPOTHESIS

Interleukin-13 as a target to alleviate severe coronavirus disease 2019 and 
restore lung homeostasis 
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ABSTRACT

The ongoing coronavirus disease (COVID-19) pandemic urgently requires the availability of 
interventions that improve outcomes for those with severe disease. Since severe acute respiratory 
syndrome coronavirus 2 infection is characterized by dysregulated lung mucosae, and that mucosal 
homeostasis is heavily influenced by interleukin (IL)-13 activity, we explore recent findings indicating 
that IL-13 production is proportional to disease severity. We propose that excessive IL-13 contributes 
to the progression of severe/fatal COVID-19 by (1) promoting the recruitment of immune cells that 
express inflammatory cytokines, causing a cytokine storm that results in widespread destruction of 
lung tissue, (2) directly facilitating tissue-remodeling that causes airway hyperinflammation and 
obstruction, and (3) diverting the immune system away from developing high-quality cytotoxic T 
cells that confer effective anti-viral immunity. These factors may cumulatively result in significant 
lung distress, multi-organ failure, and death. Here, we suggest repurposing existing IL-13-inhibiting 
interventions, including antibody therapies routinely used for allergic lung hyperinflammation, as well 
as viral vector-based approaches, to alleviate disease. Since many of these strategies have previously 
been shown to be both safe and effective, this could prove to be a highly cost-effective solution.
Relevance for Patients: There remains a desperate need to establish medical interventions that 
reliably improves outcomes for patients suffering from COVID-19. We explore the role of IL-13 in 
maintaining homeostasis at the lung mucosae and propose that its dysregulation during viral infection 
may propagate the hallmarks of severe disease – further exploration may provide a platform for 
invaluable therapeutics.
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Interleukin (IL)-13 is critical in maintaining mucosal 
homeostasis, being implicated in allergy, parasitic and viral 
infection, as well as vaccine-specific immunity [1-8]. At the 
lung mucosae, IL-13 is expressed by a range of innate immune 
cell types, particularly type 2 innate lymphoid cells (ILC2s), 
whose rapid response to external stimuli (pathogens, toxins, 
and allergens) acts to facilitate barrier tissue responses and 
condition downstream immune outcomes [9-12]. IL-13 activity 
at the lung triggers smooth muscle contraction, mucus secretion, 
and the recruitment/activation of inflammatory immune cells. 
However, overexpression of IL-13 is associated with allergic 
lung hyperinflammation, airway tissue remodeling, and 
hyperresponsiveness [1,13-15]. Interestingly, IL-13 dysregulation 
is known to be a hallmark of several disease conditions, including 
allergic pulmonary diseases, atopic dermatitis, and also some 
cancers [16-19]. Since coronavirus disease 2019 (COVID-19) 
is fundamentally characterized by dysregulation of the lung 
mucosae, we postulate that IL-13 is associated with destructive 
lung hyperinflammation/immune activity that underpins severe 
COVID-19 disease progression. Here we discuss how IL-13-
inhibiting interventions could be repurposed to benefit severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV2)-infected 
patients.

By studying a series of viruses, we have recently shown 
that ILC2s produce significant IL-13 following viral infection/
vaccination 24 h post-encounter [10], where the level of 
ILC2-derived IL-13 is dependent on the virus (e.g., fowlpox 
<influenza <rhinovirus <Vaccinia virus) [11,20]. Moreover, at 
the later stages of viral infection, Th2 cells can also contribute 
to the IL-13 environment, impacting the resulting viral load and 
adaptive immune outcomes [3,21,22]. Interestingly, dramatically 
elevated IL-13 levels have been reported at the lung mucosae in 
SARS-CoV-2-infected individuals [23]. Therefore, we suspect that 
COVID-19 patients may display significant lung ILC2-derived 
IL-13 (although the role of ILC2s during SARS-CoV-2 infection 
is yet to be fully realized) [24,25]. Even though some IL-13 can 
be helpful during respiratory viral infection by aiding effective 
antibody differentiation [26,27], recruitment of different immune 
cells [28-30], and coordination of amphiregulin-dependent 
epithelium restoration [31], excessive production is damaging to 
airway homeostasis. Excessive IL-13 at the lung mucosae could be 
a key determinant of COVID-19-related hyper-inflammation [23]. 
Donlan et al. have recently shown that IL-13 levels are a powerful 
predictor of COVID-19 severity and the need for ventilation, 
independently of age, gender, and comorbidity [32]. This is 
unsurprising, given that many characteristics of fatal disease can 
be attributed to symptoms of dysregulated IL-13 [33]. Moreover, 
it is also noteworthy that the production of elevated Th2 cytokines, 
IL-4, and IL-13 is thought to be an inherent mechanism by which 
viruses evade the host immune system, promoting the induction of 
poor-quality cytotoxic T cell immunity [3,34-36]. 

It is well-established that IL-13 can effectively recruit 
inflammatory neutrophils, macrophages, eosinophils, and 
lymphocytes to the lung mucosae, resulting in elevated expression 
of various pro-inflammatory cytokines/chemokines [14,15,37-40]. 

Interestingly, patients with severe COVID-19 have shown to 
overexpress cytokines IL-1β, IL-6, tumor necrosis factor, and 
macrophage inflammatory protein-1-a, which can inadvertently 
promote overwhelming tissue damage [33,41,42]. The hyper-
inflammatory phenotype and underlying cytokine storm is thought 
to be the primary cause of COVID-19-associated death, resulting 
in acute respiratory distress syndrome and subsequent multi-organ 
failure [43]. Collectively, these observations indicate that IL-13 
may underpin inflammatory immune cell representations at the 
lung to drive cytokine storming in patients with COVID-19. 

Further, IL-13 is well-known to have direct implications on 
lung tissue remodeling, airway obstruction, and acute/chronic 
lung damage in both allergy and chronic obstructive pulmonary 
disease [44]. Specifically, IL-13 facilitates airway smooth muscle 
proliferation, fibroblast proliferation, goblet cell hyperplasia, 
parenchymal inflammation, and collagen deposition [13,14,45-47], 
many of which have been observed in patients with fatal 
COVID-19 [33]. Thus, we suspect that IL-13 may be the upstream 
mediator of severe SARS-CoV-2 disease.

Moreover, IL-33 is a key upstream mediator of IL-13 at 
the lung mucosae and is thought to play a role in COVID-19 
pathogenesis  [48]. IL-33 is an alarmin produced by epithelial 
cells/alveolar macrophages to recruit and activate immune 
cells, particularly IL-33R+ lung ILC2s [49]. Interestingly, our 
recent studies have shown that transient sequestration of IL-33 
at the lung mucosae using a viral vector expressing IL-33RBP 
(binding protein) does not impact ILC2-drived IL-13 expression. 
In contrast, IL-25RBP has a marked impact on ILC2-derived 
IL-13 [50]. This indicates a complex hierarchy between these 
cytokines. Notably, other studies have also shown that IL-33, IL-
25, and thymic stromal lymphopoietin differentially modulate 
ILC2 activity, specifically in the context of tissue remodeling, 
allergy, and inflammation  [51,52]. However, we propose that in 
the context of alleviating severe COVID-19, direct inhibition of 
IL-13 may yield better disease outcomes rather than targeting a 
particular upstream determinant of IL-13 expression.

In comparative respiratory conditions with similar molecular 
and immunological signatures, restricting IL-13 signaling has 
improved patient outcomes. For example, treatment with a 
monoclonal human anti-IL-4Ra antibody dupilumab (which 
inhibits both IL-13 and IL-4 signaling) has shown significant 
benefits in patients with otherwise uncontrollable asthma or 
severe dermatitis [53,54]. Interestingly, it has been proposed 
that such interventions could be unfavorable in treating 
COVID-19, in part due to the Th1/Th17 cytokines involved in 
hyperinflammation, where IL-13/IL-4 inhibition may further bias 
in immune activity [55]. However, our laboratory and others have 
demonstrated that IL-13 does not necessarily adhere to the classical 
Th1/Th2 immune paradigm, as exemplified by the broad profile 
of immune cells it modulates and/or recruits [3,14,20,48,56,57]. 
Importantly, Dupilumab, along with its favorable safety profile, is 
widely known to reduce airway inflammation (including Th1/Th17 
cytokines) and improve global lung function (such as improve 
forced expiration volume) [53,58-60]. Similar findings have also 
been reported in asthmatics using Tralokinumab, which directly 
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binds to and neutralizes IL-13. However, while Tralokinumab 
clearly improves spirometric outputs, limited benefit to quality 
of life has been reported [61,62]. Thus, at early stages of SARS-
CoV-2 viral infection, IL-13 inhibition at the lung mucosae may 
help reduce COVID-19 disease severity/progression.

Alternatively, viral vectors have long been utilized as vehicles 
to express vaccine antigens, immunomodulators, cytokines/
chemokines, and cytokine receptors [63,64]. We have studied 
the use of viral vectors that co-express vaccine antigens with 
either (1) mutant IL-4 lacking the signaling domain that can bind 
to and antagonize IL-4Ra to restrict the signaling of STAT6 or 
(2) IL-13Ra2 that sequesters excess IL-13 at the vaccination site 
to improve the quality of cytotoxic T cell immunity [20,22,27]. 
In the context of COVID-19, a viral vector-based approach to 
transiently inhibit excess IL-13 at the lung mucosae may help 
alleviate severe disease similarly to therapies using monoclonal 
antibodies. However, an attenuated viral vector could be a more 
attractive approach, with a single dose offering long lasting 
(~3 days) benefit, while still being safe and providing a highly 
localized/targeted response. However, in this context, selecting a 
viral vector that induces low IL-13 would be of great importance, 
as vectors themselves can promote the induction of ILC2-derived 
IL-13 and DC activity at the lung mucosae [11,50,57] 

In conclusion, knowing that IL-13 is a powerful indicator of 
COVID-19 severity [14,32], interventions that directly inhibit IL-
13 activity at the lung mucosae may prove useful in preventing 
or reducing disease progression. Since safe and effective IL-13 
inhibiting drugs/therapies are already available (such as allergy/
asthma treatments and recombinant viral vectors) [53,58], their 
repurposing could be a highly cost-effective solution in alleviating 
SARS-CoV-2-associated pathology. This warrants investigation.
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