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Abstract

Background

Human infections with avian influenza viruses (AIVs) have frequently raised global con-

cerns of emerging, interspecies-transmissible viruses with pandemic potential. Waterfowl,

the predominant reservoir of influenza viruses in nature, harbor precursors of different

genetic lineages that have contributed to novel pandemic influenza viruses in the past.

Methods

Two duck influenza H5N2 viruses, DV518 and DV413, isolated through virological surveil-

lance at a live-poultry market in Taiwan, showed phylogenetic relatedness but exhibited dif-

ferent replication capabilities in mammalian Madin-Darby Canine Kidney (MDCK) cells.

This study characterizes the replication properties of the two duck H5N2 viruses and the

determinants involved.

Results

The DV518 virus replicated more efficiently than DV413 in both MDCK and chicken DF1

cells. Interestingly, the infection of MDCK cells by DV518 formed heterogeneous plaques

with great differences in size [large (L) and small (S)], and the two viral strains (p518-L and

p518-S) obtained from plaque purification exhibited distinguishable replication kinetics in

MDCK cells. Nonetheless, both plaque-purified DV518 strains still maintained their growth

advantages over the plaque-purified p413 strain. Moreover, three amino acid substitutions

in PA (P224S), PB2 (E72D), and M1 (A128T) were identified in intra-duck variations (p518-

L vs p518-S), whereas other changes in HA (N170D), NA (I56T), and NP (Y289H) were

present in inter-duck variations (DV518 vs DV413). Both p518-L and p518-S strains had the
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N170D substitution in HA, which might be related to their greater binding to MDCK cells.

Additionally, polymerase activity assays on 293T cells demonstrated the role of vRNP in

modulating the replication capability of the duck p518-L viruses in mammalian cells.

Conclusion

These results demonstrate that intra-host phenotypic variation occurs even within an indi-

vidual duck. In view of recent human infections by low pathogenic AIVs, this study suggests

possible determinants involved in the stepwise selection of virus variants from the duck

influenza virus population which may facilitate inter-species transmission.

Introduction
Influenza has been a major concern for global health due to dynamic changes through continu-
ous antigenic changes and occasional antigenic shifts resulting from the reassortment of viruses
derived from different hosts [1]. Emerging novel influenza viruses, such as the 2006 H5N1 clade
2.2.1 virus in Egypt [2, 3], the 2009 swine-origin pandemic H1N1 virus [4], the 2011–2012 H3N2
variant in the United States [5], the 2013 H7N9 virus from human cases in China [6], and the
first reported human H6N1 influenza pneumonia case in Taiwan [7], have highlighted the need
for better understanding of the evolution and pathogenicity of avian influenza viruses (AIVs).

Routine virological surveillance in live-poultry markets (LPMs) has become imperative since
the outbreaks of H5N1 influenza virus occurred in Hong Kong in 1997 [8]. Most importantly,
the information on viral sequences provided clues to the origins of pathogens, and evaluation of
inter-species transmission has great value in obtaining these molecular signatures for risk assess-
ment and improved public health preparedness [9, 10]. Moreover, molecular and phenotypic
characterizations of AIVs are critical for discovering newmechanisms and determinants involved
in virus replication, virus-host interactions, host adaptation and immunopathology [11, 12].

Waterfowl, the major influenza virus reservoir, harbors genes that might contribute to AIVs
with the potential to infect humans [12, 13]. Recent findings of H5N1 virus spread among
ducks and other avian species suggest that ducks could also play an important role in influenza
virus transmission [14, 15]. However, virological studies on dynamic changes in low patho-
genic avian influenza (LPAI) viruses in ducks are few. To better monitor AIVs, we initiated a
routine virological surveillance of influenza viruses in healthy ducks at a large, wholesale LPM
in 2005 [16] and isolated LPAI H5N2 viruses for further characterization [17].

Here we report that the two Taiwan duck influenza H5N2 isolates, DV518 and DV413 [17],
with high genetic sequence identities (nucleotides for eight viral genes ranging 99.6–100%)
showed differences in their growth efficiencies in both mammalian and avian cells. In addition,
heterogeneous viral sub-populations of LPAI viruses with different replication efficiency in the
mammalian cells studied did exist within one individual duck influenza DV518 isolate. These
findings could help understand the important elements in viral selection, pathogenesis and
inter-species transmission from LPAI.

Materials and Methods

Sources of Taiwan duck influenza H5N2 viruses
Several Taiwan duck LAPI H5N2 viruses with different gene constellations that were isolated
from fecal droppings in the environment of a live-poultry market of the previous study before
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2012 [16] were examined [Surveillance protocol was approved by the Institutional Animal
Care and Use Committee (IACUC) at National Taiwan University, Permit Number: 98–10].
Sequence analyses revealed the phylogenetic closeness between the two duck H5N2 viruses—
DV518 and DV413 (i.e. parental viruses), with only three amino acid differences in all of the
eight gene segments [17]. Therefore, these two virus strains were selected to examine their phe-
notypic variations in growth properties.

Production of infectious viruses in cell culture
Madin-Darby Canine Kidney epithelial cells (MDCK) and chicken embryo fibroblast cells
(DF1) [18] were grown at 37°C in Dulbecco’s Modified Eagle Medium (DMEM) (Invitrogen)
or Minimum Essential Medium (MEM) (Invitrogen) supplemented with 10% fetal bovine
serum (FBS) (Invitrogen), antibiotics and antimycotic reagents containing 100 μg/mL Strepto-
mycin, 100 units/mL Penicillin and 0.25 μg/mL Amphotericin B (Invitrogen), respectively. For
viral infection, serum-free media containing 1 or 0.05 μg/mL L-(tosylamido-2-phenyl) ethyl
chloromethyl ketone-treated trypsin (TPCK-trypsin) (Thermo) were used during the infection
of MDCK and DF1 cells, respectively.

Quantitative RT-PCR to measure viral RNA
Viral RNA (vRNA) was extracted from the supernatant of infected cells by using the QIAamp
Viral RNAMini kit (Qiagen). The standard M-vRNA of influenza virus was transcribed in
vitro from an M-gene-carrying plasmid, which was constructed as previously described [19].
The tested sample and ten-fold diluted standard of influenza virus M gene RNA (M-vRNA), in
which purified RNA concentration was previously measured by spectrophotometer (General
Electronic Company), were then reverse-transcribed by SuperScript III (Invitrogen), using
Uni-12 primer [20] in parallel.

For quantitation, the tested samples were measured by quantitative RT-PCR for M vRNA.
All cDNA samples were subjected to real-time PCR using the KAPA SYBR FAST qPCR kit
(KAPA) with AMF (5’-GAGTCTTCTAACCGAGGTCGAAACGTA -3’) and FluA-R (5’-
CAAAGCGTCTACGCTGCAGTCC-3’) primers [19]. Standard curves were constructed by
cycle threshold [CT] values of the diluted M-vRNA standard with known copy numbers.

Plaque assay and plaque-purification of the viruses
The viral stock was first titrated by plaque assay using MDCK cells. Briefly, MDCK cells were
seeded on six-well plates and grown until confluent. Ten-fold serial dilutions of the tested sam-
ples were performed in duplicate. After one-hour adsorption at 37°C, the inoculum was then
removed and a 1:1 mixture of 1% agarose gel and 2X serum-free DMEM with TPCK-trypsin at
a final concentration of 2 μg/mL was immediately added as an overlay medium. After 72 hours’
incubation at 37°C, the infected cells were fixed with paraformaldehyde and stained with crys-
tal violet. For plaque-purification, approximately 5–10 plaques were picked after 72 hours
incubation without fixing the cells and then individually inoculated into SPF eggs. The p518-L
and p518-S virus strains were isolated from large and small plaques, respectively through three
rounds of plaque purification from the DV518 virus stock, whereas p413 virus was isolated
through only one round of plaque purification from the DV413 virus stock for further virologi-
cal characterization. Experiments for different virus strains were conducted independently to
prevent possible cross-contamination. Plaque morphology was examined after each round of
plaque purification; and the sizes and numbers of plaques in one well were analyzed by soft-
ware Image J 1.45A (Wayne Rasband, National Institutes of Health, U.S.A.)
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Viral titration by 50% tissue culture infective dose (TCID50)
The TCID50 method was modified as previously described [21]. The 96-well plates were seeded
with 1.5 x 104 MDCK cells per well, and the tested samples were half-log serially diluted by
medium containing TPCK-trypsin with at least four repeats. The virus was adsorbed at 37°C
for two hours, ending with removal of the inoculum by washing twice. After 72 hours’ incuba-
tion at 37°C, the culture supernatant was harvested to determine the occurrence of infection by
standard hemagglutination assay [22] [i.e. hemagglutination-positive]. Titers were calculated
by the Reed-Muench method [23].

Viral sequence analyses
All the studied viruses, from parent stocks to the plaque-purified strains generated during each
round of the plaque-purification process, were used for full-genome sequencing. RNA extrac-
tion and reverse transcription were performed to obtain cDNA as mentioned above, using the
influenza A virus Uni-12 primer [20]. Finally, cDNA was amplified by conventional PCR with
a Platinum Tag DNA polymerase kit (Invitrogen). All the PCR products were sequenced by the
Sanger method and then the sequence data was analyzed, using software of DNAMAN 7 (Lyn-
non Corp.) or SeqMan in Lasergene package (DNASTAR). Amino acid residues are shown
with the H5 numbering system.

Cell binding assay
MDCK and DF1 cells were grown to monolayer in 12-well plates. These two types of cells were
then infected with the same copies per cell of the tested viruses, and then incubated at 4°C for
one hour. The infected cells were washed with phosphate buffered saline (PBS) to remove
unbound virions. Subsequently, Trizol (Invitrogen) was added to extract RNA from infected
cells and the RNA was further extracted using the Direct-zol RNAMiniPrep kit (Zymo). The
vRNA was quantified by quantitative RT-PCR.

Minigenome assay
Before transfection, human kidney 293T cells were seeded onto 24-well plates and grown until
semi-confluent. The cells were then co-transfected with the plasmid pPOL I-Luc-RT, which
contains the luciferase open reading frame in negative polarity flanked by the noncoding
regions of the NS gene of influenza A/WSN/33 virus [24], and the Renilla-luciferase-expression
plasmid pRL-CMV (which serves as a transfection efficiency control) as described [24]. These
cells were incubated at 37°C for 24 hours, and then were infected with the tested Taiwan duck
H5N2 virus strains at an MOI of 2. The infected cells were harvested at 9 hours post-infection
(h p.i.) as described [25], and the luciferase activity was assayed using a dual luciferase assay
reagent kit (Promega).

Western blotting
The 293T cells were seeded in six-well plates and grown until semi-confluent. To measure
the infection efficiency, cells were infected with the tested p518-L and p518-S strains in serum-
free medium without trypsin) at an MOI of 2. At 0.5, 1.5, or 6 h p.i., cell lysates were collected
with modified radio-immuno-precipitation assay (RIPA) buffer supplemented with dithio-
threitol (DTT) (Sigma) and protease inhibitors (Millipore). Protein content was determined
by the Bradford method, using Bio-Rad Protein Assay kit (Bio-Rad). Proteins in these cell
lysates were separated by 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) and transferred to a polyvinylidene fluoride (PVDF) membrane. The membranes
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were incubated with rabbit anti-influenza NP antibodies (GeneTex) and mouse anti-Actin
antibody (Millipore), and then stained with horseradish peroxidase (HRP)-conjugated second-
ary antibodies specific for mouse (Jackson) and rabbit (Cell Signaling). The membranes were
developed with the enhanced chemiluminescence system (Perkin Elmer), and the images were
obtained by the BioSpectrum Imaging System (UVP).

Statistical analysis
Unpaired Student’s t-tests were conducted for statistical analyses by using an R program [26].

Nucleotide sequence accession numbers
The nucleotide sequences of the two Taiwan duck H5N2 DV518 and DV413 virus strains
obtained in the present study are available from GenBank under accession numbers
KP792297-KP792312.

Ethics statement
This research used only cell lines to investigate viral properties. The sources of the three cell
lines used in this study, including (1) chicken embryo fibroblast DF1 cells (ATCC CRL-12203),
(2) Madin-Darby Canine Kidney epithelial (MDCK) cells (ATCC CCL-34), and (3) human
kidney 293T cells (ATCC CRL-3216) were kindly provided by Dr. Ching-HoWang, Dr.
Chuan-Liang Kao, and Dr. Shiou-Hwei Yeh at the National Taiwan University, respectively.
They were all bought from the American Type Culture Collection (ATCC), Rockville, Mary-
land, USA (http://www.atcc.org). The protocol of surveillance was approved by the Institu-
tional Animal Care and Use Committee (IACUC) at the National Taiwan University [Permit
Number: 98–10].

There was no gain of function performed in this study. We also confirm that the funders
[National Institutes of Health (NIH) in the USA and the National Science Council [NSC,
renamed as the Ministry of Science and Technology (MOST) since March of 2014 in Taiwan,
Republic of China] had no role in study design, data collection and analysis, decision to publish
or preparation of the manuscript.

Results

Growth kinetics of the two Taiwan duck H5N2 virus strains in MDCK and
DF1 cells
To investigate the replication levels of DV518 and DV413 in vitro, we first used quantitative
RT-PCR to quantify the vRNAs in both mammalian and avian cell culture supernatants. Fig
1A shows that the MDCK cells infected with DV518 at an MOI of 0.01 generated significantly
higher levels of vRNA after 48 h p.i. and 72 h p.i. when compared with those cells infected with
DV413 [Mean: 107.03 vs 106.54 copies/mL (p<0.05) at 48 h p.i. and 106.90 vs 106.01 copies/mL
(p<0.05) at 72 h p.i.]. In addition, chicken DF1 cells infected with these two virus strains at an
MOI of 0.1, also showed quite similar results, with DV518 producing a significantly higher
level of vRNA at 48 h p.i. than DV413 (Mean: 105.87 vs 105.39 copies/mL, p<0.05) (Fig 1B).

Besides vRNA levels, infectious virus titers were also quantified by the TCID50 method.
MDCK cells infected with DV518 at a MOI of 0.1 resulted in significantly higher viral yield at
36 and 48 h p.i. when compared with the same cells infected with DV413. [Mean: DV518 vs
DV413: 102.51 vs 101.28 TCID50/mL (p<0.05) at 36 h p.i. and 103.32 vs 101.25 TCID50/mL
(p<0.05) at 48 h p.i.] (Fig 1C). Hemagglutination titers also revealed results similar to those of
the TCID50 method in MDCK cells (Fig 1D). We also used the TCID50 and hemagglutination
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Fig 1. Growth properties of the two Taiwan H5N2 duck viruses in MDCK and DF1 cells. Levels of M-vRNA in the supernatant of (a) MDCK and (b) DF1
cells infected with DV518 and DV413 at MOI of 0.01 and 0.1, respectively, were measured by quantitative RT-PCR. In addition, the viral replication
capabilities of DV518 and DV413 in MDCK and DF1 cells at MOI of 0.1 were evaluated by the TCID50 method (c and e) and the hemagglutination assay (d
and f). Supernatant samples from the infected cells were harvested at the indicated time points. The results are from two independent experiments,
presented as means ± standard deviations of triplicate samples.Abbreviation: MOI: multiplicity of infection; TCID50: 50% tissue culture infectious dose.
*p<0.05

doi:10.1371/journal.pone.0133910.g001
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methods to quantify virus titers produced in DF1 cells. As shown in Fig 1E and 1F, DV518 pro-
duced significantly higher virus titers than DV413 in DF1 cells. Together, these data indicate
that DV518 and DV413 differed in their growth in MDCK and DF1 cells, and the DV518 strain
produced a higher virus yield.

DV518 virus showed heterogeneous plaque sizes upon infection of
MDCK cells
In plaque assays of DV518 and DV413 using MDCK cells, different-sized plaques were
observed, implying these duck isolates could be a mixture of heterogeneous viral sub-popula-
tions. To test this, we analyzed the distribution of viral plaque sizes of DV518 and DV413 in
MDCK cells. The results revealed that the duck DV518 strain generated plaques that were
larger and more heterogeneous in size than those generated by the DV413 strain (S1 Fig). Fig 2
shows the distributions of plaque sizes of DV518 and DV413 strains in representative wells.
The DV518 strain produced about 25% of the plaques that were larger than 1 mm2, whereas
the DV413 strain had very few plaques larger than 1 mm (< 3% in Fig 2). In addition, about
25% of both DV518 and DV413 plaques ranged from 0.02 to 0.04 mm2 in area. These results
indicate that the duck DV518 strain was a mixture of heterogeneous viral sub-populations. To
further explore this hypothesis, we plaque-purified viruses from large (>1 mm2) and small pla-
ques in DV518-infected MDCK cells (which were named p518-L and p518-S, respectively) as
well as the plaque in DV413-infected MDCK cells (named p413) and then compared their
growth properties in vitro.

Further analysis of plaque sizes of these purified viral strains (Fig 2 and S1 Fig) showed that
the plaques generated by p518-L were larger than those generated by p518-S in MDCK cells
(mean area 1.5 mm2 versus 0.3 mm2). In addition, the results from the focus-forming assay
also verified the above findings (S2 Fig). However, the plaques generated by the p518-S strain
were still larger than those plaques (which were pinhead-sized) generated by the p413 strain.

Fig 2. The distributions of plaque sizes in MDCK cells infected with DV518 and DV413 virus strains
and the three plaque-purified virus strains. Plaque sizes (mm2) and numbers of plaques were analyzed by
software Image J 1.45A in a representative well infected by DV518 and DV413 virus strains and their plaque-
purified strains (p518-L, p518-S, and p413). Mean is shown by a parallel bar, and the total number of plaques
is shown at the top, marked as n = 56, 67, 12, 9, and 17, respectively.

doi:10.1371/journal.pone.0133910.g002
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Plaques generated by these purified virus strains were also more homogenous in size, although
there was a wider standard deviation (SD) of p518-L, apparently influenced by the outliers
(1.35±0.94 mm2 for p518-L without one outlier, n = 16).

The plaque-purified duck H5N2 p518-L and p518-S virus strains
exhibited different growth profiles in MDCK cells
The growth kinetics of these three plaque-purified virus strains (p518-L, p518-S and p413)
were simultaneously examined in MDCK and DF1 cells using the hemagglutination method.
As shown in Fig 3A, while p518-L produced the highest viral titers, p413-S had the lowest titers
in MDCK cells. However, in DF1 cells, these purified viral strains produced comparable, but
low, virus titers (Fig 3B). We also used the TCID50 method to measure the virus titers produced
in MDCK cells. As shown in S3 Fig, p513-L and p513-S showed much higher titers than p413
the titers of which were under the detection limit by using the TCID50 method. It should be
noted that the TCID50 method measures the viruses that can cause a cytopathic effect in
MDCK cells. Thus the TCID50 method gave much lower titers for those virus strains with weak
multiplication efficiency (i.e. p413) than those results obtained from the quantitative RT-PCR
and the hemagglutination methods, which measure the amount of virus directly.

To verify the above findings from DF1 cells, we used an in ovo system with 14-day-old
embryonated SPF eggs to mimic selective pressure for AI viruses in chickens [27, 28]. These
three plaque-purified virus strains were inoculated into SPF eggs at 5,000 TCID50 units, and
the virus yield in allantoic fluid at 48 h p.i. was examined. As shown in Fig 4, p518-L and
p518-S grew to titers slightly higher than p413 (the peaking titers of p518-L, p518-S and
p413-inoculated eggs were 107.25, 106.3, and 106.25 TCID50/mL, respectively), although the dif-
ferences did not reach statistical significance. This result is consistent with the data shown in
Fig 3B. The data also indicate that p413 was able to replicate at low levels in DF1 cells, while it
had limited ability to replicate in MDCK cells.

Fig 3. The growth kinetics of the three plaque-purified virus strains (p518-L, p518-S and p413) in MDCK and DF1 cells.MDCK and DF1 cells were
infected with p518-L, p518-S, and p413 virus strains at an MOI of 0.01. The supernatants were harvested at the indicated time points. The hemagglutination
assays were used to examine the viral growths. The results are shown as means ± standard deviations of triplicate samples.MOI: multiplicity of infection

doi:10.1371/journal.pone.0133910.g003
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Full-genome amino acid sequence analyses of the three plaque-purified
H5N2 virus strains (p518-L, p518-S, and p413) and their parental virus
strains (DV518 and DV413)
To gain more information on the mechanism involved in phenotypic variations of the plaque-
purified virus strains, we sequenced p518-L, p518-S and p413 strains and compared the results
with those obtained from the original viral isolates (marked as “original”DV518 and DV413 in
Table 1). The original DV518 and DV413 viral stocks were obtained by amplification of the
original fecal samples grown in the SPF chicken eggs. Therefore the sequence of DV518 and
DV413 most likely represent the sequence of the major viral population in the original fecal
samples. Table 1 summarizes the deduced amino acid variations. The purified p518-L and
p518-S had the same signature at three amino acid residues (HA[170Asp], NA[56Thr], NP
[289His]) as the original DV518 strain. In contrast, both original DV413 and purified p413
strains had different amino acids of HA[170Asn], NA[56Ile], and NP[289Tyr] at these posi-
tions (Table 1). In addition, p518-L possessed another two distinct variations in PB2 and M1
proteins (PB2[72Asp], M[182Thr]), compared with the residues at the respective positions
shared by both p518-S and p413 strains (PB2[72Glu], M[182Ala]). On the other hand, p518-S
had one residue (Pro) in PA at position 224 that was different from p413 and p518-L (PA
[Ser224]). It is noteworthy that this PA[224Pro] variation is the only residue where p518-S dif-
fered from the original DV518 isolate (PA[Ser224]). Since p518-L and p518-S were obtained
by triple plaque purification steps, we also sequenced their original plaques picked up during
the first round of purification. The results showed that all molecular signatures described
above were also present in the respective original plaques (without double base peaks in the
sequence chromatogram), implying that the substitutions we detected did not emerge through
selection during the purification procedure (see details in S4 Fig).

Fig 4. Viral yield in chicken embryonated eggs inoculatedwith p518-L, p518-S, and p413 virus strains.
Five SPF eggs were inoculated with 4x105 TCID50 titer of each of the p518-L, p518-S, and p413 virus strains.
Eggs were euthanized at 48 h p.i. and their allantoic fluid was collected for measurement of viral load by either
TCID50 method (empty circles "ο”) or hemagglutination assay (solid circles “•”). Mean values are shown by
parallel bars. Both p518-S and p518-L inoculated groups had one uninfected egg (hemagglutination titer <1),
which was excluded from the analyses. SPF: Specific pathogen free. TCID50: 50% tissue culture infectious
dose.

doi:10.1371/journal.pone.0133910.g004
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The two purified DV518 (p518-L and p518-S) strains showed enhanced
binding to MDCK cells
HA proteins, playing a predominant role in receptor binding, influence host range [13], viru-
lence [29], and transmissibility [30, 31] of influenza viruses. Both p518-L and p518-S strains
had Asp residue at position 170 (170D) in HA that is different from the 170Asn (170N) in
p413. It is possible that the substitution of N170D in HA has the potential to modulate viral
binding to the cells. We thus investigated the ability of these viruses to bind to the MDCK and
DF1 cells. To perform virus binding assays, MDCK or DF1 cells representing different receptor
conformations [32, 33] were incubated with the four duck H5N2 viruses [p518-L, p518-S,
p413, or DV30-2 (our earliest duck H5N2 isolate with HA-170Asn)] for comparison. The
DV30 virus with a receptor specificity previously characterized by glycoarray as α2,3 prefer-
ence (Chung-Yi Wu and Chi-Huey Wong, personal communication), the typical avian-type
specificity [34, 35], was used to normalize the copy numbers of vRNA binding to the cells.
After one hour’s incubation at 4°C and extensive wash, the cells were collected for vRNA
quantification by quantitative RT-PCR. As shown in Fig 5, both p518-L and p518-S strains
had significantly higher capacity to bind to MDCK cells than did p413 virus (p<0.05). In addi-
tion, these two p518 strains also had higher capacity to bind to avian DF1 cells than did p413,
though the difference among them was insignificant, indicating their common specificity to
α2,3 receptors. All these results suggest that the substitution of N170D in HAmay have the
potential to modulate viral binding to MDCK cells, contributing to the better growth of DV518
and its derived two plaque-purified strains in mammalian cells.

The p518-L virus strain showed higher polymerase activity in 293T cells
The p518-L and p518-S strains differed in three amino acids in three proteins of PB2, PA and
M1. PB2 and PA are the components of viral polymerase that functions in viral transcription and
replication [12]. We thus investigated whether p518-L and p518-S exhibited different polymerase
activity in mammalian 293T cells. To assess possible differences in viral polymerase activity of
these two p518 strains, a polymerase reporter plasmid and a Renilla-luciferase- expression

Table 1. Amino acid changes detected in eight gene segments of the DV518 and DV413 strains.

Virus Amino acids at the following positions:

PB2 PA HA NP NA M1

72 224 170 289 56 182

518-Origin E S D H T A

p518-S E P D H T A

P518-L D S D H T T

413-Origin E S N Y I A

p413 E S N Y I A

Sources of information: Data were acquired from viral sequences of the two Taiwan duck H5N2 DV518 and DV413 virus strains in 2006 [17]

Both 518-Origin and 413-Origin of Taiwan duck influenza H5N2 viruses represent the viral sequences that were performed directly on the 1st passage of

egg culture from the duck fecal droppings that we collected from the floor of a live-poultry market.

p518-L, p518-S: The two virus strains were purified from either large or small “plaques” (with “p” added in the front) after the infection of DV518 in MDCK

cells.

Boldface amino acids represent the residue differences between DV518 and DV413 strains and between p518-L and p518-S strains. Residues are

shown with H5 numbering system.

doi:10.1371/journal.pone.0133910.t001
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plasmid (which serves as a transfection efficiency control) were co-transfected into 293T cells.
These cells were then infected with either p518-L or p518-S virus, and the luciferase activity was
evaluated at 9 h p.i. As shown in Fig 6, p518-L exhibited significantly higher luciferase activity
than p518-S in 293T cells, suggesting that the former virus had higher polymerase activity than
the latter virus.

To determine whether the difference in luciferase activity observed in Fig 6 is due to the dif-
ference in viral entry efficiency, we assessed the viral entry of p518-L and p518-S by examining
the abundance of NP protein at early time points after infection. As shown in Fig 7, the abun-
dance of NP protein at early time points (0.5 and 1.5 h p.i.) was lower in p518-L infected 293T
cells than in p518-S infected 293T cells; importantly, comparable NP protein levels were
detected in cells infected by these two strains at 6 h p.i. Therefore, the higher luciferase activity
observed in 518-L-infected 293T cells is indeed due to its greater polymerase activity but not
due to its entry efficacy.

Discussion
Poultry ducks carrying LPAI viruses have played critical roles in virus evolution [14, 15],
including the novel H5N1 viruses found in Hong Kong that have impacted human health since
1997 [11]. However, few viral replication studies focus on duck LPAI H5N2 viruses. In this
study, we characterized the phenotypic variations between the two genetically close duck LPAI
H5N2 influenza viruses and revealed three major findings that helped us better understand the
epidemiological aspects of influenza. First, variations of LPAI H5N2 viruses involved both
intra-host and inter-host levels in ducks that may increase viral diversity, population dynamics,
and continuous evolution. Second, intra-duck variations (shown in p518-L vs p518-S) included
three residue substitutions in PA (P224S), PB2 (E72D), and M1 (A128T), whereas inter-duck
variations (shown in DV518 vs DV413) contained the other three mutations in HA (N170D),
NA (I56T), and NP (Y289H). These differences indicate that two levels of viral variations were

Fig 5. Cell binding ability of p518-L, p518-S and p413 virus strains to MDCK and DF1 cells.MDCK and
DF1 cell monolayers were infected with p518-L, p518-S and p413 viruses at the same copy number and
incubated at 4°C for 1 h. After extensive wash, viral RNAs were extracted from the infected cells and
influenza viral M RNAs were quantified by quantitative RT-PCR. The copy numbers of M RNA attached to the
cells were normalized to that of DV30 in each set of data. Results are shown as means with standard
deviations in three experiments. *p<0.05. RT-PCR: Reverse transcription-polymerase chain reaction.

doi:10.1371/journal.pone.0133910.g005
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involved in the mutations of different genes. Third, phenotypic variations of duck influenza
p518-L strain with better replication in MDCK cells (compared to p518-S and p413) imply
that duck-LPAI viruses may have a stronger potential to infect mammalian hosts under certain
epidemiological settings [30, 36, 37]. Taken together, these findings provide new insight on the
genotypic and phenotypic variations of LPAI H5N2 viruses from an individual duck to the
entire duck population, prior to the process of expanding epizootic potential, and infecting
other hosts.

Identifying the molecular determinants involved in genotypic and phenotypic variations
of duck influenza viruses can help to understand mechanisms for viral persistence in
nature, inter-species transmission, and elevated pathogenicity and virulence leading to severe

Fig 6. The viral polymerase activity of p518-S and p518-L strains in MDCK cells measured by
minigenome assays. The viral polymerase activity of p518-S and p518-L strains was measured by
minigenome assays as described in Materials and Methods. Data are presented as the ratios of firefly
luciferase signal to Renilla luciferase signal, with means and standard deviations in triplicate experiments.

doi:10.1371/journal.pone.0133910.g006

Fig 7. Evaluation of viral entry efficiency for p518-S and p518-L virus strains in 293T cells. The 293T cells were infected with p518-S and p518-L
viruses at an MOI of 2. Cell lysates were collected at 0.5, 1.5 and 6 h p.i. and were examined byWestern blot using anti-NP and anti-actin antibodies. Levels
of protein and relative ratios of NP/Actin were analyzed by software Image J.MOI: multiplicity of infection

doi:10.1371/journal.pone.0133910.g007
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epidemics and pandemics [13]. AIVs in waterfowl (predominantly wild ducks), which are
important viral maintenance hosts, vary in infection susceptibility, exit routes, levels of viral
excretion, and shedding patterns among different wild duck species [38]. Generally, these natu-
ral hosts infected with AIVs are asymptomatic or have mild infections. Several species of wild
and domestic ducks are “silent spreaders” serving as the “Trojan horses” for influenza viruses
[39]. Most importantly, certain AIV strains have the capability to cross host range barriers and
infect other species, including humans. However, the selection mechanisms of LPAI virus
among poultry ducks, which bridge natural maintenance hosts and other host species, are not
well understood. Our data showed that the duck DV518 strain can grow to titers significantly
higher than the duck DV413 strain in both mammalian MDCK and avian DF1 cell lines, thus
implying the existence of factors that may contribute to viral replication. Moreover, the three
plaque-purified strains, p518-L, p518-S, and p413, exhibited more complicated replication
profiles: p518-L and p518-S replicated more efficiently than p413 in MDCK cells but showed
comparable efficiency to that of p413 in DF1 cells. Evaluations of viral cell binding were in
accordance with the growth advantages of both p518-L and p518-S strains in MDCK cells. Fur-
thermore, varied viral polymerase activities between these two strains in 293T cells suggest that
the difference in viral replication may be conferred by polymerase activities in host-specific cell
lines. These findings not only support the importance of routine virological surveillance to
understand and identify the phenotypic diversity of duck influenza viruses isolated from the
same and different ducks, but also provide important information about virus evolution in
both individual and population levels.

For intra-host variants, p518-L showed significantly higher polymerase activity in 293T
cells when compared to p518-S. Detailed sequence analysis indicated that these two variants
differed only at three positions (Table 1), and two of them are located in the components of the
viral polymerase complex. These data indicate that the replication advantage of the AIV vari-
ants with minor genetic variation can be selected for within the same duck. How the amino
acid variations in PB2, PA, and M1 contribute to the higher polymerase activity in p513-L is
unclear. The minigenome assay was conducted at 9 h p.i. (a single replication cycle). This
would exclude the possible involvement of mutation in M1, a protein known to play a role in
vRNP export [40]. Position 72 in the PB2 is located in the PB2-N1 subdomain buttressing the
PB1 thumb domain [41]. However, it is less likely that the mutation (from glutamate to aspar-
tate without changing the charge) in p513-L would affect the function of the PB2 protein signif-
icantly. In PA, the mutation of S224P with other amino acid substitutions has been shown to
increase the replication of duck H5N1 viruses in duck primary embryo fibroblast cells [42],
and elevate viral virulence in a mouse model [42]. Whether the change at position 224 in PA
(from proline to serine) may increase the polymerase activity of p513-L virus requires further
investigation.

By contrast, inter-host variations of the two Taiwan-H5N2 DV518 and DV413 viruses were
isolated from fecal droppings between poultry ducks (collected on July 28 and September 7,
2006 at a wholesale LPM (16) where ducks came from Yilan and Yunlin counties). These two
viruses involved another three amino acid changes (N170D, I56T, and Y289H) in HA, NA,
and NP, respectively [43–45]. DV518, p518-L and p518-S strains all have a 170D residue in
HA in contrast to a 170N in DV413 and p413. Our data indicated that p518-L and p518-S
viruses bind to MDCK cells, which possess both α2,6 and α2,3 receptors [33], more efficiently
than the p413 virus (Fig 5). Furthermore, these three virus strains showed no significant differ-
ence in binding to A549 and DF1 cells (S5 Fig), which possess predominantly α2,6 and α2,3
receptors, respectively [32, 33], indicating that the receptor specificity of these viruses may not
have been altered. Position 170 (or 158 in H3 structural numbering) is located at the tip of the
HA (S6 Fig), near the receptor binding domain (RBD) in the globular head of HA1 [46]. This
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N170D (or N158D) mutation in HA has been correlated with better aerosol transmissibility of
H5N1 viruses in ferrets [31] and guinea pigs [47] as well as human H5N1 cases in Vietnam
and Egypt [48, 49]. Moreover, a quail-adapted duck H3N2 virus (i.e. virus adaption in terres-
trial birds from aquatic birds) possessing HA-170D mutation replicated more efficiently in
MDCK cells, even though these viruses had receptor specificities similar to those of the paren-
tal duck virus, and exhibited the potential to infect human cells in vitro and ex vivo [36]. The
possible mechanism of this selection advantage might be attributable to the role of aspartate
in increasing the negative charge on the surface of HA (a marker for adaptation to cultured
mammalian cells) [50] (S6A and S6B Fig illustrate the polarity change of HA). Taken together,
these results and findings by others suggest that N170D of HA does not alter the receptor
specificity but may enhance its receptor-binding affinity by forming a more stable structure
[31, 50, 51]. In other words, both p513-L and p513-S show enhanced binding to MDCK cells
and the substitution of N170D in HA has the potential to modulate viral binding to MDCK
cells. Whether the N170D mutation does contribute to the better binding of p518-L and
p518-S to MDCK cells requires further investigation by using reverse genetics methods.

NA is the sialidase on a viral membrane [52], known to be associated with virion release and
dissemination [53, 54]. It has been shown recently that NA can modulate receptor binding [55,
56]. However, position 56 in NA is located in the stalk region of the glycoprotein embedded in
the membrane, not in the enzymatically active region interacting with sialyglycans [52, 57]. It
is less likely that I56T mutation in NA would influence the binding of p513-L and p513-S to
MDCK cells. NP protein is involved in resistance to the interferon-induced antiviral factor, Mx
[58, 59] and cellular immunity [60, 61]. Several mutations in NP, including Y289H (located in
the region predicted to interact with PB2 at the NP-NP interaction site) [62, 63], were recently
identified in adaptation of the novel 2009 H1N1 virus to humans [64, 65]. These NP mutations
also allow the H5N1 virus to escape from human MxA by inhibiting the host innate immune
response to Mx1 [65]. DV518, p518-L and p518-S possess the 289H in NP. This may make
them become more resistant to the host’s antiviral strategies. Whether HA (N170D), NA
(I56T), and NP (Y289H) mutations alone or in combination contribute to the growth advan-
tage of DV518, p518-L, and p513-S in MDCK cells requires further investigation by using
reverse genetics method.

The evolution of influenza viruses is a continuous process of interactions between viruses
and hosts. Due to the infidelity of viral RNA-dependent RNA polymerase and large population
sizes, many different genetic alterations may occur during RNA genome replication. Among
these heterogeneous viral populations, minor viral variants may have significant implications
for quasispecies evolution [66]. Our duck LPAI H5N2 viruses had slow evolution and stable
viral sequences, because the viral sequences remained the same after one passage in chicken
eggs and through several steps of plaque-purification (data not shown). However, the selection
of AIVs does occur in poultry ducks, because neither p518-L nor p518-S is identical to the orig-
inal DV518 isolate in full-genome sequences. This result indicates that the overall virus popula-
tion derived from the field is a mixture of heterogeneous sub-populations of viral variants. Our
finding on intra- and inter-duck phenotypic variations of the viruses which occurred at a cellu-
lar level is consistent with previous studies from duck samples demonstrating varied biological
characteristics [14] and LPAI H1N9 and H6N1 isolates from wild birds replicates in ferrets
[67]. For inter-duck variants, DV518 had growth advantage over DV413. For intra-duck vari-
ants, a minor sub-population of variants such as p518-L may have growth advantage in mam-
malian cells, causing health problem in humans after further evolution.

There are four major limitations to this study. First, the viral mutations identified from
this study need further investigation, using reverse genetic approaches to determine whether a
single mutation or multiple co-mutations were required to enhance viral replication in
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mammalian cells. Moreover, whether DV518 and its derivative viruses could multiply more
efficiently than DV413 and its derivative virus in mice or other primates needs to be investi-
gated. Second, the original samples amplified in the SPF eggs may not represent the viral popu-
lation in the host [17]. Third, the two genetically close duck H5N2 viruses we studied cannot
reflect the whole of viral population dynamics and selection in ducks, nor the previously
reported H5N2 viruses in chickens in Taiwan [13]. In reality, whether the studied duck viruses
have other additional unidentified subpopulations remains unclear. Fourth, the roles of host or
environmental factors or concurrent infection of multiple subtypes of AIVs in intra- or inter-
host evolution of duck H5N2 viruses deserve further investigation. Fully understanding the
spectrum of viral variants (various percentages of the subvariants) and their roles in viral phe-
notypic variations through selection and fitness with trends in becoming dominant subvariants
requires more modernized laboratory methods (such as reverse genetics, next generation
sequencing) to provide stronger conclusion.

In summary, this study reveals several molecular determinants that may enhance cell
binding and replication of duck LPAI H5N2 virus in MDCK cells. As anti-H5N2 seropositive
poultry workers were detected [68], molecular markers for increasing viral replication as well
as higher ability to inhibit antiviral immunity will be helpful in selecting the best strain for a
future cell-based human H5N2 vaccine. The higher binding to and the greater replication
capability of DV-518 (particularly DV-518-L) in MDCK cells implies that duck influenza
virus sub-variants may possess potential for inter-species transmission to mammalian hosts.
Such mutation events involve a series of host adaptations and selection, which may result in a
novel virus with increasing replication efficiency, pathogenicity, and pandemic potential, as
recently observed with novel H5N8 AIVs causing poultry outbreaks worldwide [69, 70]. Taken
together, the integrated information from the micro-evolution of the virus to population
dynamics can provide us with better clues about various selection mechanisms involving route
of infection, receptor binding, replication efficiency, virion packaging, herd immunity, and effi-
cient transmissibility [71]. In view of the most recent severe and fatal human cases caused by
novel LPAI H7N9, H6N1 and H10N8 viruses [6, 7, 72], there is an increasing need to gain
more knowledge about molecular determinants associated with host range and inter-species
transmission of LPAI viruses. Therefore, efforts to establish integrated surveillance in areas
involving wild birds, poultry ducks, chickens and mammalian hosts are urgently needed. By
using whole-genome, deep pyrosequencing analysis and phenotypic characterizations, the evo-
lutionary features of AIVs at a sub-population level after passaging through either avian or
mammalian cells can be used to identify host-specific molecular markers associated with alter-
ations in viral replication [61, 73]. A series of studies focused on an H7N9 drug-resistant sub-
population and their fitness in vivo can serve as a good example [74, 75]. This effort will help
us fully understand the selection mechanisms and dynamic changes of molecular determinants
in different host species at both micro- and macro-levels, leading to improved risk assessment,
vaccine development and pandemic preparedness.

Supporting Information
S1 Fig. Plaque morphologies of DV518, DV413 and their plaque-purified strains (p518-S,
p518-L, p413) on MDCK cells.MDCK cells were infected with DV413, DV518, p413, p518-S
and p518-L virus strains. After incubation at 37°C for 72 h, cells were fixed by paraformalde-
hyde and stained with crystal violet. Mean plaque area (mm2) of plaque in a representative
well for each strain was analyzed by software Image J, and was shown as mean ± standard devi-
ations in the parentheses.
(PDF)
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S2 Fig. Plaque morphologies of p518-L and p518-S viruses shown by focus- forming assay
on MDCK cells.MDCK cells were infected with p518-L or p518-S viruses. After incubation at
37°C for 48 h, infected cells were treated with a mixture of mouse anti-influenza Mmonoclonal
antibody (Millipore) and mouse anti-influenza NS1 monoclonal antibody (Santa Cruz Biotech-
nology) after fixation. The HRP-conjugated anti-mouse secondary antibody (Jackson) was
then added and the foci were subsequently developed by adding peroxidase substrate using a
commercial kit (Vector Laboratories).
(PDF)

S3 Fig. The growth kinetics of the three plaque-purified virus strains (p518-L, p518-S and
p413) in MDCK cells as determined by TCID50 method.MDCK cells were infected with
p518-L, p518-S, and p413 virus strains at an MOI of 0.01. The supernatants were harvested at
the indicated time points. The TCID50 method was used to examine the viral growths. The
results are shown as means ± standard deviations of triplicate samples.
(PDF)

S4 Fig. Chromatogram comparing nucleotide sequences of HA, PA and NP in parental
viruses (DV518 and DV413) and a series of plaque-purified viruses. Abbreviations: 518,
DV518 virus; 413, DV413 virus; S-P1, S-P2, and S-P3, small-plaque virus obtained by the first,
second, and third round of plaque purification of DV518, respectively; L-P1, L-P2, and L-P3,
large-plaque virus obtained by the first, second, and third round of plaque purification of
DV518, respectively; 413-P1, virus obtained by first-round plaque purification of DV413.
(PDF)

S5 Fig. p518-L, p518-S and p413 virus strains showed no difference in binding to A549 and
DF1 cells. A549 and DF1 cell monolayers were infected with p518-L, p518-S and p413 viruses
at the same copy number and then incubated at 4°C for 1 h. After extensive wash, viral RNAs
were extracted from the infected cells and influenza viral M RNAs were quantified by quantita-
tive RT-PCR. The copy numbers of M RNA attached to the cells were normalized to that of
DV30 in each set of data. Results are shown as means with standard deviations in three experi-
ments.
(PDF)

S6 Fig. Modeled surface polarities and position 170 in HA protein. Surface polarities of HA
with positions of 170D (a) and 170N (b) are shown. Position 170 (or 158 in H3 numbering) of
HA is at the top of the HA molecule (c). The orange region, HA 161–175, represents the resi-
dues changed to the amino acids possessed by DV518 or DV413 (d). All structures shown are
based on the backbone of A/Viet Nam/1203 (pdb: 2FK0).
(PDF)
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