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Abstract: Gintonin, a novel compound of ginseng, is a ligand of the lysophosphatidic acid (LPA)
receptor. The in vitro and in vivo skin wound healing effects of gintonin remain unknown. There-
fore, the objective of this study was to investigate the effects of gintonin on wound healing-linked
responses, especially migration and proliferation, in skin keratinocytes HaCaT. In this study, 2,3-bis-
(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay, Boyden chamber migration
assay, scratch wound healing assay, and Western blot assay were performed. A tail wound mouse
model was used for the in vivo test. Gintonin increased proliferation, migration, and scratch closure
in HaCaT cells. It also increased the release of vascular endothelial growth factor (VEGF) in HaCaT
cells. However, these increases, induced by gintonin, were markedly blocked by treatment with
Ki16425, an LPA inhibitor, PD98059, an ERK inhibitor, 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-
tetraacetic acid tetrakis (acetoxymethyl ester), a calcium chelator, and U73122, a PLC inhibitor. The
VEGF receptor inhibitor axitinib also attenuated gintonin-enhanced HaCaT cell proliferation. Gin-
tonin increased the phosphorylation of AKT and ERK1/2 in HaCaT cells. In addition, gintonin
improved tail wound healing in mice. These results indicate that gintonin may promote wound
healing through LPA receptor activation and/or VEGF release-mediated downstream signaling
pathways. Thus, gintonin could be a beneficial substance to facilitate skin wound healing.

Keywords: gintonin; skin; keratinocyte; proliferation; migration; wound healing

1. Introduction

Ginseng is a traditional herbal medicine that has been used as a tonic for thousands
of years. Substantial scientific research has shown that ginseng and its components ex-
ert various pharmacological activities, including anti-cancer, anti-diabetes, anti-oxidant,
anti-inflammatory, immune system-improving, and central nervous system-improving ef-
fects [1–8]. Korean ginseng, a root of Panax ginseng C.A. Meyer, contains various biologically
active components such as ginsenosides, polysaccharides, and glycolipoproteins [1,9,10].
In a previous study, we isolated a glycolipoprotein called gintonin from ginseng and found
that gintonin has a variety of components including ginseng major latex-like protein151
(GLP151), ginseng ribonuclease-like storage protein, phosphatidic acids, and lysophospha-
tidic acid (LPA) [11]. We also found that it is a ligand of LPA receptor subtypes [11].

LPA receptors are known to be involved in biological effects including mitogenic
effects on various cell types, hair follicle development, vascular development, regulation
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of embryo implantation, and spermatogenesis [12,13]. Gintonin shares many physiological
and pharmacological effects with LPA [11,14–16]. Gintonin can stimulate intracellular
calcium mobilization, proliferation, and migration in various cells [11,14]. It can also
protect neuronal cells and improve memory in an Alzheimer’s disease mouse model [15].
Gintonin can also promote hair growth and proliferation of hair follicle cells in mice [16].
Ginseng extracts were also reported to promote skin wound healing [17–19]. We have
shown that a gintonin-enriched fraction (GEF) of ginseng can enhance hyaluronic acid and
collagen release from human skin fibroblasts via LPA receptor activation [20]. In addition,
we have shown that gintonin can stimulate vascular endothelial growth factor (VEGF)
release from human umbilical vein endothelial cells (HUVEC) [14]. These reports imply
that gintonin may affect wound healing-related responses.

Skin wound healing is a very important issue since the skin is an organ and a critical
barrier to protect the human body. Thus, many studies have focused on the control of the
skin wound healing process. The cutaneous wound healing process has been described in
many studies [21,22]. The internal wound healing process is divided into four overlapping
phases: hemostasis, inflammation, proliferation, and remodeling [21,22]. Shortly after
injury, the hemostasis coagulation process initiates to form a fibrin plug, and platelets
aggregate and release various growth factors and cytokines, which play roles in cell
recruitment [21,22]. In the inflammation phase, inflammatory cells such as neutrophils,
monocytes, macrophages, and dermal cells, such as keratinocytes and fibroblasts are
recruited to the wound [21,22]. In the proliferation phase, angiogenesis, extracellular matrix
(ECM) deposition, and keratinocyte migration/proliferation are essential events [21,22].
The final remodeling phase of wound healing involves scar formation and revision through
collagen remodeling and regression of new capillaries to normal [21,22]. Impaired healing
caused by infection, diabetic ulcer, and other chronic wounds may not follow an orderly
process of wound healing [21].

Epidermal keratinocytes start migrating to the wound site within a few hours after
injury in the inflammation phase [21,22]. Keratinocytes are involved in re-epithelization
during the proliferation phase of wound healing and proliferate and differentiate to form a
new epithelium [23,24]. Keratinocytes secrete various cytokines to mediate inflammatory re-
sponses [25]. Keratinocytes also secrete growth factors, such as transforming growth factor
(TGF)-β and VEGF to promote proliferation and migration to initiate angiogenesis [22,25].
Proliferation and/or migration of keratinocytes are stimulated by activating phospholipase
C (PLC)/Ca2+, extracellular signal-regulated kinase (ERK), phosphoinositide 3-kinases
(PI3K)/protein kinase B (AKT), and/or p38 mitogen-activated protein kinases (p38-MAPK)
pathways [26–30]. On the other hand, in abnormal conditions, keratinocytes fail to produce
appropriate growth factors and disrupt wound healing [31]. Therefore, controlling the
biological events of these cell types may be important for promoting wound healing of the
skin. Many extracts derived from herbal plants are known to have skin wound healing
activity [17–19,27,32–34]. However, the skin wound healing effect and mechanism of action
of gintonin in keratinocytes have not been elucidated yet.

Thus, the objective of this study was to examine the in vitro effects of gintonin on
skin wound healing-linked responses using keratinocytes and the in vivo skin wound
healing effect of gintonin using a mouse tail wound model. Gintonin treatment enhanced
the proliferation and migration of skin keratinocyte HaCaT. The mechanisms of action of
gintonin in skin wound healing are also discussed.

2. Results
2.1. Gintonin-Mediated Enhancement of HaCaT Cell Proliferation and Migration

To evaluate the effect of gintonin on skin wound healing, keratinocyte proliferation and
migration were tested using a 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-
carboxanilide (XTT)-based assay and a modified Boyden chamber (Figure 1a,b), respectively.
As shown in Figure 1a, treatment with gintonin at a range of 1–30 µg/mL induced prolif-
eration of HaCaT cells in a dose-dependent manner, peaking at 30 µg/mL. The effect of
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gintonin at 30 µg/mL in HaCaT cells was similar to that of LPA (10 µM), but was lower
than that of epidermal growth factor (EGF, 4 ng/mL) (Figure 1a). Gintonin is known as
an LPA receptor ligand and EGF is well known as a skin regeneration factor [11,35,36].
Thus, LPA and EGF were used as positive controls. Gintonin dramatically increased mi-
grated cell numbers with increasing concentrations of gintonin at a range of 1–30 µg/mL.
Migrated cell numbers reached the maximum when the gintonin concentration was at
30 µg/mL. The peak effect of gintonin on migrated cell numbers was similar to that of
LPA (10 µM) and EGF (4 ng/mL). These results indicate that gintonin might be involved in
the initial enhancement of wound healing of skin keratinocytes by inducing proliferation
and migration.
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GT, gintonin. 

Figure 1. Effects of gintonin on the proliferation and migration of HaCaT cells. (a) Cells were incubated in serum-free
medium with gintonin (GT; 1–30 µg/mL), lysophosphatidic acid (LPA, 10 µM) as a positive control, or epidermal growth
factor (EGF, 4 ng/mL) as another positive control for 24 h. The XTT-based assay was then performed. Response in untreated
cells (Con) was considered as 100%. Data represent the means ± S.E.M. (n = 6); ***, p < 0.001 vs. untreated cell (Con).
(b) Cells were incubated in serum-free medium for 3 h with GT (1–30 µg/mL), LPA (10 µM) as a positive control, or EGF
(4 ng/mL) as another positive control in the modified Boyden chamber. Migration of cells was then analyzed by counting
migrated cells as described in the Materials and Methods section. The right panel shows representative images of migrated
cells. Scale bar is equivalent to 100 µm. Data represent the means ± S.E.M. (n = 16); *** p < 0.001 vs. untreated cells (Con).
GT, gintonin.

2.2. In Vitro Wound Healing Effect of Gintonin

The in vitro wound healing effect of gintonin was evaluated by the scratch wound
healing assay using HaCaT cells (Figure 2). Gintonin significantly increased the wound
closing area at 1–30 µg/mL in a concentration-dependent manner, reaching a plateau at
10 µg/mL. This result indicates that gintonin has a wound-healing effect. The wound-
healing effect of gintonin was comparable to that of LPA (10 µM) or EGF (4 ng/mL).



Int. J. Mol. Sci. 2021, 22, 10155 4 of 14

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 14 
 

 

2.2. In Vitro Wound Healing Effect of Gintonin 

The in vitro wound healing effect of gintonin was evaluated by the scratch wound 

healing assay using HaCaT cells (Figure 2). Gintonin significantly increased the wound 

closing area at 1–30 μg/mL in a concentration-dependent manner, reaching a plateau at 10 

μg/mL. This result indicates that gintonin has a wound-healing effect. The wound-healing 

effect of gintonin was comparable to that of LPA (10 μM) or EGF (4 ng/mL). 

  

 

 

(a) (b) 

Figure 2. Effects of gintonin on scratch wound healing of HaCaT cells. (a) Cells were serum-starved for 24 h. The cell layer 

was scratched with a micropipette tip to make a wound and then incubated with serum-free medium for 24 h containing 

gintonin (GT; 1–30 μg/mL), lysophosphatidic acid (LPA, 10 μM), or epidermal growth factor (EGF, 4 ng/mL). Photos were 

taken at 0 h and 24 h after treatment with GT, LPA, or EGF. (b) Representative images of untreated control cells and cells 

treated gintonin (10 μg/mL). Each cell-free area was outlined with a white dotted line. Scale bar is equivalent to 200 μm. 

LPA and EGF were used as positive controls. Response of untreated cells (Con) was considered as 100%. Data are pre-

sented as the means ± S.E.M. (n = 9); *** p < 0.001 vs. untreated cells. 

2.3. Involvement of LPA1 Receptor Subtypes in Gintonin-Mediated HaCaT Cell Proliferation 

To examine whether the effect of gintonin was related to LPA receptor activation, we 

first examined expression levels of six LPA receptor subtypes in HaCaT cells using im-

munoblotting. As shown in Figure S1, LPA1/6 receptor subtypes were dominantly ex-

pressed in HaCaT cells. We then treated cells with gintonin (10 μg/mL) in the presence or 

absence of LPA1/3 receptor inhibitor Ki16425. A treatment concentration of 10 μg/mL of 

gintonin was chosen because the in vitro wound healing effect of gintonin reached a plat-

Figure 2. Effects of gintonin on scratch wound healing of HaCaT cells. (a) Cells were serum-starved for 24 h. The cell layer
was scratched with a micropipette tip to make a wound and then incubated with serum-free medium for 24 h containing
gintonin (GT; 1–30 µg/mL), lysophosphatidic acid (LPA, 10 µM), or epidermal growth factor (EGF, 4 ng/mL). Photos were
taken at 0 h and 24 h after treatment with GT, LPA, or EGF. (b) Representative images of untreated control cells and cells
treated gintonin (10 µg/mL). Each cell-free area was outlined with a white dotted line. Scale bar is equivalent to 200 µm.
LPA and EGF were used as positive controls. Response of untreated cells (Con) was considered as 100%. Data are presented
as the means ± S.E.M. (n = 9); *** p < 0.001 vs. untreated cells.

2.3. Involvement of LPA1 Receptor Subtypes in Gintonin-Mediated HaCaT Cell Proliferation

To examine whether the effect of gintonin was related to LPA receptor activation,
we first examined expression levels of six LPA receptor subtypes in HaCaT cells using
immunoblotting. As shown in Figure S1, LPA1/6 receptor subtypes were dominantly
expressed in HaCaT cells. We then treated cells with gintonin (10 µg/mL) in the presence
or absence of LPA1/3 receptor inhibitor Ki16425. A treatment concentration of 10 µg/mL
of gintonin was chosen because the in vitro wound healing effect of gintonin reached a
plateau at this concentration. Treatment with Ki16425 (10 µM) significantly attenuated
gintonin-induced proliferation and migration of HaCaT cells (Figure 3a,b, respectively).
These results indicate that gintonin can induce proliferation and migration via the activation
of the LPA1/3 receptor subtype.
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Figure 3. Effect of LPA receptor inhibitor on the proliferation and migration of HaCaT cells. (a) Cells were incubated in
serum-free medium with gintonin (GT, 10 µg/mL) or lysophosphatidic acid (LPA, 10 µM) in the presence or absence of
LPA receptor inhibitor Ki16425 (10 µM) for 24 h. Then, the XTT-based assay was performed. LPA was used as a positive
control. Response of untreated cells was considered as 100%. Data are presented as the means ± S.E.M. (n = 6); ** p < 0.01;
*** p < 0.001 vs. untreated cells; # p < 0.05; ### p < 0.001 vs. GT or LPA alone. (b) Cells were incubated with serum-free
medium containing GT (10 µg/mL) in the presence or absence of LPA receptor inhibitor Ki16425 (10 µM) for 3 h in the
modified Boyden chamber. Cell migration was then analyzed as described in the Materials and Methods section. The
right panel shows representative images of migrated cells. Scale bar is equivalent to 100 µm. Data are presented as the
means ± S.E.M. (n = 16); *** p < 0.001 vs. untreated cells; ### p < 0.001 vs. GT alone.

2.4. Signaling Pathways of Gintonin Effect

To clarify the downstream signaling pathway of gintonin-mediated activation of
LPA receptor, HaCaT cells were treated with gintonin (10 µg/mL) in the presence or
absence of inhibitors such as PD98059, an ERK inhibitor, 1,2-Bis(2-aminophenoxy)ethane-
N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), an intracellular
calcium chelator, U73122, a PLC inhibitor, SP600125, a c-Jun N-terminal kinase (JNK)
inhibitor, and LY294002, a PI3K inhibitor. PD98059 (10 µM), BAPTA-AM (10 µM), U73122
(5 µM), and SP600125 (20 µM) significantly blocked gintonin-induced cell proliferation and
inhibited LPA-induced proliferation similarly to gintonin (Figure 4a–d). LY294002 (25 µM)
also blocked gintonin-induced cell proliferation (Figure S2).
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Figure 4. Effects of inhibitors on gintonin-induced proliferation of HaCaT cells. Cells were incubated in serum-free medium
containing gintonin (GT, 10 µg/mL) or lysophosphatidic acid (LPA, 10 µM) in the presence or absence of inhibitors for 24 h.
Then, the XTT-based assay was performed. Inhibitors used were: ERK inhibitor PD98059 (10 µM) (a), calcium chelator
BAPTA-AM (10 µM) (b), PLC inhibitor U73122 (5 µM) (c), and JNK inhibitor SP600125 (20 µM) (d). LPA was used as a
positive control. Response of untreated cells was considered as 100%. Data are presented as the means ± S.E.M. (n = 6);
*** p < 0.001 vs. untreated cells; # p < 0.05; ## p < 0.01; ### p < 0.001 vs. GT or LPA alone.

2.5. Phosphorylation of Akt and ERK in HaCaT Cells Exposed to Gintonin

To determine the role of phosphorylation of kinases in gintonin-induced proliferation
and migration in keratinocytes for wound healing processes, we evaluated the phos-
phorylation of AKT and ERK1/2 in HaCaT cells exposed to gintonin (1–30 µg/mL) using
immunoblotting. Gintonin significantly increased the phosphorylation of AKT and ERK1/2
at 3 to 30 µg/mL, showing the maximum increasing effect at 10 µg/mL (Figure 5a,b). These
results indicate that the activation of those proteins by gintonin is involved in the migration
and proliferation of keratinocytes associated with wound healing.

2.6. Increased VEGF Release from HaCaT Cells Exposed to Gintonin

It is known that gintonin is an LPA receptor ligand and that LPA can increase VEGF re-
lease in various cell types [11,16,37]. Moreover, VEGF can be secreted by keratinocytes [22].
We thus examined whether gintonin could stimulate VEGF release from HaCaT cells by an
immunoassay. As shown in Figure 5c,d, gintonin (10 µg/mL) significantly induced VEGF
release from HaCaT cells. However, the gintonin-induced VEGF release was markedly in-
hibited by Ki16425 (10 µM) and axitinib (10 µM), showing the involvement of LPA receptor
activation in gintonin-enhanced VEGF release and VEGF receptor in keratinocytes.
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1–30 µg/mL) for 10 min and harvested for immunoblotting. extracellular signal-regulated kinase (ERK) 1/2 (a) and protein
kinase B (AKT) proteins (b) were detected using corresponding antibodies. Each protein level in untreated cells (Con) was
considered as 100%. Data are presented as the means ± S.E.M. (n = 4); * p < 0.05; ** p < 0.01; *** p < 0.001 vs. untreated
cells. (c) Cells were incubated in serum-free medium containing gintonin (GT, 10 µg/mL) in the presence or absence of LPA
receptor inhibitor Ki16425 (10 µM) for 24 h. The VEGF level in the conditioned medium was measured using the ELISA
kit as described in the Materials and Methods section. Data are presented as the means ± S.E.M. (n = 4); *** p < 0.001 vs.
untreated cells; ### p < 0.001 vs. GT alone. (d) Cells were incubated in serum-free medium with gintonin (GT, 10 µg/mL) or
lysophosphatidic acid (LPA, 10 µM) in the presence or absence of VEGF receptor inhibitor axitinib (10 µM) for 24 h. Then,
the XTT-based proliferation assay was performed. LPA was used as a positive control. Response of untreated cells was
considered as 100%. Data are presented as the means ± S.E.M. (n = 6); *** p < 0.001 vs. untreated cells; # p < 0.05; ## p < 0.01
vs. GT or LPA alone. p-ERK, phospho-ERK1/2; p-AKT, phospho-AKT.

2.7. Gintonin Facilitates In Vivo Wound Repair of Mouse Tail

To test the in vivo effect of gintonin, skin wound healing was examined using a
mouse tail wound model (Figure 6). Gintonin (10 and 100 µg/mL)-treated groups showed
markedly more healing of tail wounds from day 7 to day 14 after being wounded compared
to the control group treated with a control cream. Tail wound healing levels were similar for
gintonin-treated groups at concentrations of 10 µg/mL and 100 µg/mL. On the other hand,
tail wounds in all animal groups recovered almost completely at 21 days after wounding.
These results indicate that gintonin treatment may facilitate skin wound healing in mice.
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3. Discussion

Cutaneous wound healing is an important process to protect the human body. Rapid
wound healing and skin regeneration require the use of pharmaceuticals after a skin injury.
Many herbal extracts and compounds have been demonstrated to have wound-healing
effects on injured skin [17–19,27,32–34]. Ginseng extract can also promote skin wound
healing [17–19]. However, its detailed active components and mechanism of action have
not yet been clearly explained.

Previously, we have reported that gintonin derived from ginseng is an LPA receptor
ligand and that gintonin or GEF can induce intracellular calcium transient, cell proliferation,
and migration of several cell types, such as HUVEC, human hair follicle cells, and dermal
fibroblasts [11,14,16]. However, it is not known whether gintonin affects keratinocytes
for actual wound healing. Proliferation, migration, and scratch wound healing tests are
usually used to find skin wound healing effects of a drug [27,29,30,34]. In this study, we
found that gintonin increased the proliferation and migration of human keratinocytes
HaCaT. Moreover, gintonin-induced closure of in vitro wounds using HaCaT cells showed
the ability of gintonin to promote the proliferation and migration of keratinocytes, since the
proliferation and migration of keratinocytes are key processes associated with skin wound
healing events [30]. Interestingly, in the present study, we found that topical application
of a gintonin-containing cream to tail wounds of mice also ameliorated tail wounds more
effectively than a control cream without gintonin. These findings imply that gintonin may
exert positive effects on skin wound healing.

Here, several experiments were conducted to investigate signaling mechanisms in-
volved in the wound healing effect of gintonin. We found that skin wound-healing signal-
ing inhibitors influenced gintonin-enhanced proliferation and migration, implying that
downstream signaling pathways might be involved in the action of gintonin for wound
healing (Figure 7). Our results showed that LPA1/3 receptor inhibitor Ki16425 markedly
decreased gintonin-induced proliferation and migration. LPA receptors are present in
keratinocytes [38,39]. Interestingly, our results confirmed that LPA1-6 receptor subtypes
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were expressed in HaCaT cells by immunoblotting (Figure S1), although the roles of LPA
receptor subtypes in keratinocytes were not clearly known. It has been reported that LPA
is released to a wound site from the serum and platelets to induce wound healing-related
responses [38,40]. LPA can promote the migration and proliferation of keratinocytes and
enhance wound healing in mice and rats [38,41,42]. Taken together, these findings suggest
that gintonin can induce the proliferation and migration of keratinocytes through LPA
receptor activation.
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Figure 7. Prospective signaling pathways for gintonin-induced wound repair of keratinocytes.
Lysophosphatidic acid (LPA) receptor activation by gintonin (GT) may activate protein kinase C
(PKC)/extracellular signal-regulated kinase (ERK), phospholipase C (PLC)/intracellular Ca2+ mobi-
lization through G-proteins, leading to keratinocyte proliferation and migration as well as vascular
endothelial growth factor (VEGF) release. VEGF may also activate VEGF receptor/phosphoinositide
3-kinases (PI3K)/protein kinase B (AKT)/c-Jun N-terminal kinase (JNK), leading to keratinocyte
proliferation and migration. Ultimately, these signaling pathways may promote skin wound repair.
LPAR, lysophosphatidic acid receptor; VEGFR, vascular endothelial growth factor receptor.

Moreover, in this study, gintonin increased the phosphorylation of AKT and ERK
in keratinocytes. AKT and ERK phosphorylation are well-known cellular events related
to cell proliferation. Additionally, ERK inhibitor PD98059, calcium chelator BAPTA-AM,
PLC inhibitor U73122, and JNK inhibitor SP600125 all significantly inhibited both gintonin-
induced proliferation and LPA-induced proliferation of HaCaT cells. LPA coupled with
G proteins (Gαq/11, Gα11/12, Gαi/o, and Gαs) shows differential biological activities,
including cell migration, cytoskeleton change, and cell proliferation [12,13]. Major down-
stream signaling pathways of LPA receptor activation include PLC/Ca2+, PLC/protein
kinase C (PKC), Ras homolog family member A (Rho A)/ROCK (Rho-associated protein
kinase), Ras/mitogen-activated protein kinase kinase (MEK)/ERK, and PI3K/AKT path-
ways [12,13]. Therefore, gintonin might share AKT/MAPKs and PLC/Ca2+ pathways with
LPA in keratinocytes for wound healing.

In the wound healing process, keratinocytes can proliferate and migrate to the wound
bed and release various cytokines and growth factors including VEGF [22]. LPA increased
VEGF release in various cell types [11,37]. Moreover, in a pilot experiment, we found that
gintonin increased VEGF release in a concentration-dependent manner in HaCaT cells (data
not shown). In the present study, we thus tested the effect of gintonin (an LPA receptor
ligand) on VEGF release in HaCaT cells and found that gintonin stimulated VEGF release
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from HaCaT cells. Moreover, this VEGF release was inhibited by LPA1/3 receptor inhibitor
Ki16425, suggesting that the LPA receptor might be involved in gintonin-stimulated VEGF
release (Figure 5c). In addition, VEGF receptor inhibitor axitinib partially attenuated the
proliferation of keratinocytes (Figure 5d). Taken together, these results suggest that VEGF
released from keratinocytes could act as an autocrine bioactive molecule via VEGF receptor
activation and partially contribute to the proliferation of HaCaT cells (Figure 7). Moreover,
in our previous study, gintonin also enhanced proliferation and collagen release in skin
fibroblasts, which are involved in the proliferation and remodeling phases. Gintonin
attenuated the expression of proinflammatory cytokines that were released as a result of
inflammation in macrophages, indicating its anti-inflammatory effect [43]. The wound
healing process includes overlapping complex phases such as hemostasis, inflammation,
proliferation, and remodeling [21,22]. These reports, and our results, imply that gintonin
may participate in wound healing-related responses at different stages of the wound
healing process. Therefore, gintonin may have beneficial effects on healing skin wounds.

On the other hand, EGF has been recognized as an excellent wound healing agent due
to its therapeutic functions in stimulating skin cell growth, proliferation, and differentia-
tion [35,36]. In the present study, we found that the wound healing effect of gintonin was
comparable to that of EGF (Figure 2). Since signaling pathways of gintonin and EGF for
wound healing processes are different from each other, it will be interesting to examine their
additive or synergistic effects on in vivo wound healing in the future using a combination
of gintonin and EGF.

In conclusion, the present study demonstrated that gintonin enhanced cell prolif-
eration, migration, VEGF release, and wound closure in in vitro assays. Gintonin also
promoted in vivo wound healing on mice tail wounds. Gintonin-enhanced cell prolifer-
ation, migration, and VEGF release were markedly blocked by treatment with an LPA
receptor inhibitor. An ERK inhibitor, a calcium chelator, a PLC inhibitor, and a VEGF recep-
tor inhibitor also attenuated gintonin-enhanced cell proliferation. Gintonin increased the
phosphorylation of AKT and ERK1/2. These findings indicate that gintonin may promote
wound healing by activating LPA receptor-VEGF release-mediated downstream signaling
pathways (Figure 7). Therefore, gintonin, as a bioactive natural component, could be a
promising material to be developed for skin wound healing in the future.

4. Materials and Methods
4.1. Materials

Gintonin was prepared from Panax ginseng as previously described [44]. 1-Oleoyl-
2-hydroxy-sn-glycero-3-phosphate (LPA C18:1) was purchased from Avanti Polar Lipids
(Alabaster, AL, USA). Anti-EDG2 (LPA1) antibody, anti-LPA2 antibody, anti-EDG7 (LPA3)
antibody, anti-LPA4 antibody, and anti-β–actin horse radish peroxidase-conjugated anti-
bodies were purchased from Abcam (Cambridge, MA, USA). Anti-LPA5 antibody was
purchased from Biorbyt (San Francisco, CA, USA). Anti-P2RY5 (LPA6) antibody was
purchased from OriGene Technologies, Inc. (Rockville, MD, USA). Anti-ERK1/2, anti-
phospho-ERK1/2, anti-AKT, and anti-phospho-AKT antibodies were purchased from
Cell Signaling Technology, Inc. (Danvers, MA, USA). Goat anti-rabbit IgG antibody was
purchased from GeneTex (Irvine, CA, USA). An enzyme-linked immunosorbent assay
(ELISA) kit for VEGF was purchased from R&D systems (Minneapolis, MN, USA). Ki16425
was purchased from Cayman Chemical (Ann Arbor, MI, USA). Dulbecco’s Modified Ea-
gle’s Medium (DMEM) (low glucose) was purchased from Welgene Inc. (Gyeongsan-si,
Gyeongsangbuk-do, Korea). All other materials for cell culture were purchased from
Thermo Fisher Scientific Korea (Gangnam-gu, Seoul, Korea). EGF and all other reagents
used were purchased from Sigma-Aldrich (St. Louis, MO, USA).

4.2. Cell Culture

HaCaT human skin keratinocytes were kindly provided by Prof. HM Lee (Hoseo
University, Asan-si, Chungcheongbuk-do, Korea). HaCaT cells were cultured in DMEM
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supplemented with 10% (v/v) fetal bovine serum (FBS), 100 units/mL penicillin, and
100 µg/mL streptomycin.

4.3. Cell Proliferation Assay

Cell proliferation was measured with the XTT-based assay as previously described [14].
Briefly, cells (5 × 103 cells/well) were seeded into 96-well plates, incubated for 48 h, and
were serum-starved for 4 h. These cells were then treated with different concentrations of
gintonin, LPA, or EGF for 24 h. In some experiments, inhibitors were used for pretreatment
before treatment with gintonin or LPA. The culture medium of cells was replaced with
fresh serum-free medium without phenol red. These cells were then treated with a mixture
of XTT and phenazine methosulfate (1 mg/mL and 0.03 mg/mL, respectively). The
absorbance at 450 nm of orange formazan indicating cell viability relative to the activity of
the mitochondrial enzyme was detected with the Spectra Max 190 plate reader (Molecular
Devices, Sunnyvale, CA, USA).

4.4. Migration Assay

The migration of HaCaT cells across a collagen-coated polycarbonate membrane
(8 µm pore size) was measured using modified Boyden chambers (Neuro Probe, Gaithers-
burg, MD, USA) as previously described [11,14]. Gintonin, LPA, or EGF in serum-free
DMEM was added to lower chambers. Cells (5 × 104 cells/well) were loaded into upper
chambers and incubated at 37 ◦C for 3 h. In some experiments, cells were pretreated with
or without inhibitors before being loaded into the chamber. Migrated cells were fixed,
stained with Diff Quik (Sysmex, Kobe, Japan), and photographed and counted using a
dark field microscope (Eclipse 80i; Nikon, Tokyo, Japan) at a magnification of ×200.

4.5. Scratch Wound Healing Assay

In vitro wound-healing assay was performed as previously described [14]. Briefly, Ha-
CaT cells (2.5 × 105 cells/well) were seeded into 24-well plates pre-coated with 0.1 mg/mL
of collagen type I from rat tails (BD Bioscience, San Jose, CA, USA) and incubated at 37 ◦C
for 24 h. These cells were incubated in serum-free medium at 37 ◦C for 4 h. Cell layers
were scratch-wounded using a 200 µL pipette tip. After washing with serum-free medium,
the cells were incubated with different concentrations of gintonin, LPA, or EGF at 37 ◦C for
24 h. Images were photographed using an inverted fluorescence microscope (AxioVert200;
Carl Zeiss, Oberkochen, Germany) at a magnification of ×100 and analyzed using an
image analyzing software (OptiView, Jacksonville, FL, USA). Wound closure levels were
quantified as follows: The ratio of wound closure in each group was calculated as the
recovered area at 24 h divided by the initial wound area (at 0 h). Then, the value obtained
in each group was expressed as a percentage of wound closure of untreated control cells.

4.6. VEGF ELISA

The VEGF level was detected as previously reported [14] with some modifications.
Briefly, HaCaT cells were incubated with serum-free DMEM at 37 ◦C for 6 h and
with DMEM in the presence or absence of gintonin at different concentrations for
24 h. VEGF content in the supernatant of cultured medium (conditioned medium) was
measured using an ELISA kit (R&D Systems, Minneapolis, MN, USA) according to the
manufacturer’s instructions.

4.7. Immunoblotting

Phosphorylation levels of ERK and AKT and LPA subtypes in HaCaT cell lysates
were examined. Cells were lysed using a modified radioimmunoprecipitation assay (RIPA)
buffer containing protease inhibitors and phosphatase inhibitors. Each protein was detected
after 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and
immunoblotting using rabbit anti-phospho-ERK polyclonal antibody (1:1000), rabbit anti-
phospho-AKT antibody (1:1000), and goat anti-rabbit IgG antibody conjugated to HRP.
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The membrane was stripped and re-probed with rabbit anti-ERK polyclonal antibody
(1:1000) and rabbit anti-AKT antibody (1:1000). LPA receptor subtypes LPA1–6 were also
detected using LPA1–6 antibodies, as previously described [26]. For detection of loading
controls, mouse anti-β-actin monoclonal antibody conjugated to HRP (1:30,000) was also
used. Images were visualized using Clarity Western ECL Substrate Bio-Rad (Hercules,
CA, USA) with an iBright CL1000 imaging system (Thermo Fischer Scientific, Waltham,
MA, USA).

4.8. In Vivo Wound Healing

The in vivo wound healing assay was performed using a mouse tail wound model
as previously described [45] with some modifications. Briefly, 7-week-old male ICR mice
were used. Animal experiments were performed in accordance with the Guide for the Care
and Use of Laboratory Animals of Konkuk University (KU21051-1). A rectangular wound
(approximately 5 × 10 mm) was made on the dorsal side of each mouse tail using a scalpel
and Cautery Kit (Bovie Medical Corporation, Clearwater, FL, USA). The size and shape
of each wound were standardized using a template and other conditions were identical.
Mice were intramuscularly injected with xylazine (2 mg/kg) before wounding. Gintonin
(10 µg/mL or 100 µg/mL)-containing cream was applied on the wound lesion every 2 days
starting at day 0 for 21 days after wounding. Cream without gintonin was also used for
the control group of mice. Wounds were photographed and wound areas were measured
using an image analyzing software (OptiView, Jacksonville, FL, USA).

4.9. Statistical Analysis

Data are expressed as the means ± standard deviation. Statistical comparisons of
controls and treated experimental groups were performed using Student’s t-test or one-way
analysis of variance (ANOVA) using GraphPad Prism, version 5.0 (Graph Pad Software,
San Diego, CA, USA). p-values less than 0.05 were considered statistically significant.
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