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INtRODUCtiON
Fifty to eighty percent of women during early pregnancy are 
vulnerable to nausea and vomiting,1,2 in 22% of the cases, the 
symptoms might be severe (or hyperemesis gravidarum) and 
continue until delivery, that may contribute to dehydration. 
Dehydration is one of the intrauterine abnormalities that could 
lead to fetal growth retardation (FGR) and the ensuing risk 
of early origins of adult diseases.3-6 Angiotensin II (Ang II), 
one of the major effectors of renin-angiotensin system (RAS), 
has long been thought to play a critical role in regulation of 
uteroplacental blood circulation and placental development 
through binding with Ang II type 1 receptor (AT1R).7-9 While 
oxidative stress is a major contributory factor in placental 
pathophysiology.10-12 We hypothesized that dehydration, a 
classic homeostatic stressor, might play an important role in 
interacting with placental RAS and placental oxidative stress. 

Antioxidant strategy has been performed as an alternative 
strategy during complicated pregnancies in the last decades.13,14 
Molecular hydrogen (H2) is a novel antioxidant by specifi-
cally scavenging hydroxyl radicals (•OH) and peroxynitrite 
(ONOO–) in a variety of diseases associated with oxidative 
stress.15-17 Maternal H2 intake could improve the reference 
memory of the offspring after ischemia and reperfusion (IR) 

injury on day 16 of pregnancy (D16), the results also suggested 
that H2 could spread through the maternal-fetal interface and 
significantly improved the neonatal growth in weight though 
exerting its anti-oxidative effects.18 Of particular importance, 
till now, H2 has no known side effects, including mutagenic-
ity in rodents or humans.19 The present study were first, to 
determine whether placental RAS and placental oxidative 
stress are involved in the placental pathophysiologic changes 
in a water restriction model with a minor modification5; and 
second, to detect the protective effects of hydrogen-rich water 
(HRW) on the process. 

MAtERiAlS AND MEtHODS
Animals and protocol
The study was approved bythe Ethics Committee of Taishan 
Medical University, China (approved No. 2014007). Forty 
female and ten male Wistar rats aged 7 weeks were purchased 
from the Experimental Animal Center of the Lukang Company, 
Jinan, Shandong Province, China (SCXK 2014007). After ac-
climation for 1 week, the female rats in estrus stagewere put 
together with the male for mating overnight. The estrus cycle 
or pregnancy was decided by vaginal smears. D1 was defined 
the following morning if spermatozoa were seen in the vaginal 
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smear. The pregnant rats were put into the metabolic cage and 
randomly assigned to one of the three groups (n =12 per group).

In control group (CG), water and food were supplied ad 
libitum. Water restriction group (WR) was given pure water 
ad libitum from D1 to D6, but 1 hour a day was available to 
drink from D7 to D17 with free access to food. HRW group 
(HW) was suppliedHRW (H2 concentration; 500–800 µg/L, 
HWP-200WWD, SEEMS Bionics Inc., Wonju, Korea) twice 
a day from D1 to D6, but 1 hour a day was available to drink 
from D7 to D17 with free access to food. To prevente hydrogen 
degassing as well as air refill, a glass bottle with a ball bearing 
at the outlet was used.

All ratswere sacrificed under isoflurane (Sigma, USA) 
anaesthesia from 9:00 a.m. to 11:00 a.m. on D17. After col-
lecting blood from the heart, acesarean section was carried 
out, thennumber of fetus was counted, individual fetus and 
placenta were weighed and measured. The middle one third of 
the placenta, including decidua and mesometrial triangle were 
fixed in 10% buffered formalin solution (pH 7.4) for 1 day for 
histological and immunohistochemical analysis. The other part 
of placenta were snap-frozen in liquid nitrogen and stored at 
–20°C for Western blotting. Placental sufficiency was repre-
sented as the ratio of fetal to placental weight, indicating the 
ability of the placenta to transport nutrients to the fetal side.20

Measurement of cyclic oxidative stress and osmolality
Serum was separated by centrifugation at 1500 × g for 15 
minutes (4°C) and stored at –80°C. The derivatives of reac-
tive oxygen metabolites (dROMs) (whole oxidant capacity 
of serum against N,N-diethylparaphenylendiamine in acidic 
buer) in serum was determined using the free radical elec-
tric evaluator (Diacron International, Grosseto, Italy). The 
measurement unit was Carratelli Unit (CARR U). One unit 
of CARR corresponded to 0.08 mg/dL hydrogen peroxide. 
Serum osmotic pressure (OsmP) was determined using a 
standard freezing-point depression osmometer (Genotec, 
Germany).

immunohistochemistry 
The slices were processed through protocols of immunohis-
tochemistry with minor modifications.21 Briefly, following 
3% H2O2 quenching endogenous peroxidase, the slices were 
microwaved to further expose nuclear antigens. Primary an-
tibodies against 8-hydroxydeoxyguanosine (8-OHdG, 1:200, 
Chemicon, USA), malondialdehyde (MDA,1:100, ab6463, 
Abcam, Shanghai, China), nuclear factor κB (NFκB, 1:200, 
ZS-109, Beijing, China), angiotensin II type 1 receptor(AT1R, 
1:200, ab9391, Abcam) and superoxide dismutase (SOD, 
1:200, sc-271014, Santa Cruz, Shanghai, China) were used 
to coincubate with the slices overnight at 4°C, and blocked 
using 3% bovine serum albumin (BSA; Sigma Aldrich) in 
phosphate-buffered saline (PBS) for 30 minutes at room 
temperature. Negative contrast slices were treated with the 
same measures as above except that the first antibody was 
replaced with PBS. One-step polymer detection system and 
the concentrated DAB kit were purchased from ZSGB Bio-
technology (Beijing, China).

The immune positive products were tan while the negative 

contrast slices could not be stained. Stained slices randomly 
choosen from each specimen were photographed in random 
visual fields. The images were then analysed with Image Pro-
Plus 4.5 (Media Cybernetics, Inc, Rockville, MD, USA), the 
average optical density (AOD) of positive area was obtained 
to reflect the quantity of target antigen. At least ten specimens 
from each of six animals were examined for all investigations.

Western blot assay
Homogenized placental samples were lysed in RIPA buffer 
with protease and phosphatase inhibitors. Protein concentra-
tion was determined by Bradford assay (Bio-Rad, Hercules, 
USA). A quantity of 30–40 µg total protein per lane was 
separated by SDS-PAGE and transferred to polyvinylidene 
fluoride membranes (Millipore, Bedford, USA). Blocked 
membranes were incubated with primary antibodies such 
as β-actin (1:1500, Sigma), MDA (1:400, ab6463, Abcam), 
NFκB (1:500, ZS-109), AT1R (1:500, ab9391, Abcam), p38 
(1:500, Cell Signaling Technology, Beverly, MA, USA), and 
c-Jun N-terminal kinase (JUK, 1:500, Cell Signaling Technol-
ogy, Beverly, MA, USA) overnight at 4°C. The specificity of 
the immune response was detected without adding the first 
antibodies. After hybridization with a secondary antibody   
(1: 2000), the target proteins were finally detected using ECL 
Western Blotting Detection Reagents (Thermo Scientific 
Pierce, Rockford, IL, USA). 

Statistical analysis  
Data are presented as the mean ± SEM. For multiple com-
parisons, repeated-measures analysis of variance (ANOVA) 
was performed. When the overall F ratio was significant, the 
Dunnett’s test was used to locate differences with the applica-
tion of SPSS 13.0 (SPSS Inc., Chicago, IL, USA). A P value 
of  less than 0.05 was considered to be statistically significant. 

RESUltS
HRW alleviated cyclic oxidative stress and placental efficiency 
of placental stress rat induced by water restriction
As shown in Table 1, water deprivation resulted in a decrease 
urine volume, as well as an increase in serum osmotic pressure 
and dROMs. Either the average weight or the crown-rump 
length of fetuses in the WR and HW group was significantly 
lower than that of the CG group (P < 0.05). No significant dif-
ference was found between WR and HW group regardless of 
the average number of fetus (P > 0.05). Interestingly, although 
the fetus weight had no significant difference among groups, 
placental efficiency showed a trend of CG > HW > WR.

HRW restored placental histopathological changes of placental 
stress rat induced by water restriction 
In the WR group, the amnion epithelium was detached from the 
surface of chorionic plate (Figure 1). Furthermore, the inva-
sion of cytotrophoblasts into the endometrium was inadequate, 
even a separation between endometrium and junctional zone 
(JZ) could been observed (a condition known as placental 
abruption that can affect both the mother and fetus), as well as 
abnormal vasculogenesis in the labyrinth (the main compart-
ment for maternal-fetal hemotrophic exchange)19 was seen. 
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HWF intake significantly improved placental pathological 
damages (Figure 1).

HRW reduced water restriction-induced stress protein in 
placenta of placental stress rats induced by water restriction
Immunohistochemistry revealed that SOD was mainly ex-
pressed in the cytotrophoblasts and the villous stromal cells 
(Figure 2A). AT1R was mainly localized in the decidual cells, 
especially around the spiral arteries in the mesometrial triangle. 
Sometimes light shadings in the cytotrophoblasts of JZ were 
observed. NFκB and 8-OHdG positive staining was seen in 
the decidual cells, cytotrophoblasts, syncytiotrophoblasts, 
and stromal cells of placental villi in the JZ. However, much 
weaker and discontinuous staining of MDA was observed in 
the cytotrophoblasts, syncytiotrophoblasts, and stromal cells 
of placental villi among different groups (Figure 2A). Quan-
titative analysis showed HRW supplementation significantly 
decreased the immunopositivities of AT1R, NFκB, MDA and 

8-OHdG, up-regulated the immunopositivities of SOD as 
compared with WR group (P < 0.05; Figure 2B).

HRW improved the stress protein expression in placenta of 
placental stress rat induced by water restriction
The Western blot detection signal of the specific protein in 
the placenta of different experimental groups revealed AT1R, 
MDA, NFκB, p38and JUK (Figure 3A). The results indicated 
that HRW inhibited the expression of AT1R, NFκB, MDA, p38 
and JUKas compared with WR group (P < 0.05; Figure 3B).

DiSCUSSiON
Dehydration during pregnancy may be harmful for the mother 
as well as the fetus.22 In the rat, the fertilized embryo reaches 
the uterus on D4 and implantation occurs at approximately D5 
to D6.5,23 Maternal models of water-restricted/food-reduced 
were usually established from D7 to D20, the critical time 
for feto-placental development.24,25 In this study, maternal 

table 1: Effects of hydrogen-rich water on fetus growth and fluid circulation of placental stress rats induced by water 
restriction

Item CG WR HW 

Water intake (mL/24 h) 42.29±5.53 34.67±7.16* 35.52±5.19*

Urine volume (mL/24 h) 15.71±7.50 10.12±1.73* 11.45±1.03*

Average number of fetuses 12.24±3.43 12.83±2.04 12.57±2.91
Body weight (g) 287.61±11.04 262.12±16.44* 265.32±10.55*

Fetus weight (g) 0.68±0.13 0.50±0.14* 0.55±0.08*

Placenta weight (g) 0.32±0.10 0.30±0.18 0.29±0.15
Placental sufficiency 2.12±0.17 1.67±0.04* 1.96±0.19#

Crown-rump length of fetuses (cm) 1.67±0.11 1.38±0.12* 1.39±0.14*

Osmotic pressure (mOsm/kg) 280.81±2.15 296.07±7.90* 291.35±3.77*

d-ROMs (CARR U) 353.61±24.31 463.55±19.52* 400.22±31.02#

Note: In control group (CG), water and food were supplied ad libitum. Water restriction group (WR) was given pure water, but 1 hour a day was available to drink from 
day 7 of pregnancy (D7) to D17 with free access to food. Hydrogen-rich water group (HW) was supplied hydrogen-rich water HRW twice a day from D1 to D6, but 1 
hour a day was available to drink from D7 to D17 with free access to food. Placental sufficiency was represented as the ratio of fetal weight to placental weight. Data are 
shown as the mean ± SEM, and analyzed by repeated measures analysis of variance. *P < 0.05, vs. CG group; #P < 0.05, vs. WR group. h: Hours.

CG                                        WR                                       HW

Placenta

JZ

LAB

Figure 1: Effect of hydrogen-rich water (HRW) on the 
placental histopathological changes of placental stress 
rats induced by water restriction (hematoxylin and eosin 
staining).
Note: In water restriction group (WR), the amnion epithelium 
was detached from the chorionic plate (★), there was a 
separation between endometrium and junctional zone (*), and 
dysangiogenesis was found in the villus interstitial (↑). The 
microstructure of placenta in the hydrogen-rich water group 
(HW) was relatively normal as compared with control group 
(CG). JZ: Junctional zone;  LAB: placental labyrinth. Scale 
bars: 50 μm in placenta, 20 μm in JZ and LAB.
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water restriction resulted in rat FGR, reduced urine volume 
and increased serum osmotic pressure during D7 to D17 of 
pregnancy, which was consistent with those in another study 
by Desai et al.5 In addition, a significant improvement of pla-
cental microstructure with more developed junctional zone and 
denser labyrinth was manifested after the oral administration 
of HRW to the mothers. Molecular H2 could be incorporated 
into the body by drinking and peak at 5 to 15 minutes after oral 

HRW administration in rat tissue.26 H2 is assumed to penetrate 
the placental barrier and diffuse into the cytosol, mitochondria, 
and nucleus.18,27 We found H2 administration might markedly 
profit placentation by decreasing cyclic d-ROMs and down-
regulating placental oxidative insult, including decreased the 
expression of biomarkers, such as 8-OHdG (an indicator of 
oxidative DNA damage), MDA (a marker of oxidative lipid 
damage), NFκB (oxidative stress sensitive transcription fac-
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Figure 2: Effect of hydrogen-rich water (HRW) on water restriction-induced stress protein in placenta of placental stress rats induced by water restriction 
(immunohistochemistry detection).
Note: Water restriction-induced stress proteins were widely distributed in the decidual cells, cytotrophoblasts, syncytiotrophoblasts, and the villous stromal cells. The 
strongest positive staining of stress proteins were usually observed in water restriction group (WR), in addition to the strongest staining of superoxide dismutase (SOD),  
was seen in control group (CG). The staining intensity of hydrogen-rich water group (HW) was generally in between. (A) Immunohistochemistry staining of SOD, 
angiotensin II type 1 receptor (AT1R), nuclear factor κB (NFκB), malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OhdG). ↑: The positive staining. Scale bars: 
20 μm. (B) The average optical density of SOD, AT1R, NFκB, MDA and 8-OHdG immunopositive cells among different groups on D17. Data are shown as the mean ± 
SEM, and analyzed by repeated measures analysis of variance. *P < 0.05, vs. CG group; #P < 0.05, vs. WR group.
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Figure 3: Effect of hydrogen-rich water (HRW) on the stress protein expression in the placenta of placental stress rats induced by water restriction (western 
blot assay).
Note: The expression of placental stress proteins reached the highest level in water restriction group (WR). While the expression level in hydrogen-rich water group 
(HW) was usually higher than that in control group (CG), and lower than that in WR. (A) Placental protein expression in different groups. (B) Relative expression of the 
target protein in the placentas. β-Actin was used an internal control. Data are shown as the mean ± SEM, and analyzed by repeated measures analysis of variance. *P 
< 0.05, vs. CG group; #P < 0.05, vs. WR group. AT1R: Angiotensin II type 1 receptor; NFκB: nuclear factor κB; MDA: malondialdehyde; JUK: c-Jun N-terminal kinase.
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tor),28,29 p38 and JUK (stress-activated protein kinases),30 
and increased the activity of SOD (antioxidant enzyme) as 
validated in placenta by immunohistochemistry and Western 
blot assay. 

AT1R plays an essential role in the process of placental 
pathophysiology.31,32 In our present study, expression of AT1R 
was upregulated in the decidual cells around the spiral arteries 
and the cytotrophoblasts of JZ in WR group, suggesting the 
activity of placental RAS. Since maternal 70% food restrici-
ton could induce placental mitochondrial redox imbalance, 
including a higher oxygen consumption but failed to maintain 
the ATP production,33 we assumed water restriction along 
with dehydration anorexia and secondary malnutrition could 
contribute to the placental oxidative stress through the similar 
mechanisms, then stress-activated protein kinases and nuclear 
transcription factor NFκB regulated the target gene transcrip-
tion, and aggravated placental damage. Moreover, dysregula-
tion of AT1R may aggravate mitochondrial oxidative stress in 
a positive feedback loop, through activating NADPH oxidase  
and decreasing the activity of scavenging enzymes of ROS as 
well as activating NFκB.34-36 In rodent placenta, syncytiotro-
phoblasts and cytotrophoblasts form trilaminar epithelia out 
of vascular fetal mesenchyme, and the syncytiotrophoblast 
is bathed in maternal blood space to transfer oxygen and 
nutrients to fetus.37 Therefore, we speculate that the injury of 
syncytiotrophoblasts and mesenchyme out of villus vessels 
induced by oxidative stress contributes to the pathophysiology 
of placental insufficiency and reduce placental sufficiency, 
thus forming a vicious cycle and resulting in reduced placental 
sufficiency and FGR (Figure 4). However, preventive and 
protective applications of H2 could reverse it though exerting 
anti-oxidative effects. Otherwise, maternal water restriction, 
a classic homeostatic stressor in rats, leads to a series of well 
characterized endocrine responses including stimulation of 
the hypothalamo-pituitary-adrenal axis.6,38,39 We speculated 
HRW might attenuate placental pathology and dysfunction 

through regulating the fluid homeostasis and improving blood 
circulation of the placenta. What is more, considering there 
are a lot of factors influencing the placental development, 
maternal hydrogen application might only alleviate some of 
the pathophysiologic changes and some indexes of stress in-
duced by water restriction. On the other hand, reduced adrenal 
growth and decreased water intake were demonstrated in the 
male offspring of water-deprived dams, showing the gender-
specificity of programmed changes,5 whether hydrogen plays 
a role in improving the fetal development and programming 
requires further investigation.

In conclusion, this study provided the evidence supporting 
that HRW ameliorates placental damage and dysfunction 
induced by water restriction through ameliorating placental 
stress. This strategy could have a potential clinical benefit 
for prophylaxis and treatment of pregnant dehydration and 
related complications.
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