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The mechanisms of lung cancer are highly complex. Not only mRNA gene expression but also microRNAs, DNA methylation,
and copy number variation (CNV) play roles in tumorigenesis. It is difficult to incorporate so much information into a single
model that can comprehensively reflect all these lung cancer mechanisms. In this study, we analyzed the 129 TCGA (The Cancer
Genome Atlas) squamous cell lung carcinoma samples with gene expression, microRNA expression, DNA methylation, and CNV
data. First, we used variance inflation factor (VIF) regression to build the whole genome integrative network.Then, we isolated the
lung cancer subnetwork by identifying the known lung cancer genes and their direct regulators. This subnetwork was refined by
the Bayesian method, and the directed regulations among mRNA genes, microRNAs, methylations, and CNVs were obtained. The
novel candidate key drivers in this refined subnetwork, such as the methylation of ARHGDIB and HOXD3, microRNA let-7a and
miR-31, and the CNV of AGAP2, were identified and analyzed. On three large public available lung cancer datasets, the key drivers
ARHGDIB andHOXD3 demonstrated significant associations with the overall survival of lung cancer patients. Our results provide
new insights into lung cancer mechanisms.

1. Introduction

Lung cancer is the most common cause of cancer-related
death worldwide, and non-small-cell lung cancer (NSCLC)
accounts for approximately 80% of all cases [1]. The overall
5-year survival rate remains low despite the development of
clinical diagnosis techniques and chemotherapy [2]. NSCLC
has twomajor subtypes: squamous cell lung carcinoma (SCC)
and lung adenocarcinoma (AD). SCC represents approx-
imately 20–30% of NSCLC patients and is characterized
by keratinization in squamous pearls and the formation of
intercellular bridges [3]. Many studies have provided insight
into several driver genes, miRNAs, and crucial signaling
pathways that contribute to lung cancer pathogenesis.

Genetic and epigenetic alterations are frequently found in
SCC. For example, Sriram et al. [4] found that lung squamous
cell carcinoma patients with the loss of SOCS6 have worse

disease-free and overall survival rates. Son et al. [5] detected
gains at 1p31.1, 3q26.1, and 3q26.31–3q29 and losses at 1p21.1,
2q33.3, 2q37.3, 3p12.3, 4q35.2, and 13q34 in SCC. Many of the
loss regions in the chr3, -5, -9, -13, and -17 loss that occur in
SCC patients carry known tumor suppressors, such as TP53,
RB1, and APC [6–8]. The epidermal growth factor receptor
(EGFR) is a transmembrane glycoprotein, located on 7p12,
that conducts signals to downstream cascades such as PI3K-
AKT and RAS-RAF-MEK-ERK. It has been observed that
high-frequency copy number gains and the overexpression
of proteins occur in SCC cases [9, 10]. An in-frame deletion
of exons 2 to 7 in EGFR was found in three SCC cases
and resulted in the development of NSCLC in a mouse
model [11, 12]. The PI3K-AKT and RAS-RAF-MEK-ERK
signaling pathways play central roles in antiapoptosis and
proliferation inmany cancers, including SCC [13–15]. Kirsten
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rat sarcoma viral oncogene homolog (KRAS), located on
chr12p12.1, belongs to the canonical RAS family, which also
includes HRA and NRAS. The three conserved RAS genes
encode monomeric GTPases and have been found to be
frequent mutations in approximately 30% of all cancers [16].
RAS receives stimulation from upstream receptors such as
EGFR and conducts signals to the downstream pathways to
regulate diverse cellular responses, including cell prolifera-
tion, differentiation, and apoptosis. Many proteins, including
SOS, RAF, and MEK, participate in the process of signal
transmission, and their dysfunction may leave the whole
pathway dysregulated [17, 18]. Mutations of KRAS, NRAS,
andHRASwere reported in lung cancer, including squamous
cell carcinoma [19, 20]. The PI3K/AKT pathway also can be
activated by RAS to promote cell escape from programs. The
dysregulation of the RAS/ERK and PI3K/AKT pathways is
common in many cancer types [18, 21]. Phosphatidylinositol-
4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA),
encoding the catalytic subunit of PI3K, is located on the
3q26 amplified area and is found with high-frequency copy
number (CN) gains and novel mutations in SCC [22–25].
Amplification of CN and somatic mutation presumably acti-
vate the PI3K pathway, leading to AKT activation, and pro-
vide tumor cells with multiple tumor-specific characteristics
such as apoptosis arrest and limitless replicative potential [13,
26]. However, the detailed mechanisms are not clear. V-Akt
murine thymoma viral oncogene homolog 1 (AKT1), located
on 14q32, is one of three closely related serine-threonine
kinases (AKT1, AKT2, and AKT3). The E17K mutation of
AKT1, resulting in activation of the kinase, was found in
5.5% of SCC patients [27]. In SCC, aberrant amplification
or expression of FGFR1 and IGF1R leads to the dysfunction
of downstream signaling via the PI3K/AKT and RAS/MEK
pathways [28–32]. Deletions involving chr3p and 9p21 in lung
cancer, including SCC, were reported byTheCancer Genome
Atlas (TCGA) [33, 34]. Some known tumor suppressor genes
such as RASSF1A, FUS1, FHIT, and CDKN2A are located in
these regions, and the loss of the allele may lead to aberrant
tumorigenesis [35].

MicroRNAs (miRNAs) are a class of endogenous 20–25
nucleotide small RNAs that regulate mRNA translation and
degradation through perfect or nearly perfect complementar-
ity to the 3󸀠 untranslated regions (UTRs) of the target mRNA
[36–40]. In Cho’s review [41], many miRNAs can be cancer
biomarkers.The target genes regulated bymiRNAs have been
demonstrated to play critical roles in cancer pathogenesis
[42–45]. For instance, Jiang et al. reported that non-small-
cell lung cancer patients with higher BCL11A expression have
better prognosis, and the expression of BCL11A is regulated
by microRNA-30a. Approximately 1%–3% of the genome
codes for microRNA sequences and 30% of known genes
are presumably regulated by miRNA [46]. The miRNA let-
7 was first found in Caenorhabditis elegans, and emerging
evidence suggests its critical role in lung cancer [47]. In vitro
and in vivo, reduced expression levels of let-7 have been
observed in lung cancer, and the downregulated expression
of let-7 was associated with shortened postoperative survival
of lung cancer patients. In A549, a lung adenocarcinoma
cell line, the proliferation of cancer cells was inhibited by

the overexpression of let-7 [48]. The 3󸀠UTR of RAS, a key
oncogene in lung cancer, has complementary sites to let-
7. In lung cancer, it has been shown that the level of let-7
is reduced and the expression of RAS protein is increased
significantly, suggesting a mechanism in which RAS is the
target of let-7 [49]. In addition to RAS, target complementary
sites to let-7 in the 3󸀠UTR of c-myc and high mobility group
protein A2 (HMGA2) were found to inhibit tumorigenesis
[50–53]. In different lung cancer subtypes, miR-205, miR-93,
and miR-221 were uniquely increased in the SCC, but let-
7e was downregulated both in lung adenocarcinoma (AD)
and in SCC [54]. The epithelial to mesenchymal transition
is suppressed by miRNA205 targeting of the transcriptional
factors ZEB1 and SIP1 [55]. In addition, the tumor suppressor
genes IL24 and IL32 may be targets of miR-205 [56]. Xing
et al. identified three miRNAs (miR-205, miR-210, and miR-
708) to discriminate SCC from healthy individuals (73%
sensitivity and 96% specificity) [57]. In SCC, the expression of
miR-146b and miR-155 is associated with the overall survival
rate [58]. Plasma miR-21 was identified as an early detection
and chemosensitivity biomarker in NSCLC [59]. In glioblas-
toma cell lines, miR-21, as an antiapoptotic factor, exhibits
aberrant high expression, and knockdown of it resulted in the
activation of cell apoptosis caspases [60]. Further, miRNAs
including miR-182, miR-486-5p, miR-30a, miR-140-3p, miR-
31, miR-34a, miR-25, and miR-191 play tumor-suppressor
roles in lung cancer [57]. Above all, miRNAs can be useful
prognostic predictors of SCC to help us to understand SCC
pathogenesis.

In this study, by means of regression analysis, we spec-
ulated that various factors such as copy number variation
(CNV), miRNA, and methylation could be related to the
regulation of each gene. Then, we collect SCC related genes
from the hsa05225 pathway (non-small-cell lung cancer,
Homo sapiens) in KEGG and obtained the regulatory factors,
as discussed above. Based on the Bayesian network, we rebuilt
a novel key net between the SCC genes and their regulatory
factors. In this net, we identified some novel genes and
miRNAs involved in SCC pathogenesis and some known
genes or factors that were previously neglected and should
receive more attention.

2. Methods

2.1. Datasets. The gene expression, microRNA expression,
and DNA methylation data of lung cancer patients
were downloaded from TCGA (The Cancer Genome
Atlas) squamous cell lung carcinoma project [61] website
(https://tcga-data.nci.nih.gov/docs/publications/lusc 2012/).
The expression level of 18,979 genes was measured with
RNA-Seq and transformed into log

2
scale. The expression

level of 437 microRNAs was measured with microRNA-Seq
and also transformed into log

2
scale. The DNA methylation

level of 18,498 genes was measured using infimum.
The GISTIC [62] processed copy number variation by

gene data was downloaded from PANGeA [63] (http://cbio
.mskcc.org/cancergenomics/pancan tcga/) and included
24,174 genes.



BioMed Research International 3

Table 1: TCGA sample IDs of 129 squamous cell lung carcinoma patients with gene expression, microRNA expression, DNA methylation,
and CNV data.

Sample IDs Sample IDs Sample IDs Sample IDs Sample IDs
TCGA-18-3414 TCGA-33-4566 TCGA-66-2795 TCGA-39-5021 TCGA-39-5037
TCGA-18-3411 TCGA-60-2713 TCGA-66-2744 TCGA-51-4080 TCGA-37-4141
TCGA-18-3410 TCGA-18-3417 TCGA-66-2742 TCGA-21-1075 TCGA-33-4547
TCGA-18-3412 TCGA-66-2786 TCGA-66-2771 TCGA-39-5031 TCGA-33-4582
TCGA-22-0944 TCGA-33-4583 TCGA-66-2787 TCGA-21-1077 TCGA-34-5240
TCGA-46-3766 TCGA-66-2785 TCGA-46-3767 TCGA-37-4135 TCGA-66-2791
TCGA-18-3406 TCGA-66-2780 TCGA-66-2754 TCGA-21-1072 TCGA-66-2789
TCGA-22-4604 TCGA-66-2781 TCGA-18-3415 TCGA-37-4133 TCGA-66-2788
TCGA-60-2706 TCGA-18-4721 TCGA-18-3419 TCGA-33-4533 TCGA-66-2792
TCGA-60-2696 TCGA-22-4613 TCGA-46-3765 TCGA-33-4538 TCGA-22-4607
TCGA-60-2710 TCGA-22-4601 TCGA-18-3421 TCGA-37-4130 TCGA-22-4596
TCGA-60-2698 TCGA-66-2782 TCGA-18-3408 TCGA-66-2790 TCGA-33-4532
TCGA-60-2711 TCGA-43-3920 TCGA-18-3416 TCGA-66-2737 TCGA-22-4595
TCGA-60-2712 TCGA-46-3769 TCGA-66-2793 TCGA-66-2753 TCGA-22-4591
TCGA-60-2708 TCGA-43-3394 TCGA-66-2783 TCGA-66-2734 TCGA-22-4594
TCGA-66-2758 TCGA-51-4079 TCGA-66-2794 TCGA-34-2596 TCGA-37-3789
TCGA-60-2722 TCGA-37-3792 TCGA-66-2800 TCGA-34-2608 TCGA-46-3768
TCGA-60-2721 TCGA-39-5039 TCGA-56-1622 TCGA-43-2581 TCGA-43-2578
TCGA-60-2724 TCGA-63-5131 TCGA-60-2725 TCGA-60-2695 TCGA-66-2727
TCGA-60-2716 TCGA-39-5036 TCGA-51-4081 TCGA-34-2600 TCGA-39-5011
TCGA-66-2759 TCGA-39-5034 TCGA-22-1012 TCGA-66-2766 TCGA-34-5241
TCGA-60-2723 TCGA-63-5128 TCGA-22-1011 TCGA-66-2767 TCGA-39-5029
TCGA-66-2755 TCGA-39-5035 TCGA-21-1079 TCGA-66-2770 TCGA-39-5028
TCGA-60-2719 TCGA-39-5030 TCGA-21-1078 TCGA-66-2765 TCGA-18-3407
TCGA-60-2720 TCGA-66-2768 TCGA-21-1080 TCGA-66-2763 TCGA-18-4086
TCGA-60-2714 TCGA-33-4586 TCGA-21-1076 TCGA-66-2777

Only the 129 squamous cell lung carcinoma patients with
all four types of data, that is, gene expression, microRNA
expression, DNA methylation, and copy number variation,
were analyzed. Their TCGA sample IDs are provided in
Table 1.

2.2. Construction of Whole Genome Integrative Network. For
each gene, its expression level was considered as the depen-
dent variable, and all other factors including microRNA
expression levels, methylations, and copy number variations
of all genes were considered as independent variables. The
network constructionwas decomposed into 18,979 regression
models.

For each regression model, there were 437 + 18498 +
24174 = 43109 feature variables. We applied the variance
inflation factor (VIF) regression algorithm [64] to build this
large-scale regression model. VIF regression can not only fit
the model as accurately as sophisticated but slow methods
such as LASSO but also perform fast feature selection. It
evaluates the prediction potential of each feature variable
and then performs forward feature selection, also known as
incremental feature selection (IFS). IFS has been widely used
to solve high dimensional regression [65] and classification
problems [66–69]. The VIF regression program was down-
loaded from http://cran.r-project.org/web/packages/VIF/.

By combining the VIF regression models that passed the
adjusted 𝑅2 [65] cutoff 0.4, we obtained a whole genome
integrative network in which the expression of target genes
was regulated by microRNA, methylation, and copy number
variation.

2.3. Refined Key Bayesian Subnetwork of Lung Cancer. Using
VIF regression, we constructed the backbone network struc-
ture. However, the network was too complex for further
functional analysis. Network decomposition technologies
[70] were required to obtain the key subnetwork. Another
problem was how to fully utilize the existing knowledge
about lung cancer to discover novel key genes. A third was
that the regression model did not consider the regulation
structure between feature variables and therefore included
false positive regulations. For example, we found that A and B
regulate C, but the actual regulations may be that A regulates
B, and then B regulates C.

To address these problems, first, we extracted the
hsa05225 pathway (non-small-cell lung cancer, Homo sapi-
ens) fromKEGG using KEGGgraph [71].Then, we used these
known regulations as prior knowledge to perform Bayesian
network analysis of the KEGG lung cancer genes and
their candidate regulators identified by VIF regression. The
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Bayesian network of KEGG lung cancer genes and their can-
didate regulators expanded the key lung cancer subnetwork
and provided novel key genes, which may enrich the under-
standing of lung cancer mechanisms. Furthermore, it refined
the regulations among KEGG lung cancer genes and their
candidate regulators and reduced the false discovery rate. We
used the 𝑅 package bnlearn [72] (http://www.bnlearn.com/)
to build the Bayesian network.

3. Results and Discussion

3.1. The Novel Candidate Key Drivers of Lung Cancer. We
used VIF regression to build the whole genome integrative
network of genes, microRNAs, methylations, and copy num-
ber variations. Then, the subnetwork involving the known
lung cancers from KEGG was isolated and refined using
the Bayesian network method. The refined key Bayesian
subnetwork of lung cancer is shown in Figure 1. There were
48 mRNA genes, 27 microRNAs, 22 methylations, and 8
copy number variations. This integrative Bayesian network
facilitates the investigation of the roles ofmicroRNAs,methy-
lations, and copy number variations in lung cancer. It reflects
the complex lung cancer pathways that involvemultiple levels
of components. The key drivers of this network can serve as
prognosis biomarkers and therapeutic drug targets.

From Figure 1, we identified some novel key drivers
such as HOXD3, ARHGDIB, AGAP2, let-7a, and miR-31 that
played important roles in the pathogenesis of lung cancer
on the gene, microRNA, methylation, and copy number
variation levels.

3.2. The Biological Roles of Novel Candidate Methylation Key
Drivers. Based on our analysis, the methylation of HOXD3
interacts with the expressions of hsa-mir-100 and hsa-mir-
146a and therefore indirectly affectsmany neighbor genes and
microRNAs in the network.

Homeobox D3 (HOXD3) is a member of the highly
conserved homeobox family, which possesses four similar
clusters, HOXA, HOXB, HOXC, and HOXD. HOX genes
have been reported to play important roles in cell adhesion,
cell apoptosis and differentiation, and multiple receptor
signaling [73, 74], and their aberrant expression occurs in
many cancers originating from prostate, stomach, and lung
[75–79]. Overexpression of HOXD3 enhanced motility and
invasiveness in A549 cells [80]. In NSCLC, miR-100, targeted
to polo-like kinase 1 (PLK1), was significantly reduced in
expression and correlated with clinical stage [81]. In small-
cell lung cancer (SCLC), it has been proved that HOXA1
is targeted and regulated by miR-100, and the expression
of HOXA1 is inversely correlated with miR-100 [82]. Our
bioinformatic analysis revealed that miR-100 and miR-146a
are putative novel regulators to HOXD3 as well as HOXA1. In
addition, it revealed that keratin 8 (KRT8), which participates
in forming intermediate-sized filaments, is another target of
miR-100 and is involved in the cell cycle controlled by CDK6.
In NSCLC,miR-146a acts as a tumor suppressor by inhibiting
cell growth and migration and inducing apoptosis by target-
ing EGFR, which plays a critical part in SCC pathogenesis

[83]. It was demonstrated that miR-146a regulates multiple
targets to affect different aspects of the central network.

As shown in Figure 1, another key methylation driver was
ARHGDIB, which interacts with the mRNA expression of
EGFR and is associated with the expression of hsa-mir-10a.

It is known that Rho GDP dissociation inhibitor (GDI)
beta (RhoGDI, also known as ARHGDIB) is a guanine
nucleotide dissociation inhibitor specific to the Rho family
of small GTPases. RhoGDI2 is involved in diverse cellu-
lar events, such as cell signaling, cell proliferation, and
cytoskeletal organization. In different cancer types, RhoGDI2
performs diverse functions and exhibits different aberrant
expression levels. In ovarian and stomach cancer, the expres-
sion of RhoGDI2 is upregulated, while it is downregulated
in bladder cancer and lung cancer [84–88]. It has been
observed that RhoGDI2 expression is downregulated in
lung cancer, and the lower expression is strongly correlated
with higher malignancy grade, lower cell differentiation, and
greater lymph node metastasis of lung cancer.The expression
of RhoGDI2 is inversely correlated to the activation level
of the PI3K/Akt/mTOR pathway, which plays key roles in
SCC [88]. In bladder cancer, c-Src protein phosphorylates
RhoGDI2 and is regulated by EGFR [89–91]. We also found a
novel correlation between RhoGDI2 and EGFR. RhoGDI2 is
involved in the EGFR-associated key network in SCC directly
or indirectly through interaction with c-Src. In addition, the
results of our analysis reveal that RhoGDI2 is regulated by
miR-10a. There is no evidence that RhoGDI2 is the direct
target of miR-10a, and more focus is needed on this subnet
of miR-10a-RhoGDI2-EGFR. As discussed above, RhoGDI2
may be a putativemolecularmarker inmetastatic lung cancer,
which warrants deeper investigation for validation.

It is known that DNA methylation suppresses gene
expression [92]. To investigate whether the gene expression
levels of these methylation key drivers, ARHGDIB and
HOXD3, play significant roles in prognosis, we collected
three large lung cancer survival datasets from PROGgene
[93]: GSE4573, which included 129 squamous cell lung carci-
nomas patients, GSE30219, with 281 lung cancer samples, and
GSE41271, with 275 lung cancer specimens.The patients were
divided into high expression group and low expression group
by the median. The overall survival rates of the two groups
were compared using the log-rank test [94], and their Kaplan-
Meier plots [95] are shown in Figure 2.The log-rank 𝑃 values
of ARHGDIB on GSE4573, GSE30219, and GSE41271 were
0.042, 0.0781, and 0.0021, respectively.The patients with high
expression of ARHGDIB had good prognoses. Meanwhile,
the log-rank 𝑃 values of HOXD3 on GSE4573, GSE30219,
and GSE41271 were 0.0441, 0, and 0.0888, respectively. The
patients with high expression ofHOXD3had poor prognoses.
The key drivers, ARHGDIB and HOXD3, play significant
roles in prognosis prediction.

3.3. The Biological Roles of Novel Candidate MicroRNA
Key Drivers. In addition to novel SCC related
mRNA/methylation/CNV genes, we also observed some
novel miRNAs to be involved in the central network of SCC
pathogenesis, such as let-7a and miR-31.
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Figure 1: The refined key Bayesian subnetwork of lung cancer. The grey, green, red, and pink nodes represent mRNA genes, microRNAs,
methylations, and copy number variations (CNVs), respectively. The one-arrow edges represent directed regulation, while the two-arrow
edges represent undirected regulation.

In a study of Chinese SCC patients, miR-31 was con-
sidered as a new prognostic biomarker for SCC [96]. The
miR-31, located on chr9p21.3 in genome, is involved in
cell proliferation, migration, and invasion. In breast cancer,
miR-31 was considered as a suppressor of metastasis [97].
In mesothelioma (MM) cells, the reintroduction of miR-31
reveals activity that suppresses the cell cycle and migration
[98]. In our new key network, mir-31 is closely associated
with CDKN2A and CDK. It has been reported that the
chr9q21.3 region is frequently and homozygously deleted
in MM, and the deletion is linked to a known tumor
suppressor gene, CDKN2A [99–102]. In approximately 31%
of NSCLC, the deletion of chr9p21.3 was observed [103]. All
this evidence indicates that the codeletion of miR-31 with
CDKN2A occurs normally in cancers, and both are beneficial
to tumor pathogenesis andmetastasis. CDKN2A can bond to
CDK6 to suppress the cell cycle process directly.We speculate
that miR-31 regulates the CDK6-related cell cycle directly or

indirectly in SCC and is an excellent diagnostic biomarker for
SCC.

It has been reported that the let-7 microRNA family plays
critical roles in pathogenesis of SCC. We also found new
miRNAs of the let-7 family to be highlighted in our new
network, such as let-7a, let-7e, and let-7i, which indicated that
more let-7 familymembers thanwe previously knew function
in SCC tumorigenesis. Let-7a was characterized as a tumor
suppressor in various cancers, including lung and colon
cancer [104–108]. It has been observed that the expression of
let-7 is downregulated in many cancer types and is correlated
with poor clinical prognosis [48, 106]. In NSCLC cell lines,
let-7a inhibits cell proliferation and invasion by interacting
with K-Ras and HMGA2 [104]. Target analysis reveals that
IGF1R is a target gene, one of let-7’s numerous targets, and
is involved in the IGF1R/RAS/MAPK/ELK1 pathway, playing
major roles in cell proliferation and cell survival [109]. In
ovarian cancer, it was reported that let-7e has many target
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Figure 2: The Kaplan-Meier plots of key drivers ARHGDIB and HOXD3 on three large lung cancer datasets. The log-rank 𝑃 values of
ARHGDIB on GSE4573 (a), GSE30219 (b), and GSE41271 (c) were 0.042, 0.0781, and 0.0021, respectively. The patients with high expression
of ARHGDIB had good prognoses. The log-rank 𝑃 values of HOXD3 on GSE4573 (d), GSE30219 (e), and GSE41271 (f) were 0.0441, 0, and
0.0888, respectively. The patients with high expression of HOXD3 had poor prognoses.
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genes including HMGA2, C14ofr28, LIN28B, and ARID3B,
and let-7e expression is lower than in adjacent tissues [110].
It has also been reported that let-7i is significantly down-
regulated in SCC [111]. In our network, we found that let-7
family members appeared frequently. Some let-7 members
interact with their putative targets genes directly, and some
members function in the central net indirectly through the
regulation of other miRNA transcripts, including mir-101-1
and mir-146a. All this evidence implies that the let-7-miRNA
subnet is worth greater attention and may be a novel marker
for SCC.

3.4.The Biological Roles of Novel Candidate CNV Key Drivers.
From Figure 1, we can see that the CNV of AGAP2 can
regulate the gene expression of CDK4 and is associated with
the CNV of FBXO17.

As we know, AGAP2 (ArfGAP With GTPase Domain,
Ankyrin Repeat And PH Domain 2), also known as PIKE,
belongs to the centaurin GRPase family, including three
members, PIKE-L, PIKE-S, and PIKE-A [112–114]. PIKE-S
and PIKE-L enhance PI3K antiapoptosis activity, but PIKE-
A promotes the downstream Akt instead [113, 115]. PIKE
proteins participate in regulating the signal transducer and
activator of transcription 5A (STAT5) by Janus kinase 2
(JAK2) phosphorylation [116]. Because of gene amplification,
PIKE-A is overexpressed in glioblastoma and astrocytoma
[113]. Its increased expression has been observed in various
cancer types including breast, prostate, skin, colon, ovary,
liver, stomach, lung, and kidney [117–120]. In the genome,
the PIKE gene is adjacent to CDK4, which plays a key
role in cell cycle control [121, 122]. As a component of the
CDK4 amplicon, coamplification of CDK4 and CENTG1 has
been frequently found in various cancers [123–127]. An inte-
grated oncomir/oncogene DNA cluster, comprised of PIKE-
A, CDK4, and has-miR26a, accelerates the aggressiveness in
glioblastoma [128]. CDK4 and PIKEs are involved concomi-
tantly in cancer pathogenesis by cooperatively targeting the
PI3K/AKT and Rb1 pathway, although some studies have
shown that overexpression of PIKEs alone can elicit NIH3T3
cell transformation [117, 128]. In our study, a relationship was
found between CDK4 and PIKEs. This result demonstrated
that their combination is more indirectly responsive to PI3K
pathway dysfunction in SCC. The direct interaction between
CDK4 and PIKEs requires deeper experiments to validate.
The supposed effects between them may exist at different
levels, including genome, transcriptome, and proteome, and
more experimental evidence is needed to support these
effects.

4. Conclusion

In our study, we established a new key network for SCC to
help us mine the mechanisms more effectively. We not only
found novel SCC related genes and subnets but also noticed
significant changes to the old net. Compared to past studies,
EGR-EGFR, PIK3CG/PIK3CA, HRAS, CDK6, CDK4, and
CDKN2A were found to have interactions and relationships
withmore genes andmiRNAs, expanding the network’s scope

and depth. These proteins may be the hinge of the whole
pathogenesis network and warrant greater focus.
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