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ABSTRACT The study of gene flow in pedigrees is of strong interest for the development of quantitative
trait loci (QTL) mapping methods in multiparental populations. We developed a Markovian framework for
modeling ancestral origins along two homologous chromosomes within individuals in fixed pedigrees. A
highly beneficial property of our method is that the size of state space depends linearly or quadratically on
the number of pedigree founders, whereas this increases exponentially with pedigree size in alternative
methods. To calculate the parameter values of the Markov process, we describe two novel recursive
algorithms that differ with respect to the pedigree founders being assumed to be exchangeable or not. Our
algorithms apply equally to autosomes and sex chromosomes, another desirable feature of our approach.
We tested the accuracy of the algorithms by a million simulations on a pedigree. We demonstrated two
applications of the recursive algorithms in multiparental populations: design a breeding scheme for
maximizing the overall density of recombination breakpoints and thus the QTL mapping resolution, and
incorporate pedigree information into hidden Markov models in ancestral inference from genotypic data;
the conditional probabilities and the recombination breakpoint data resulting from ancestral inference can
facilitate follow-up QTL mapping. The results show that the generality of the recursive algorithms can
greatly increase the application range of genetic analysis such as ancestral inference in multiparental
populations.
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Many complicated experimental crosses have recently been produced
for mapping QTL, particularly in plants (e.g., Kover et al. 2009;
Sannemann et al. 2015). In contrast to traditional biparental popula-
tions, multiple parents have been used to increase genetic diversity and
thus QTL segregation probability, and many generations of intercross
mating have been used to increase accumulated recombination break-
points in sampled offspring in the final generation and thus QTL
mapping resolution. The expected density of recombination points is

one of key quantities for optimizing experimental designs prior to
collecting genotypic and phenotypic data (Rockman and Kruglyak
2008). Furthermore, the identification of recombination breakpoints
from genotypic data provides useful information for increasing de-
tection power and mapping resolution (Xu 2013; Li et al. 2015). The
primary aims of this paper are to develop the theory of gene flow in a
fixed pedigree with arbitrary structure to calculate the prior distribu-
tion of recombination points, and to apply the theory for ancestral
inference and detection of recombination points from genotypic data
in multiparental populations.

The theory of one-locus gene flow in a pedigree has been well
developed. The haploid genomes of pedigree founders are designated
bydistinct labels, called founder genome labels (FGLs).A set of genes are
identical by descent (IBD) if they carry the sameFGLs. The identity state
for two genes is either IBD or non-IBD. The IBD probability for two
distinct genes within an individual is the inbreeding coefficient, and it is
the kinship coefficient for the two genes randomly sampled from two
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distinct individuals. Rostron (1978) developed a recursive algorithm for
calculating the two-gene coefficients of inbreeding and kinship. Karigl
(1981) developed a recursive algorithm for calculating the coefficients
of the fifteen gene identity states for four genes between two individuals.
Thompson (1983) showed that a similar algorithm applies to the prob-
abilities of joint descent of multiple genes from a specific FGL. Bauman
et al. (2008) and Zhou et al. (2012) developed a recursive algorithm for
calculating the ancestral coefficients such as the probability of one gene
descending from a given FGL and the probability of two genes descend-
ing from two given FGLs (distinct or not).

The theory of gene flow at two linked loci in a pedigree has also been
developed. Weir and Cockerham (1969) and Cockerham and Weir
(1973) developed a recursive algorithm for calculating the two-locus
inbreeding coefficient of an individual that is defined as a linear func-
tion of the probabilities of the fifteen identity states for four genes, two
at each of two linked loci. Thompson (1988) developed a recursive
algorithm for calculating the two-locus kinship between two individu-
als defined as the probability of IBD at both loci, see Hill and Weir
(2007) for calculating multi-locus IBD probabilities in random mating
populations. In contrast to the identity coefficients, the ancestral co-
efficient at two loci is defined as the two-locus diplotype probabilities,
and there are 4L possible diplotypes for four genes in an individual with
respect to L distinct FGLs. Thus, the calculation of the two-locus an-
cestral inferences has been developed only for simple breeding systems
including selfing, brother-sister (or sibling) mating, and parent-offspring
mating (Haldane andWaddington 1931; Johannes and Colome-Tatche
2011; Broman 2012).

Therehasbeenmuch interest indeveloping the theoryofgeneflow in
a pedigree with chromosomes assumed to be a genomic continuum.
Donnelly (1983) developed a formal mathematical framework, where
the crossover processes in a chromosome pedigree follow jointly a
continuous time Markov random walk on the vertices of a hypercube,
the time parameter being position along homologous chromosomes.
Here a vertex represents one of possible gene transmissions from foun-
ders to all non-founders, and the number of vertices in a d-dimensional
hypercube is 2d , d being the number of non-founders. This framework
has been used inmany kinds of small pedigree systems (e.g., Bickeböller
and Thompson 1996; Stefanov 2000; Martin and Hospital 2011). How-
ever, it is impractical to apply Donnelly’s Markovian framework to a
large complex pedigree since the number of states (hypercube vertices)
increases exponentially with the pedigree size.

Alternatively, the theory of junctions has beendeveloped to study the
gene flow for a genomic continuum (Fisher 1949, 1954). A junction is
defined as a boundary point (recombination breakpoint) on a chromo-
some where two distinct FGLs meet. Fisher (1949, 1954) and Bennett
(1953, 1954) developed the theory of junctions for simple breeding
systems including selfing, brother-sister mating, and parent-offspring
mating. It has been extended to populations (Stam 1980; Baird et al.
2003; Chapman and Thompson 2003; MacLeod et al. 2005; Zheng et al.
2014; Zheng 2015). In particular, Zheng et al. (2014) and Zheng (2015)
developed a Markovian framework for modeling ancestral origins
within an individual with the state space being the possible pairs of
FGLs, and thus the number of states is much smaller than that of
Donnelly’sMarkovian framework (Donnelly 1983). On the other hand,
ourMarkovian framework (Zheng et al. 2014; Zheng 2015) is restricted
by two assumptions: the mating scheme from one generation to the
next is random mating, and the FGLs are assumed to be exchangeable
so that the probability distribution of ancestral origins in offspring
is invariant to all possible permutations of the FGLs. However, the
exchangeability generally does not hold for a mapping population pro-
duced via an arbitrary breeding pedigree.

In this paper, we relax the restriction of our previous Markovian
framework by extending it to a fixed pedigree. We first describe a
recursive algorithm (denoted by EXCH) under the assumption of
FGLs being exchangeable, which is applicable for the construction of
Markovian framework in simple breeding schemes. Then we develop a
recursive algorithm (denoted by NON-EXCH) for modeling ancestral
origins to relax the exchangeability assumption. The two recursive
algorithms apply to both autosomes and sex chromosomes if they exist.
The results of both recursive algorithms are compared with those from
extensive simulations on a classical pedigree. We first apply the two
algorithms to compare different population designs (or breeding ped-
igrees) prior to experiments, for example, in terms of the overall den-
sity of junctions (recombination breakpoints), an important factor of
QTL mapping resolution. In addition, the non-exchangeability can
be illustrated under various breeding designs. Then we apply the two
algorithms to incorporate pedigree information for ancestral inference
from genotypic data in simulated and real collaborative cross (CC)
populations, resulting in conditional probabilities that are necessary
for downstream QTL mapping.

RECURSIVE ALGORITHM EXCH

Notations and overview
The symbols are briefly explained in Table 1, and some of them are
illustrated in Figure 1. Pedigree members with unspecified mother and
father are called the founders of the pedigree, and the other members
are non-founders. The recursive algorithm presupposes that pedigree
members are ordered under the constraint that parents always precede
children.We denote by subscripts a, b, c themembers of a pedigree, and
denote by a. b individual a comes after individual b ð6¼ aÞ:Wedenote
by superscripts m the maternally derived genes or chromosomes, and
p for the paternally derived. We denote by superscripts o, o1, o2, and o3
the unspecified parental origins (m or p) of genes or chromosomes. For
the sake of brevity, f ðaÞ ¼ fAA;XX;XYg denotes a horizontal piece-
wise equation, so that f ðaÞ ¼ AA; XX; and XY for the autosomes of
individual a, XX chromosomes of female a, and XY chromosomes of
male a, respectively.

In the derivations of recurrence relations of a quantity, we will
focus on a particular ordering a. b if the quantity concerns genes in
two individuals; we will always trace the maternally derived gene or
chromosome within non-founder a back to its two parental genes or
chromosomes if the maternally derived gene or chromosome concerns
the quantity, and otherwise trace the paternally derived gene or chro-
mosome. Throughout this paper,♂ and♀ always denote the father and
mother of individual a, rather than any other, respectively.

The identity coefficient fo1o2
ab ð12Þ denotes that two genes at a

single locus have identity state ð12Þ; where the first gene is in in-
dividual a and has parental origin o1; and the second gene is in
individual b and has parental origin o2 (Figure 1A). There are only
two two-gene identity states: IBD (11) or non-IBD (12), and
fo1o2
ab ð11Þ ¼ 12fo1o2

ab ð12Þ: Similarly, we denote by fo1o2o3
abc ð123Þ

the three-gene identity coefficient with the identity state being
the non-IBD state ð123Þ; which is required together with two-gene
identity coefficients for deriving the recursive relations for junc-
tion densities.

An expected identity junction density is defined as the expected
number of the specified type of recombination breakpoints per Morgan
along two homologous chromosomes. Here expectation concerns the
stochasticity of gene flow from founders to descendants on a fixed
pedigree. And identity indicates that only the identity patterns (not
specific FGLs) on the two sides of junctions matter. In the recursive
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algorithm NON-EXCH, we will introduce ancestral junction densities
where the specific FGLs do matter. For example, Jo1o2ab ð1232Þ denotes
that the four genes, two at each side of a breakpoint along two chro-
mosomes, have genetic identity state ð1232Þ (Figure 1B). Here the first
and third genes are on the left and right sides of a breakpoint, respec-
tively, and they are in individual a and have parental origin o1: And the
second and fourth genes are on the left and right sides, respectively, and
they are in individual b and have parental origin o2: We adopt the
notation of Nadot and Vayssiex (1973) for an identity state: the genes
are labeled by natural integers starting 1, and the same integer is
assigned to the gene that is IBD with a previous gene.

Following the previous framework (Zheng et al. 2014; Zheng
2015), we model ancestral origins along two homologous chromo-
somes within an individual by a continuous time Markov process,
which can be described by an initial distributionp of ancestral origins
and a rate matrix Q. Under the assumption of exchangeability among
FGLs, the initial distribution p of individual a is determined by the
identity coefficient fmp

aa ð11Þ; and the rate matrix Q of individual a is
determined by the five expected identity junction densities Jmp

aa ð1122Þ;
Jmp
aa ð1211Þ; Jmp

aa ð1213Þ; Jmp
aa ð1222Þ; and Jmp

aa ð1232Þ; see Zheng (2015)
for an illustrative construction of rate matrix Q from the five junction
densities.

In the following, wedescribe a recursive algorithm for calculating the
identity coefficients and the expected junctiondensities for an individual
in a given pedigree. In short, let 1S be an indicator function that equals
1 if statement S is true and 0 otherwise, and let 0S2S1 ¼ 12 1S11S2 be an
indicator function that equals 0 if statements S1 and S2 are true and
1 otherwise.

Identity coefficients
The recurrence relations for the two- and three-gene identity coefficients
are similar to the recursive algorithm of Karigl (1981). However, the
calculation proceeds by tracing back genes instead of individuals, see
also e.g., Jacquard (1974), Nadot andVayssiex (1973), Denniston (1974),
and Garcia-Cortes (2015). Thus, we can account for the asymmetry
between maternally and paternally derived chromosomes, and account
for autosomes and sex chromosomes simultaneously. Throughout this
paper, we assume that there are no crossovers between X and Y sex
chromosomes within a male. In addition, we focus on non-IBD state
ð12Þ instead of IBD state ð11Þ to simplify the recurrence relations.

We derive the recurrence relations according to the Mendelian in-
heritance rules: (1) a maternally (or paternally) derived autosomal gene
descends from the two genes within the mother (or father, respectively)
with equal probability 1=2; (2) similar to (1) for a maternally derived
X-linked gene, and (3) a paternally derived sex-linked gene within a
female (or male) must descend from the X-linked (or Y-linked, respec-
tively) gene of the father. The recurrence relations of the two-gene
identity coefficient fo1o2

ab ð12Þ for non-founder a are given by

fmo
ab ð12Þ ¼

1
2

�
fmo
♀bð12Þ þ f

po
♀bð12Þ

�
0m¼o
a¼b ; a$ b

f
po
abð12Þ ¼

�
1
2

�
fmo
♂bð12Þ þ f

po
♂bð12Þ

�
;fmo

♂bð12Þ;

f
po
♂bð12Þ

�
0p¼o
a¼b; a$ b;

fo1o2
ab ð12Þ ¼ fo2o1

ba ð12Þ; a, b;

n Table 1 List of symbols and their brief descriptions

Symbol Description

1S An indicator function that equals 1 if statement S is true and 0 otherwise
0S2S1 An indicator function that equals 0 if S1 and S2 are true and 1 otherwise.
o;o1;o2;o3 A gene or haplotype is maternally (¼ m) or paternally (¼ p) derived
a;b; c Pedigree members
♂, ♀ Father of a, mother of a
f
mp
ab ð11Þ Probability of IBD between maternal gene of a and paternal gene of b

fo1o2
ab ð11Þ Probability of IBD between two genes of ab with parental origins o1o2

fo1o2
ab ð12Þ Probability of non-IBD between two genes of ab with parental origins o1o2

fo1o2o3
abc ð123Þ Probability of non-IBD among three genes of abc with parental origins o1o2o3

Rm
a Expected junction density (per Morgan) on the maternal chromosome of a

Ro
a On the chromosome of a with parental origin o

ðg1g2g3g4Þ A junction type denoted by two-locus four-gene identity state: g1g2 (g3g4) are
on the left-hand (right-hand) side of junction, and g1g3 and g2g4 are two haplotypes.
Seven types: 1112, 1121, 1122, 1211, 1213, 1222, and 1232

Jo1o2
ab ðg1g2g3g4Þ Expected density of junction type ðg1g2g3g4Þ; where haplotype g1g3 of a has

parental origin o1 and haplotype g2g4 of b has parental origin o2

r
mp
aa Expected overall junction density for a. rmp

aa ¼ Rm
a þ Rp

a 2 Jmp
aa ð1122Þ

V A set of distinct FGLs assigned to the founders of a pedigree, i; j; k 2 V

i 6¼ j 6¼ k FGLs i; j; k differ from each other so that i 6¼ j, j 6¼ k, and i 6¼ k
fm
a ðiÞ Probability that the maternal gene of a has FGL i

fo
a ðiÞ Probability that the gene of a with parental origin o has FGL i.

P
i2Vf

o
a ðiÞ ¼ 1

f
mp
ab ðijÞ Probability that the maternal gene of a has FGL i and the paternal gene of b has FGL j.

fo1o2
ab ðijÞ Probability that two genes of ab with parental origins o1o2 have FGLs ij

fo1o2
ab ð12Þ ¼ P

i;j2V;i 6¼jf
o1o2
ab ðijÞ

fo1o2o3
abc ðijkÞ Probability that three genes of abc with parental origins o1o2o3 have FGLs ijk.

fo1o2o3
abc ð123Þ ¼ P

i;j;k2V;i 6¼j 6¼kf
o1o2o3
abc ðijkÞ

Ro
a ðijÞ Expected junction density (per Morgan) on chromosome of a with parental origin o,

where the left-hand (right-hand) side of junction has FGL i(j 6¼ i). Ro
a ¼ P

i;j2V;i 6¼jR
o
a ðijÞ

Jo1o2
ab ðijkjÞ Expected junction density: the four genes have FGLs ijkj, haplotype ik of a has parental origin o1,

and haplotype jj of b has parental origin o2. J
o1o2
ab ð1232Þ ¼ P

i;j;k2V;i 6¼j 6¼kJ
o1o2
ab ðijkjÞ.

Similarly for Jo1o2
ab ðiiijÞ; Jo1o2

ab ðiijiÞ; Jo1o2
ab ðiijjÞ; Jo1o2

ab ðijiiÞ; Jo1o2
ab ðijikÞ; Jo1o2

ab ðijjjÞ
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for o; o1; o2 2 fm; pg: Here the first equation follows from the rules
1 and 2 for the maternally derived gene within individual a, the
second equation follows from the rules 1 and 3 for the paternally
derived gene within individual a, and the last equation is obtained
by reversing the ordering of two genes. The symmetries such as
fo1o2o3
abc ð123Þ ¼ fo1o3o2

acb ð123Þ ¼ . . . ¼ fo3o2o1
cba ð123Þ apply to three-gene

identity coefficients by permuting the three genes, and thus we con-
sider only a particular ordering a$ b$ c; and we have

fmo1o2
abc ð123Þ ¼ 1

2

�
fmo1o2
♀bc ð123Þ þ f

po1o2
♀bc ð123Þ�0m¼o1

a¼b 0m¼o2
a¼c 0o1¼o2

b¼c ;

f
po1o2
abc ð123Þ ¼

�
1
2

�
fmo1o2
♂bc ð123Þ þ f

po1o2
♂bc ð123Þ�;fmo1o2

♂bc ð123Þ;

f
po1o2
♂bc ð123Þ

�
0p¼o1
a¼b 0

p¼o2
a¼c 0

o1¼o2
b¼c ;

for o1; o2 2 fm; pg; where the first (second) equation traces the ma-
ternally (or paternally, respectively) derived gene within individual a.

The boundary conditions of these recurrence relations are given
according to the assignment of FGLs to the founders in a pedigree. If we
assign distinct FGLs to each haploid genome of an outbred founder, all
multi-genenon-IBDprobabilitiesare1 if anypairofgenes isnot fromthe
same haploid genome, and 0 otherwise. Four-gene or higher order
identity coefficients may be derived similarly, but they are not required
for the derivations of junction densities.

Expected identity junction densities
Let Rm

a ðRp
aÞ be the maternal (paternal) map expansion, the expected

density of recombination breakpoints on the maternally (paternally)
derived chromosome of individual a. The implicit two-gene identity
state for the map expansions is ð12Þ: It holds that

Rm
a ¼ Jmp

aa ð1122Þ þ Jmp
aa ð1121Þ þ Jmp

aa ð1222Þ þ Jmp
aa ð1232Þ;

Rp
a ¼ Jmp

aa ð1122Þ þ Jmp
aa ð1112Þ þ Jmp

aa ð1211Þ þ Jmp
aa ð1213Þ;

where Jmp
aa ð1121Þ ¼ Jmp

aa ð1222Þ and Jmp
aa ð1112Þ ¼ Jmp

aa ð1211Þ according
to the reversibility of chromosome direction (Zheng 2015). The
expected overall junction density for individual a is given by r

mp
aa ¼

Rm
a þ Rp

a 2 Jmp
aa ð1122Þ: In the following, we derive the recurrence re-

lations for the five expected junction densities Rm
a ; R

p
a; J

mp
aa ð1122Þ;

Jmp
aa ð1213Þ; and Jmp

aa ð1232Þ; from which Jmp
aa ð1211Þ and Jmp

aa ð1222Þ
can be derived according to the above equations of map expansions.

The recurrence relations for the two map expansions of non-founder
a are relatively simple, and they are given by (Zheng 2015)

Rm
a ¼ 1

2

�
Rm
♀ þ Rp

♀

�
þ f

mp
♀♀ð12Þ;

Rp
a ¼

�
1
2

�
Rm
♂ þ Rp

♂

	þ f
mp
♂♂ð12Þ;Rm

♂ ;R
p
♂

�
;

according to the theory of junctions that a new identity junction is
formed whenever a recombination event occurs between two homol-
ogous chromosomes that are non-IBD at the location of a crossover
(Fisher 1954).

Since chromosomes are modeled as a genomic continuum, the
shared junction type (1122) between two chromosomes can be formed
only by duplicating the chromosome segment harboring the recombi-
nationbreakpoint. For the expected junctiondensity Jo1o2aa ð1122Þ of non-
founder a, we have

Jooaað1122Þ ¼ Ro
a;

Jmp
aa ð1122Þ ¼ Jpmaa ð1122Þ ¼

1
2

�
Jpma♀ ð1122Þ þ Jppa♀ð1122Þ

�
;

Jmo
ab ð1122Þ ¼

1
2

�
Jmo
♀b ð1122Þ þ Jpo♀bð1122Þ

�
; a. b;

Jpoabð1122Þ ¼
�
1
2

�
Jmo
♂b ð1122Þ þ Jpo♂bð1122Þ

�
; Jmo

♂b ð1122Þ; Jpo♂bð1122Þ
�
;

a. b;

Jo1o2ab ð1122Þ ¼ Jo2o1ba ð1122Þ; a, b;

for o; o1; o2 2 fm; pg; where and the last equation is obtained by
reversing the ordering of the two haplotypes. In the first equation,
Jooaað1122Þ refers to the same chromosome in individual a, and thus
equals Ro

a by definition. We trace the maternally derived haplotype
within non-founder a back to its two parental haplotypes if the
maternally derived haplotype concerns the junction density, and oth-
erwise track the paternally derived haplotype.

We derive the recurrence relations for Jo1o2ab ð1213Þ and Jo1o2ab ð1232Þ
jointly. The recombination breakpoint for ð1232Þ occurs on the first
chromosome of a homologous pair, and it is on the second chromo-
some for ð1213Þ: The junction type ð1213Þ becomes ð1232Þ when
reversing the ordering of two haplotype of junction type ð1213Þ: We
have

Figure 1 Illustration of some quantities. An identity
state may correspond to many ancestral states. Differ-
ent FGLs are shown by different colors, and the
irrelevant chromosomes are shown as gray. (A) Some
two- or three-gene ancestral coefficients and their
corresponding identity coefficients. (B) Some expected
ancestral junction densities and their corresponding
expected identity junction densities. See Table 1 for
brief explanations of these quantities.
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Jmo
ab ð1232Þ ¼

1
2

�
Jmo
♀b ð1232Þ þ Jpo♀bð1232Þ

�
0m¼o
a¼b þ f

mpo
♀♀bð123Þ0m¼o

a¼b ;

a$ b;

Jpoabð1232Þ ¼
�
1
2

�
Jmo
♂b ð1232Þ þ Jpo♂bð1232Þ

�þ f
mpo
♂♂bð123Þ;

Jmo
♂b ð1232Þ; Jpo♂bð1232Þ

�
0p¼o
a¼b; a$ b;

Jo1o2ab ð1232Þ ¼ Jo2o1ba ð1213Þ; a, b;

Jmo
ab ð1213Þ ¼

1
2

�
Jmo
♀b ð1213Þ þ Jpo♀bð1213Þ

�
0m¼o
a¼b ; a$ b;

Jpoabð1213Þ ¼
�
1
2

�
Jmo
♂b ð1213Þ þ Jpo♂bð1213Þ

�
; Jmo

♂b ð1213Þ;

Jpo♂bð1213Þ
�
0p¼o
a¼b; a$ b;

Jo1o2ab ð1213Þ ¼ Jo2o1ba ð1232Þ; a, b;

for o; o1; o2 2 fm; pg: There are no contributions from the three-gene
non-IBD probabilities in the equations for Jmo

ab ð1213Þ and Jpoab ð1213Þ;
because crossovers between the two parental haplotypes of the tracing
haplotype within individual a are invisible.

The boundary conditions are given by the assignment of FGLs to the
founders. The within- and between-founder identity junction densities
are 0 if a single FGL is assigned to the whole haploid genome of each
founder.

RECURSIVE ALGORITHM NON-EXCH

Notations and overview
Let V denote the set of distinct FGLs assigned to the founders of a
pedigree. We adopt the same notations in the recursive algorithm with
FGL exchangeability except for the following changes. As shown in
Figure 1, we replace identity states by ancestral states: ð1122Þ/ðiijjÞ;
ð1211Þ/ðijiiÞ; ð1213Þ/ðijikÞ; ð1222Þ/ðijjjÞ; and ð1232Þ/ðijkjÞ for
the two-chromosome expected junction densities, and Rm

a /Rm
a ðijÞ

and Rp
a/Rp

aðijÞ explicitly for the map expansions, where i; j; k 2 V
are different from each other (denoted by i 6¼ j 6¼ k).

We represent a two-gene ancestral state by ðijÞ; and a three-gene
ancestral state by ðijkÞ; where i; j; k 2 V are not necessary different
from each other. In addition we introduce one-gene ancestral coeffi-
cient fo

aðiÞ; the probability that the maternally ðo ¼ mÞ or paternally
ðo ¼ pÞ derived gene in individual a carries FGL i 2 V: The iden-
tity coefficients can be obtained by summing the corresponding
ancestral coefficients. For example, fo1o2

ab ð11Þ ¼ P
i2Vf

o1o2
ab ðiiÞ:

Similar relationships hold between the expected identity junction
densities and the expected ancestral junction densities, for exam-
ple, Jo1o2ab ð1122Þ ¼ P

i;j2V;i 6¼jJ
o1o2
ab ðiijjÞ and Ro

a ¼
P

i;j2V;i 6¼jR
o
aðijÞ:

Similarly, the initial distribution p of the Markov chain can be
constructed from the two-gene ancestral coefficients, and the rate ma-
trix Q can be constructed from the expected ancestral junction densi-
ties, without assuming the exchangeability of FGLs.

Ancestral coefficients
Bauman et al. (2008) and Zhou et al. (2012) derived the recurrence
relations of the one- and two-gene ancestral coefficients for autosomes
by tracing two distinct genes simultaneously in their parents.We derive
equivalent recurrence relations for both autosomes and sex chromo-
somes by tracing one gene once in its parent, instead of simultaneously
tracing two genes within an individual. In addition, we derive the re-
current relations of the three-gene ancestral coefficients that are

required in the recurrence relations of the expected ancestral junction
densities.

The relations of the ancestral coefficients are very similar to those of
the identity coefficients, and they are based on the same rules of
Mendelian inheritance. For example for the one-gene ancestral co-
efficient fo

aðiÞ of non-founder a, we have

fm
a ðiÞ ¼

1
2

�
fm
♀ðiÞ þ f

p
♀ðiÞ

�
;

fp
aðiÞ ¼

�
1
2

�
fm
♂ðiÞ þ f

p
♂ðiÞ

�
;fm

♂ðiÞ;fp
♂ðiÞ

�
:

See Appendix A for the recurrence relations of the two-gene ancestral
coefficient fo1o2

abc ðijÞ and three-gene ancestral coefficient fo1o2o3
abc ðijkÞ:

The boundary conditions of the recurrence relations of the ancestral
coefficients are given by the FGLs assigned to the founders in a pedigree.

Expected ancestral junction densities
The ancestralmap expansions can be expressed in terms of the expected
ancestral junction densities as follows

Rm
a ðijÞ ¼ Jmp

aa ðiijjÞ þ Jmp
aa ðiijiÞ þ Jmp

aa ðijjjÞ þ
X

k2V;i6¼j 6¼k

Jmp
aa ðikjkÞ;

RpaðijÞ ¼ Jmp
aa ðiijjÞ þ Jmp

aa ðiiijÞ þ Jmp
aa ðjijjÞ þ

X
k2V;i6¼j 6¼k

Jmp
aa ðkikjÞ:

Here Ro
aðijÞ; o 2 fm; pg refers to the junctions on the single chromo-

some of a with parental origin o, while the terms on the right-hand
side refer to the junctions on the two homologous chromosomes of a.
We have Jmp

aa ðiijiÞ ¼ Jmp
aa ðjiiiÞ 6¼ Jmp

aa ðijjjÞ and Jmp
aa ðiiijÞ ¼ Jmp

aa ðijiiÞ 6¼
Jmp
aa ðjijjÞ; where the equal signs are based on the reversibility of chro-
mosome direction, and the unequal signs refer to the non-exchange-
ability of FGLs i and j.

The recurrence relations for the ancestral map expansions are
given by

Rma ðijÞ ¼
1
2

�
Rm
♀ðijÞ þ Rp

♀ðijÞ
�þ 1

2

�
f
mp
♀♀ðijÞ þ f

pm
♀♀ðijÞ

�
1i6¼j;

Rp
aðijÞ ¼

�
1
2

�
Rm♂ðijÞ þ Rp

♂ðijÞ
�þ 1

2

�
f
mp
♂♂ðijÞ þ f

pm
♂♂ðijÞ

�
1i6¼j;

Rm
♂ðijÞ;Rp

♂ðijÞ
�
;

where the contributions of the two-gene ancestral coefficients account
for the asymmetry of FGLs i and j, for example, fmp

♀♀ðijÞ ¼ f
pm
♀♀ðjiÞ 6¼

f
pm
♀♀ðijÞ: A new ancestral junction is formed whenever a recombination

event occurs between two homologous chromosomes that have the
unordered FGLs i and j at the location of a crossover.

The recurrence relations for Jo1o2ab ðiijjÞ are the same as those for
Jo1o2ab ð1122Þ; except that identity states are replaced by ancestral states.
We have

JooaaðiijjÞ ¼ Ro
aðijÞ;

Jmp
aa ðiijjÞ ¼ Jpmaa ðiijjÞ ¼

1
2

�
Jpma♀ ðiijjÞ þ Jppa♀ðiijjÞ

�
;

Jmo
ab ðiijjÞ ¼

1
2

�
Jmo
♀b ðiijjÞ þ Jpo♀bðiijjÞ

�
; a. b;

JpoabðiijjÞ ¼
�
1
2

�
Jmo
♂b ðiijjÞ þ Jpo♂bðiijjÞ

�
; Jmo

♂b ðiijjÞ; Jpo♂bðiijjÞ
�
; a. b;

Jo1o2ab ðiijjÞ ¼ Jo2o1ba ðjjiiÞ; a, b;
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for o; o1; o2 2 fm; pg;where the last equation is obtained by reversing
the ordering of the two haplotypes. See Appendix B for the recurrence
relations of Jo1o2ab ðijkjÞ; Jo1o2ab ðijikÞ Jo1o2ab ðijjjÞ, and Jo1o2ab ðijiiÞ:

As before, the within- and between-founder ancestral junction
densities are 0 if a single FGL is assigned to the whole haploid genome
of each founder.

Data availability
Ancestral inference using the two recursive algorithms is implemented
in the previous developed RABBIT software, where the function mag-
icReconstruct is extended to incorporatepedigree information.RABBIT
is available at https://github.com/chaozhi/RABBIT.git, and it is offered
under the GNU Affero general public license, version 3 (AGPL-3.0).
Example scripts for using the recursive algorithms, simulating geno-
typic data, and ancestral inference are included. The real CC data have
been described by Durrant et al. (2011).

APPLICATION TO MULTIPARENTAL POPULATIONS

Simulation evaluation
Beforeapplying the tworecursivealgorithmsEXCHandNON-EXCHto
multiparental populations, we evaluate their accuracy by forward sim-
ulations on the classical pedigree of Native Americans (Figure 3)
(Chapman and Jacquard 1971). The pedigree has been previously used
for evaluating recursive algorithms (Jacquard 1974; Karigl 1981;
Garcia-Cortes 2015). We simulate two linkage groups: one pair of
homologous autosomes and one pair of sex chromosomes. We assign
FGLs to the haploid or diploid genomes of the founders. Each descen-
dant gamete is specified as a list of FGL segments determined by

chromosomal crossovers. The number of crossovers in a linkage group
of a gamete follows a Poisson distribution with mean 1. We assume no
genetic interference so that the positions of crossovers are indepen-
dently and randomly distributed across the chromosomes. We obtain
simulated results for the pedigree member “M22” (Figure 3) by aver-
aging over 106 simulations.

Table 2 shows the comparisons between the numerical results from
the recursive algorithm EXCH and the simulated results. A unique FGL
is assigned to each haploid genome of each founder, so that in total
twelve distinct FGLs are assigned to the fixed founders. The differences
between the numerical and simulated results are less than 0.002, which
is very likely due to the stochasticity of gene flow from founders to
descendants. The identity coefficient fmp

aa ð11Þ for autosomes is in
agreement with the previous result (Karigl 1981).

Table 3 evaluates the recursive algorithm NON-EXCH by the for-
ward simulations. A unique FGL is assigned to the whole diploid ge-
nome of each founder, so that in total six distinct FGLs are assigned to
the fixed founders. Here we use a different assignment of FGLs because
Table 3 was otherwise too large. The results show that founder “J” does
not contribute to the maternally derived autosome and X chromosome
in offspring “M22”, which is relatively straightforward from the pedi-
gree structure in Figure 3. The differences between the numerical and
simulated results, including those for fmp

aa ðijÞ; Jmp
aa ðiijjÞ; Jmp

aa ðijiiÞ;
Jmp
aa ðijikÞ; Jmp

aa ðijjjÞ; and Jmp
aa ðijkjÞ; are less than 0.001.

We confirmed that the numerical results from the algorithm NON-
EXCHare reduced to those fromthealgorithmEXCH,bysummingover
possible FGLs under the given identity pattern. In addition, we con-
firmed the consistency between the two algorithms in themultiparental
populations shown in Figure 4.

Figure 2 Pictorial representation of recurrence equa-
tions. (A) The equation for ancestral coefficient fmp

ab ðijÞ
ða.b;Þ. (B) The equation for ancestral junction density
Jmp
ab ðijkjÞ ða.bÞ: The FGLs i, j, and k are shown by
different colors, and the irrelevant chromosomes are
shown as gray. The symbol ♀ denotes the mother of
individual a, and see Table 1 for other notations.
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Breeding design
We apply the recursive algorithm EXCH to multiparental populations,
which have become attractive for QTL mapping in many animal and
plant species. Specifically, we study the inbreedingprocessby calculating
the IBD probability fmp

aa ð11Þ; and measure the QTL mapping resolu-
tion by calculating the expected overall junction density rmp

aa :We focus
on multi-way funnel breeding schemes (Figure 4). In the funnel
scheme, the founders of each line are randomly permuted, and each
line is produced by a intercross scheme that combines all founder
genomes through several generations of pairwise crosses prior to re-
peated generations of inbreeding by e.g., siblingmating. The alternating
backcross and the father-daughter backcross have been studied by
Welsh andMcMillan (2012) for accelerating inbreeding by a simulation
approach.

Figure 5A and B show the IBD probability and the expected overall
junction density as a function of generation for the recombinant inbred
lines (RIL) by selfing and the RIL+ by selfing. These plant breeding
schemeshavebeenadopted inmanyrecentlyproducedcropmultiparent
advanced generation intercross (MAGIC)populations (e.g.,Huang et al.
2012; Mackay et al. 2014; Pascual et al. 2015). The RIL+ by selfing has
one additional generation of intercrossing instead of selfing in the RIL
scheme (Teuscher and Broman 2007). Thus, the RIL+ scheme has
smaller IBD probability fmp

aa ð11Þ (Figure 5A), and has about 1 per M
larger overall junction density r

mp
aa in a given later generation (t$ 5)

(Figure 5B).
Figure 5C and E show that the IBD probabilities fmp

aa ð11Þ for the
alternating backcross and the father-daughter backcross are the same
as those of the RIL by sibling for autosomes and they are smaller than
those of the RIL by sibling for sex chromosomes. Welsh and McMil-
lan (2012) measured the inbreeding process by the number of

generations to reach complete fixation of genome as homozygous,
and showed that the number of generation increases from the alternat-
ing backcross to the father-daughter backcross and to the RIL by sib-
ling. The differences in the number of generation can be partially
because the differences of the IBD probabilities for sex chromosomes,
and partially because the complete fixation refers to one individual for
the alternating backcross and two individuals for the father-daughter
backcross.

Figure5DandFshowthat the expectedoverall junctiondensitiesrmp
aa

for the alternating backcross and the father-daughter backcross are
lower than those of the RIL by sibling for autosomes and sex chromo-
somes, and that the junction densities for the alternating backcross are
slightly smaller than those of the father-daughter backcross for auto-
somes. These results are consistent with those of Welsh and McMillan
(2012): the number of chromosome segments in the final inbred lines
increases from the alternating backcross to the father-daughter
backcross and to the RIL by sibling.

FGL exchangeability
We apply the recursive algorithm NON-EXCH to study the prior FGL
exchangeability for the multi-way funnel breeding schemes (Figure 4).
We assume that all founder parents are fully inbred, and assign FGLs
from A to H to the eight inbred parents in order from left to right. To
examine the FGL exchangeability, we calculate the ancestral coefficient
fmp
aa ðijÞ and the expected ancestral junction density Jmp

aa ðiijjÞ; the latter
being the only ancestral junction type for complete inbred individuals.

Figure 6 shows the exchangeability in terms of fmp
aa ðijÞ and Jmp

aa ðiijjÞ
for the females in generation t ¼ 6; 11, and 22 for the RIL by sibling.
The left panels show the results for autosomes. The FGL non-
exchangeability confirms the pedigree inconsistency introduced by
Liu et al. (2010): each of the four mating pairs of founder parents is
impossible at a single locus in an individual, that is,fmp

aa ðijÞ ¼ 0 for ðjiÞ
or ðijÞ ¼ ðABÞ; ðCDÞ; ðEFÞ; and ðGHÞ: The FGL non-exchangeability
shows a different pattern for Jmp

aa ðiijjÞ: there are three levels of expected
junction densities and the fourmating pairs of founder parents have the
highest values. For both fmp

aa ðijÞ and Jmp
aa ðiijjÞ; the non-exchangeability

diminishes in generation 22 with almost complete inbreeding.
The right panels of Figure 6 show the exchangeabilitypatterns for sex

chromosomes of the RIL by sibling. The founder parents D, G, and H
cannot pass their X chromosomes beyond F1, and thus their FGLs are
impossible in generation t$ 2: Similar to autosomes, fmp

aa ðijÞ ¼ 0 for
ðjiÞ or ðijÞ ¼ ðABÞ and ðEFÞ. For fmp

aa ðijÞði ¼ jÞ or fm
a ðiÞ; the proba-

bility of FGL C is around twice as large as that of A, B, E or F in
generation t$ 2; because the X chromosome carrying FGL C in gen-
eration 1 is inherited with probability 1, whereas each of the X chro-
mosomes carrying FGLs A, B, E, and F in generation 1 is inherited
with probability 1/2. Similarly, the values of Jmp

aa ðiijjÞ involving FGL

Figure 3 The pedigree of Native Americans. It consists of 6 founders
and 16 non-founders. Circles denote females, and rectangles for
males.

n Table 2 The identity coefficients and the expected identity
junction densities for pedigree member ”M22”

Quantity a AA autosomes XX autosomes

Numerical Simulated Numerical Simulated

fmp
aa ð11Þ 0.18359 0.18324 0.23437 0.23459

Jmp
aa ð1122Þ 0.18359 0.18371 0.17969 0.17969
Jmp
aa ð1211Þ 0.61572 0.61516 0.35938 0.35978
Jmp
aa ð1213Þ 2.93652 2.93462 1.47656 1.47587
Jmp
aa ð1222Þ 0.61572 0.61605 0.57031 0.57047
Jmp
aa ð1232Þ 2.93652 2.93824 1.71094 1.71227

a
A unique FGL is assigned to each haploid genome of each founder in Figure 3.
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C increase with inbreeding generation, they are about twice as large as
others in generation 22.

We examine the exchangeability patterns for the other multi-way
funnel breeding schemes, and focus on autosomes since the FGL ex-
changeability does not hold in general for sex chromosomes because of
the asymmetrybetweenXandYchromosomes.Thenon-exchangeability

of fmp
aa ðijÞ disappears in a completely inbred individual for all 4- 8- and

16-way breeding schemes, because of random chromosomal segrega-
tions over many inbreeding generations. However, the FGL exchange-
ability of Jmpaa ðiijjÞ often does not hold even after for a completely inbred
individual, for example, see Figure 7 for the breeding schemes after
100 generations of selfing inbreeding.

Ancestral inference
Either one of the two recursive algorithms can be used as a prior to
incorporate pedigree information for ancestral inference in multipar-
ental populations from genotypic data, which will be illustrated as
follows by simulated and real CC populations.

Simulated CC: We simulate a CC population (Churchill et al. 2004)
with 100 independent funnels, and take the female at the last genera-
tion. The SNP data for the eight founder mouse strains are from
Collaborative Cross Consortium (2012), withmarker density� 5 SNPs
per cM. The genotypic data of a sample female are obtained by simu-
lating the FGLs forwardly and then combining them with the founder
SNP data. Allelic errors are assumed to occur independently, and we
simulate genotypic data of founders and sampled individuals with the
same allelic error probability 0.005.

We analyze four simulated data sets: F11-AA, F11-XX, F22-AA, and
F22-XX,where the first part denotes the generation, and the secondpart
denotes the 19 pairs of autosomes (AA) or the sex chromosomes (XX).
We perform two analyses for each data set by applying each of the two
recursive algorithms as the prior for modeling ancestral origins along
twohomologous chromosomeswithinan individual. SeeFigure6 for the
prior distributions of fmp

aa ðijÞ and Jmp
aa ðiijjÞ as a part of results obtained

from the algorithm NON-EXCH. The true allelic error probability is
used for the genotypic data of founders and sampled individuals.

Table 4 shows the evaluation of the prior FGL exchangeability on
ancestral inference in the simulated CCpopulation. The two analyses of
the data set F22-AA are almost the same because there is approximately
no prior FGL exchangeability for the autosomes in generation t ¼ 22;

Figure 4 Illustration of different 8-way
funnel breeding schemes. The alternat-
ing backcross scheme alternates be-
tween mother-son and father-daughter
matings in generation t$ tb0 ; and the
father-daughter backcross alternates
between father-daughter and random
sibling matings in generation t$ tb0 :
Circles denote females, and rectan-
gles for males.

n Table 3 The ancestral coefficients and the expected ancestral
junction densities for pedigree member ”M22”

Quantity a AA autosomes XX autosomes

Numerical Simulated Numerical Simulated

fm
a ðiÞ

A 0.21875 0.21885 0.125 0.12507
B 0.21875 0.21874 0.125 0.12467
J 0 0 0 0
L 0.125 0.12487 0.25 0.25078
P 0.3125 0.31241 0.25 0.24939
C 0.125 0.12513 0.25 0.25009
Rm
a ðijÞ

AB 0.31250 0.31272 0.14062 0.14098
AJ 0 0 0 0
AL 0.09375 0.09348 0.09375 0.09364
AP 0.28906 0.28880 0.15625 0.15602
AC 0.11719 0.11768 0.09375 0.09330
BJ 0 0 0 0
BL 0.09375 0.09405 0.09375 0.09384
BP 0.28906 0.28890 0.15625 0.15626
BC 0.11719 0.11742 0.09375 0.09331
JL 0 0 0 0
JP 0 0 0 0
JC 0 0 0 0
LP 0.15625 0.15644 0.18750 0.18748
LC 0.03125 0.03124 0.12500 0.12422
PC 0.10938 0.10922 0.18750 0.18735
a
The label of each founder is used as FGL that is assigned to its diploid
genomes.

3238 | C. Zheng, M. P. Boer, and F. A. van Eeuwijk



and the improvement of NON-EXCH over EXCH for F11-AA is� 3%
because of the FGL non-exchangeability such as that of Jmp

aa ðiijjÞ in
Figure 6. The improvements for sex chromosomes are larger than

those for autosomes because of the more pronounced FGL non-
exchangeability (Figure 6). The improvement for the data set F22-XX
is � 6%, and it increases to � 9% for F11-XX.

Figure 6 The FGL non-exchange-
ability patterns for the ancestral co-
efficient fmp

aa ðijÞ and the expected
ancestral junction density Jmp

aa ðiijjÞ in
the eight-way RIL by sibling. The
FGLs of eight founders are A-H from
left to right.

Figure 5 The identity coefficient fmp
aa ð11Þ and the

expected overall junction density fmp
aa for the breeding

schemes in Figure 4. (A-B) The results for selfing mat-
ing schemes 1-2 in Figure 4. (C-D) The results for the
autosomes of mating schemes 3-5 with backcross
starting from tb0 ¼ 12 in Figure 4. (E-F) The results for
the sex chromosomes.
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Real CC: The real CC population consists of 120 lines that are sampled
at generation t in the range of 8# t# 14 (Durrant et al. 2011). For each
line, we estimate the sampling generation by using the algorithm EXCH
and taking the generation with the maximum likelihood, where the
funnel code is not required. Then we estimate the funnel code by using
the algorithm NON-EXCH and an iterative maximum likelihood,
where a funnel code is proposed by slightly disturbing the current
funnel code and it is accepted if the likelihood is increased.We compare
the algorithms EXCH and NON-EXCH with GAIN (Liu et al. 2010),
the latter being specifically developed for the CC.

To study the effect of marker densities on ancestral inference, we
analyze only the first pair of homologous autosomes and thin the full
dataset by taking every secondSNPmarkers, and repeat to obtain nested
sub datasets. The data fractions or the relativemarker densities are given
by rM ¼ 1; 221; :::; 227: The absolute maximum marker density is

145 SNPs per cM, � 28 times higher than that of simulated CC. From
the full dataset rM ¼ 1; we calculate the marginal posterior probabil-
ities byNON-EXCH, EXCH, andGAIN, and set the pseudo-true values
to the most probable ancestral origins if they are the same among the
three methods. Overall the pseudo-true ancestral origins for 98:4%
observed genotypes are obtained.

Figure 8 shows that the results on ancestral inferences are only
slightly different among the three methods. The results of GAIN and
NON-EXCH contain no pedigree inconsistencies, whereas NON-
EXCHassignsancestralorigins tothe impossiblematingpairsof founder
parents with probability around 0.005. The wrongly assigned probabil-
ity for GAIN is larger than those of NON-EXCH and EXCH, and
the difference increases with the decreasing marker density. The rank-
ing of the wrong called probability from lowest to highest is NON-
EXCH, EXCH, and GAIN, and the improvement of NON-EXCH over

Figure 7 The FGL non-exchangeability patterns of the
expected ancestral junction density Jmp

aa ðiijjÞ: The results
are for autosomes of the multi-way RIL by 100 genera-
tions of selfing or sibling. The FGLs for founder parents
are letters starting from A up to P from left to right.

n Table 4 Evaluation of the prior FGL exchangeability on ancestral inference in the simulated CC population consisting of 100 funnels

Probability Simulated data set EXCH NON-EXCH Improvement (%)a

Wrongly assignedb F11-AA 0.02779 0.02715 2.3
F11-XX 0.01821 0.01650 9.4
F22-AA 0.02484 0.02476 0.3
F22-XX 0.01540 0.01452 5.7

Wrongly calledc F11-AA 0.01962 0.01888 3.8
F11-XX 0.01284 0.01175 8.5
F22-AA 0.01766 0.01771 20.3
F22-XX 0.01170 0.01084 7.4

a
The percentage decrease of the wrongly assigned (or called) probability for the analysis using the algorithm NON-EXCH, relative to the algorithm EXCH.

b
One minus the posterior probability of being true ancestral states.

c
One minus the fraction of called ancestral states being true ancestral states. At each SNP location within an individual, the ancestral state is called by its maximum
posterior probability.
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EXCH is around 4:2% and the improvement of NON-EXCH over
GAIN is around 7:2% when relative density rM $ 1=8: The similar
performances between algorithms NON-EXCH and EXCH indicate
that the prior FGL exchangeability is a reasonable approximation for
autosomes in the CC.

DISCUSSION
We have developed two novel recursive algorithms for modeling
genomic ancestral origins along two homologous chromosomes in a
pedigree with arbitrary but known structure. The algorithms apply to
bothautosomesand sex chromosomeswhen theyexist, andallow selfing
in the pedigree. The extensive simulations on a real example pedigree
show that the numerical results from the two recursive algorithms are
consistentwith the simulated results, apart fromthe stochasticityof gene
flow. The Markov property is assumed for the ancestral origin process
along two chromosomes, and thus genetic interference is assumed to be
absent. The assumption does not affect the expected junction densities
calculated from the two recursive algorithms, although it does affect the
distribution of inter-junction distances including the variance of junc-
tion densities.

One important application of the recursive algorithms is to design a
breeding scheme for accelerating the inbreeding process to obtain
immortal lines and for maximizing the resolution of mapping QTL.
Welsh and McMillan (2012) studied inbreeding processes among dif-
ferent types of multiparental crosses by simulations, and it takes ap-
proximately 5.5 hr to complete 100,000 simulations of eight-way RILs.
In contrast, it takes less than one second for our recursive algorithms.
Rockman and Kruglyak (2008) compared different intercross breeding
designs in multiparental RILs by simulations, aiming at increasing the
density of junctions (recombination breakpoints) and thus fine-mapping
resolution. Our previous recursive algorithms (Zheng et al. 2014;
Zheng 2015) can be used for calculating the junction density in ran-
dom mating schemes, and the two new algorithms extend the calcu-
lation for any breeding schemes with fixed pedigrees. The two
recursive algorithms can also be used in random mating schemes
by applying them to many pedigrees that are simulated according
to specified mating schemes and averaging the results, which would
still require less number of replicates and less computational time
than simulation studies.

The second important application of the two recursive algorithms is
toprovide an appropriatewayof incorporatingpedigree information for
analyzing genotypic data in bi- or multiparental populations. Specifi-
cally, the two recursive algorithm can be used to calculate the process
parameter values of hidden Markov models for genotypic data, that is,
the prior probability distribution of ancestral origins (FGLs) at an initial
site and the prior transition probabilitymatrix describing how ancestral
origins change along two homologous chromosomes within an indi-
vidual. See Figure 1 of Zheng (2015) for an example. The application to
the ancestral inference in the CC shows that the new algorithms imple-
mented in RABBIT performs only slightly better than GAIN (Figure 8).
However, GAIN is specifically designed for the CC, and our previous
algorithm applies only to breeding schemes with stage-wise random
mating. The new recursive algorithms have pronounced advantages of
generality and computational efficiency, and they apply to arbitrary
breeding pedigrees that are far away from random mating. For exam-
ple, one of the multiparental barley populations consists of backcross-
ing, half-diallel crossing, and selfing, where one inbred founder is much
stronger represented in the offspring lines (Liller et al. 2017).

Furthermore, we have applied the two recursive algorithms to
incorporate pedigree information for genotype imputation in multi-
parental populations (Zheng et al. 2018), and the application for

genetic linkage map construction in multiparental populations is
under development.
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APPENDIX A: RECURRENCE RELATIONS OF ANCESTRAL COEFFICIENTS

Wederive the recurrence relationsofone-, two-and three-geneancestral coefficients. For theone-gene ancestral coefficientfo
aðiÞ ofnon-foundera,wehave
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And for two-gene ancestral coefficient fo1o2
ab ðijÞ; we have
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for o; o1; o2 2 fm; pg; where the last equation is obtained by reversing the ordering of the two genes. See Figure 2A for a pictorial representation
of the equation for fmp

ab ðijÞ:
The symmetries such asfo1o2o3

abc ðijkÞ ¼ fo1o3o2
acb ðikjÞ ¼ . . . ¼ fo3o2o1

cba ðkjiÞ apply to three-gene ancestral coefficients by permuting the three genes,
and thus we consider only a particular ordering a. b. c, and we have
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APPENDIX B: RECURRENCE RELATIONS OF EXPECTED ANCESTRAL JUNCTION DENSITIES

The joint recurrence relations of Jo1o2ab ðijkjÞ and Jo1o2ab ðijikÞ are the same as those of Jo1o2ab ð1232Þ and Jo1o2ab ð1213Þ; except that identity states are
replaced by ancestral states and that the contributions of three-gene ancestral coefficients account for the asymmetry of FGLs. We have
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for o; o1; o2 2 fm; pg; where Jo2o1ba ðjijkÞ in the 3rd equation and Jo2o1ba ðjikiÞ in the 6th equation can be transformed into the form of Jo2o1ba ðijikÞ and
Jo2o1ba ðijkjÞ; respectively, by swapping i and j. There are no contributions of the three-gene ancestral coefficients in the equations for Jmo

ab ðijikÞ and
JpoabðijikÞ because crossovers between the two parental haplotypes of the tracing haplotype within individual a are invisible. See Figure 2B for a
pictorial representation of the equation for Jmp

ab ðijkjÞ:
The joint recurrence relations of Jo1o2ab ðijjjÞ and Jo1o2ab ðijiiÞ are the same to those of Jo1o2ab ðijkjÞ and Jo1o2ab ðijikÞ; except that the contributions of the

three-gene ancestral coefficients have slightly different forms. We have
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for o; o1; o2 2 fm; pg; where Jo2o1ba ðjijjÞ in the 3rd equation and Jo2o1ba ðjiiiÞ in the 6th equation can be transformed into the form of Jo2o1ba ðijiiÞ and
Jo2o1ba ðijjjÞ, respectively, by swapping i and j.
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