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Abstract

Some have hypothesized that ancestral proteins were, on average, less specific than their descendants. If true, this would
provide a universal axis along which to organize protein evolution and suggests that reconstructed ancestral proteins
may be uniquely powerful tools for protein engineering. Ancestral sequence reconstruction studies are one line of
evidence used to support this hypothesis. Previously, we performed such a study, investigating the evolution of
peptide-binding specificity for the paralogs S100A5 and S100A6. The modern proteins appeared more specific than
their last common ancestor (ancA5/A6), as each paralog bound a subset of the peptides bound by ancA5/A6. In this
study, we revisit this transition, using quantitative phage display to measure the interactions of 30,533 random peptides
with human S100A5, S100A6, and ancA5/A6. This unbiased screen reveals a different picture. While S100A5 and S100A6
do indeed bind to a subset of the peptides recognized by ancA5/A6, they also acquired new peptide partners outside of
the set recognized by ancA5/A6. Our previous work showed that ancA5/A6 had lower specificity than its descendants
when measured against biological targets; our new work shows that ancA5/A6 has similar specificity to the modern
proteins when measured against a random set of peptide targets. This demonstrates that altered biological specificity
does not necessarily indicate altered intrinsic specificity, and sounds a cautionary note for using ancestral reconstruction
studies with biological targets as a means to infer global evolutionary trends in specificity.
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Introduction
Changes in protein specificity are essential for evolution
(Carroll et al. 2008; Khersonsky and Tawfik 2010; Soskine
and Tawfik 2010; Kanzaki et al. 2012; Reinke et al. 2013;
Kaltenbach and Tokuriki 2014; Clifton and Jackson 2016;
Alhindi et al. 2017). One intriguing suggestion is that, on
average, proteins become more specific over evolutionary
time (Jensen 1976; Khersonsky and Tawfik 2010; Copley
2012; Wheeler et al. 2016). If true, this would be a directional
“arrow” for protein evolution (Gaucher et al. 2008; Mannige
et al. 2012; Risso et al. 2014; Wheeler et al. 2016). Such pro-
posed trends are controversial (Williams et al. 2006; Wheeler
et al. 2016), but could ultimately provide fundamental
insights into the evolutionary process. For example, increasing
specificity might indicate that proteins become less evolvable
over time, as they have fewer promiscuous interactions that
can be exploited to acquire new functions (Khersonsky and
Tawfik 2010; Copley 2012). From a practical standpoint, it has
also been suggested that less-specific reconstructed ancestors
would be powerful starting points for engineering new pro-
tein functions (Risso et al. 2013).

There are several reasons that proteins may, on average,
evolve towards higher specificity. First, gene duplication fol-
lowed by subfunctionalization could lead to a partitioning of
ancestral binding partners between descendants, and thus

increase specificity along each lineage (Hittinger and Carroll
2007; Eick et al. 2012; Clifton and Jackson 2016; Alhindi et al.
2017). Second, as metabolic pathways and interaction net-
works become more complex, proteins must use more so-
phisticated rules to “parse” the environment: if an ancestral
protein had to discriminate between fewer targets than mod-
ern proteins, it could be less specific and still achieve the same
biological activity (Eick et al. 2012). Finally, on the deepest
evolutionary timescales, it has been pointed out that the
proteome of the last universal common ancestor was small.
As a result, each protein would have been required to per-
form multiple tasks and hence have lower specificity (Jensen
1976; Copley 2012).

Much of the empirical support for the increasing specificity
hypothesis comes from ancestral reconstruction studies
(Carroll et al. 2008; Eick et al. 2012; Risso et al. 2013, 2014;
Pougach et al. 2014; Zou et al. 2015; Clifton and Jackson 2016;
Devamani et al. 2016; Ma et al. 2016; Rauwerdink et al. 2016;
Alhindi et al. 2017; Wheeler et al. 2018). The results from one
such study are shown schematically in figure 1A. We previ-
ously studied the evolution of peptide binding specificity in
the amniote Ca2þ-binding proteins S100A5 and S100A6
(Wheeler et al. 2018). Upon Ca2þ binding, these proteins
interact with�12 amino acid linear peptide regions of target
proteins to modulate their activity (fig. 1A). S100A5 and
S100A6 play regulatory roles in processes such as olfactory
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signaling and cell migration (Santamaria-Kisiel et al. 2006; Lee
et al. 2008; Bertini et al. 2009; Leclerc et al. 2009; Słomnicki
et al. 2009; Streicher et al. 2009; Liriano 2012; Donato et al.
2013). These proteins bind to peptides with diverse sequences
with KD values in the lM range (Lee et al. 2008; Streicher et al.
2009; Wheeler et al. 2018). In our previous evolutionary study,
we found that S100A5 and S100A6 orthologs bound to dis-
tinct peptides, but that the last common ancestor bound to
all of the peptides we tested (fig. 1A) (Wheeler et al. 2018).
Other studies, probing other classes of interaction partners,
have found similar results: the ancestor interacts with a
broader range of partners than extant descendants (Carroll
et al. 2008; Eick et al. 2012; Risso et al. 2013, 2014; Pougach
et al. 2014; Zou et al. 2015; Clifton and Jackson 2016;
Devamani et al. 2016; Ma et al. 2016; Rauwerdink et al.
2016; Alhindi et al. 2017; Wheeler et al. 2018).

But do such experiments truly test the increasing specific-
ity hypothesis? The hypothesis can be represented as a Venn
diagram: the set of targets recognized by the ancestor is larger
than the sets of targets recognized by its descendants (fig. 1B).
Results such as those in figure 1A are not, however, sufficient
to resolve this Venn diagram. Figure 1C illustrates two

radically different Venn diagrams consistent with our exper-
imental observations of peptide binding in figure 1A. One
possibility is increasing specificity (the descendant sets are
smaller than the ancestral set). Another possibility is shifting
specificity (the descendant sets remain the same size but
diverge in their composition). Testing only a small or biased
set of binding partners could lead to incorrect conclusions
about the evolutionary process. Distinguishing the possibili-
ties shown in figure 1C requires estimating the populations in
each region of the Venn diagram, which can only be done
with a much larger, unbiased sample of the set of binding
partners.

To test for the evolution of increased specificity, we set out
to estimate changes in the total set of peptides between
ancA5/A6 and two of its descendants–human S100A5
(hA5) and human S100A6 (hA6). This evolutionary transition
is an ideal model to probe this question. We already have a
reconstructed ancestral protein that exhibits an apparent
gain in specificity over time for both proteins, at least for a
small collection of peptides (Wheeler et al. 2018). Further,
because they bind to �12 amino acid peptides, the set of
binders is discrete and enumerable (2012 ¼ 4� 1015 targets).

FIG. 1. Testing the increased specificity hypothesis requires an unbiased sampling of targets. (A) Experimentally measured changes in peptide
binding specificity for S100A5 and S100A6 (taken from Wheeler et al. 2018). Structure: location of peptide (red) binding to a model of S100A5 (gray,
PDB: 2KAY). Bound Ca2þ are shown as blue spheres. Phylogeny: Boxes represent the binding of four different peptides (arranged left to right) to
nine different proteins (arranged top to bottom). A white box indicates the peptide does not bind that protein; a colored box indicates the peptide
binds. Colors denote ancA5/A6 (green), S100A5 (purple), and S100A6 (orange). Red arrows highlight ancestral peptides lost in the modern
proteins. (B) Venn diagram of the increasing specificity hypothesis. The large circle is the set of targets recognized by the ancestor; the smaller
circles are sets of targets represented its descendants. (C) Venn diagrams show overlap in peptide binding sets between ancA5/A6, S100A5, and
S100A6. Crosses denote experimental observations. Columns show two evolutionary scenarios: increasing specificity (left) versus shifting specif-
icity (right). Rows show two different sampling methods: small sample (top) versus random sampling (bottom). Colors are as in (B).

Wheeler and Harms . doi:10.1093/molbev/msab019 MBE

2228



This contrasts with interactions between proteins and small
molecules, for which there is an effectively infinite chemical
“space” of possible moieties to sample. Although we cannot
measure the entire space of 12-mer peptides, its discrete na-
ture means we can learn about the average features of the
space by randomly sampling amino acids at each site in the
12-mer peptides.

We set out to estimate changes in the total sets of partners
recognized by these proteins using a high-throughput char-
acterization of peptide binding. We found that the modern
proteins bound to a similar number of targets as the ancestor,
and that both hA5 and hA6 acquired a large number of new
targets since ancA5/A6. Thus, the original observation that a
smaller number of targets are bound by the ancestor relative
to the modern proteins reflects a shifting set of targets—not a
shrinking set. This suggests that the evidence for a global
trend towards increased specificity from less-specific ancestral
states should be revisited.

Results

Peptide/Protein Interactions Measured by Phage
Display
Our goal was to measure changes in the total binding sets
between human S100A5 (hA5), human S100A6 (hA6), and
their last common ancestor (ancA5/A6) (Wheeler et al. 2018).
To account for uncertainty in the reconstruction, we also
characterized an alternate reconstruction of ancA5/A6
(altAll) that incorporates alternate amino acids at uncertain
positions in the reconstruction (Eick et al. 2017). The altAll
sequence is an aggressive attempt to incorporate uncertainty,
as it simultaneously flips all uncertain sites to their next-most-
probable amino acid state in one sequence. (This protein
differs at 21 of 86 sites from ancA5/A6). Because of this pro-
cedure, the altAll ancestor likely has more errors in its recon-
struction than ancA5/A6 (Eick et al. 2017). Despite this, the
altAll ancestor behaved similarly to ancA5/A6 in our previous
experiments (Wheeler et al. 2018).

We wanted to study the interaction of tens of thousands
of random peptides to each protein using phage display
(Sidhu et al. 2000; Fowler and Fields 2014). As input for the
screen, we selected a commercial library of randomized 12-
mer peptides expressed as fusions with the M13 phage coat
protein pIII. Each phage particle has five identical peptides on
its surface. These peptides have a free N-terminus followed by
a shared six amino acid C-terminus that links them to the pIII
protein. The sequence of each peptide is thus
XXXXXXXXXXXXGGGSAE, were “X” is a randomized posi-
tion. We showed previously that the GGGSAE flank has no
effect on S100 peptide binding (Wheeler et al. 2018).

Prior to our experiments, we sequenced the naive library to
assess its composition. Figure 2A shows the relative frequency
in the library of each of the 20 amino acids at all 12 positions
in the peptide. All positions have many amino acids repre-
sented at high frequency. To quantify the diversity, we calcu-
lated the number of amino acids with a frequency above 1%
at each position (shown below each position in fig. 2A). Ten
of the 12 sites have 18 or 19 amino acids represented; the least

diverse sites still have 15 and 17 amino acids, respectively. This
library thus represents an approximately random sampling of
the peptide sequence space of the sort described in figure 1C.

We next set out to measure the binding of S100 proteins
to this library of random 12-mer peptides. The S100 peptide-
binding interface is only exposed upon Ca2þ-binding (fig. 1A);
therefore, we performed phage panning experiments in the
presence of saturating Ca2þ and then eluted the bound
phage using saturating ethylenediaminetetraacetic acid
(EDTA) (fig. 2B). After this panning step, the population of
enriched phage particles will be a mixture of those that bind
at the site of interest and those that bind adventitiously (blue
and purple phage, fig. 2B) (Sidhu et al. 2000; Willats 2002). To
separate these populations, we repeated the panning exper-
iment in the presence of a saturating concentration of com-
petitor peptide known to bind at the site of interest
(GFDWRWGMEALTGGGSAE, fig. 2C) (Wheeler et al. 2018).
This should lower the enrichment of peptides that bind at the
site of interest, while allowing any adventitious interactions to
remain. By comparing the competitor and noncompetitor
pools, we can distinguish between specific and adventitious
binders.

We performed this experiment with and without a com-
petitor, in biological duplicate, for all proteins. We found that
phage panned in the presence of 2 mM Ca2þ and eluted with
5 mM EDTA phage enriched strongly for all proteins relative
to a biotin-only control (supplementary fig. S1,
Supplementary Material online). Further, the addition of
competitor binding knocked down enrichment in all samples
(supplementary fig. S1, Supplementary Material online). We
showed previously that enrichment is strictly dependent on
Ca2þ: we see no phage recovery above our biotin-only con-
trols if we pan with S100 proteins in the presence of 2 mM
EDTA and elute with 5 mM EDTA (see supplementary fig. S1,
Supplementary Material online, in Wheeler et al. 2018).

After panning, we sequenced the resulting phage pools
using Illumina sequencing. We applied strict quality control,
discarding any peptide that exhibited less than six counts (see
Methods, supplementary fig. S2, Supplementary Material on-
line). After quality control, we had a total of 265 million reads
spread over 17 samples (supplementary Table S1,
Supplementary Material online). We estimated changes in
the frequencies of peptides between samples with and with-
out competitor peptide (supplementary fig. S3,
Supplementary Material online). For each peptide, we deter-
mined E:

E ¼ �ln
cnon�competitor

ccompetitor

� �
(1)

where ccompetitor and cnon�competitor are the sequence counts
for the peptide recovered from parallel Ca2þ=EDTA panning
experiments done with and without competitor peptides.

If E< 0, the competitor peptide interferes with the Ca2þ-
dependent enrichment of the peptide. The simplest interpreta-
tion of this result is that the phage peptide binds at the canon-
ical S100 peptide interface (fig. 1A), and is thus disrupted with
the addition of competitor. If E¼ 0, the addition of competitor
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has no effect on panning, meaning the phage peptide either did
not bind or bound at a site away from the canonical peptide
binding site. If E> 0, the competitor peptide improves Ca2þ-
dependent enrichment of the phage peptide. This could occur if
the phage peptide binds more favorably to the S100/competitor
peptide complex than the S100 alone. Such enrichment would
still be Ca2þ-dependent because binding of the competitor
peptide is itself dependent on Ca2þ (Wheeler et al. 2018):

addition of EDTA disrupts the S100/competitor complex, and
thus, elutes any phage peptides that bind preferentially to the
S100/competitor complex (fig. 2C).

We determined E for hA5, hA6, ancA5/A6, and altAll. We
found that the distribution of E for each protein could be de-
scribed using two Gaussian distributions, apparently reflecting
two underlying processes (fig. 2C, supplementary fig. S4,
Supplementary Material online). The dominant peak, centered

FIG. 2. Set of binding peptides can be estimated using phage display. (A) Amino acids were observed at each of the 12 positions in the random
peptide library prior to the experiment. The height of each letter corresponds to its frequency. Amino acids are sorted from most common to least
common, top to bottom. The number of amino acids at that position with a frequency above 1% is shown below each column. (B, C) Rows show
two different experiments, done in parallel, for each protein. Biotinylated, Ca2þ-loaded, S100 is added to a population of phage either alone (row B)
or with saturating competitor peptide added in trans (row B). Phage that binds to the protein (blue or purple) are pulled down using a streptavidin
plate. Bound phage is then eluted using EDTA, which disrupts the peptide binding interface. In the absence of competitor (row B), phage bind
adventitiously (purple) as well as at the interface of interest (blue). In the presence of a competitor (row C), only adventitious binders are present.
(D) Distribution of enrichment values for peptides taken from pooled biological replicates of hA5. The measured distribution (black points) can be
fit by the sum of two Gaussian distributions: responsive (blue) and unresponsive (purple), which sum to the total (yellow). The dashed line
indicates cutoff for E � �1:5 used throughout the manuscript. (E) The responsive distribution for hA5 is correlated between biological replicates,
while the unresponsive distribution is not. Axes are an enrichment for replicate 1 or replicate #2. Points are individual peptides seen in both
replicates. Distributions for each replicate are shown on the top and right, respectively. The red dashed line is the best fit line (orthogonal distance
regression) between the replicates for the E � �1:5 region (R2 ¼ 0:70).
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about E¼ 0, consists of “unresponsive” peptides whose fre-
quencies change little in response to competitor peptide. A
second, broader, distribution describes “responsive” peptides
whose frequencies change with the addition of competitor.
The responsive distribution was shifted towards negative values,
meaning the addition of competitor generally disrupts phage
peptide binding. There were, however, responsive peptides with
E> 0, meaning that competitor peptide enhanced enrichment.
As described above, such peptides are not of interest in this
study; therefore, we focused our efforts on the E< 0 portion of
the responsive distribution.

We sought to identify a cutoff in E that would allow us to
isolate and study the E< 0 region of the responsive distribu-
tion corresponding to specifically enriching peptides. We used
the mean and standard deviations of the responsive and unre-
sponsive distributions to calculate their probability density as a
function of E: pdfresponsiveðEÞ and pdfunresponsiveðEÞ. We then
calculated the posterior probability that a peptide with a given
value of E arose from the unresponsive distribution by pposterior

¼ pdfunresponsiveðEÞ= ðpdfresponsiveðEÞ þ pdfunresponsiveðEÞÞ. We
found that pposterior ¼ 0.05 occurred around E ¼ �1:5 for all
proteins (fig. 2C, supplementary figs. S4 and S5, Supplementary
Material online). We, therefore, interpret peptides with E �
�1:5 as unambiguously arising from the responsive distribu-
tion. These are the peptides of interest for this study.

If the responsive distribution reflects specific binding and
the unresponsive distribution reflects nonspecific binding, we
would predict a high correlation between biological replicates
for the responsive distribution and a weak correlation for the
unresponsive distributions. To test this, we plotted the E
distributions for the biological replicates of hA5 against one
another (fig. 2E). As predicted, we see a strong correlation
between replicates for the responsive distribution
(E � �1:5; R2 ¼ 0:70). In contrast, the unresponsive distri-
butions are uncorrelated between replicates, yielding a cloud
of points for E > �1:5. We are thus confident that the unre-
sponsive distribution reflects nonspecific changes in phage
frequency and should be ignored in downstream analyses.

Peptide/Protein Interactions Measured by
Fluorescence Polarization
We next set out to determine the relationship between enrich-
ment and peptide-binding affinity. We selected nine peptides
for which we had estimates of E for hA5, hA6, and ancA5/A6
from our phage display experiments. The peptides had E values
ranging from –6 to 6. Some peptides enriched universally:
EGLDLMSILELIGGSAE, for example, had E � �4 for all three
proteins. Other peptides are enriched for only a specific protein.
For example, SRQTTSTHEWVVGGSAE had E ¼ – 6 for hA6
and E ¼ �0:7 and –0.4 for hA5 and ancA5/A6, respectively.
The full set of peptides, with their enrichment values, is given in
supplementary table S2, Supplementary Material online.

To mimic the phage display experiment, we measured bind-
ing by displacement of a fluorescently labeled probe peptide. For
our probe, we used the competitor peptide from the phage
display experiment with the addition of an N-terminal 5-FAM

fluorophore (fig. 3A). We validated that the probe bound in a
calcium-dependent manner to all three proteins (supplemen-
tary fig. S6, Supplementary Material online). We could then
measure fluorescence polarization of the probe peptide as a
function of increasing concentrations of unlabeled peptide. A
peptide that binds at the same site as the probe will displace the
probe and thereby change the fluorescence polarization.

To validate the approach, we measured the binding of
unlabeled probe peptide—that is, the competitor peptide
we used in the phage display experiment—to hA5, hA6,
and ancA5/A6 (fig. 3A). All three proteins are bound to the
peptide. The extracted KD values were consistent with KD

values for these protein/peptide pairs previously measured
by isothermal titration calorimetry (ITC) (Wheeler et al.
2018). The new values versus the ITC values were: 2:662
versus 2:060:5 lM (hA5), 12:462 versus 5:060:5 lM
(hA6), and 6:062 versus 1.6 6 0.5 lM (ancA5/A6).

We next measured the binding of the nine phage display
peptides to hA5, hA6, and ancA5/A6, giving 27 total peptide/
protein pairs. Figure 3A shows representative binding curves
for two different peptides to hA5. One binds with KD ¼ 46
62 lM (fig. 3B, black points); the other exhibits no detectable
binding, implying a KD > 1 mM (fig. 3B, purple points). Of
the 27 peptide/protein pairs, 17 exhibited detectable binding.
We constructed a contingency table relating a peptide’s bind-
ing (yes/no) to its E cutoff (above/below) (fig. 3C). This
revealed that having an E � �1:5 strongly predicts whether
binding will be detectable (v2 : p ¼ 0:008; / ¼ 0:51).
Representative binding curves for hA5, hA6, and ancA5/A6
are shown for all nine peptides in supplementary figs. S7–S9,
Supplementary Material online, respectively.

We wanted to know whether the enriching peptides had KD

values in a biologically relevant regime. The average KD for
peptides with E � �1:5 was 56 lM; the best KD was 19 lM
(hA5 binding to GWLEQYFSRTADGGSAE); the weakest KD was
130 lM (ancA5/A6 binding to RHGFLQDILFKLGGSAE). These
are comparable to the KD values for the biological targets of
these proteins. hA6 binds its target peptides from Annexin I and
SIP with KD values of 17 and 26 lM, respectively (Streicher et al.
2009), while hA5 binds a peptide from its putative biological
target of NCX1 with KD ¼ 18 lM (Wheeler et al. 2018).

Finally, we also investigated the quantitative relationship
between log10ðKDÞ and E for the 17 experiments that yielded
binding curves for which we could extract KD. We observed
the expected inverse relationship between affinity and E for
the three proteins studied indvidually, as well as the combi-
nation of all three proteins (fig. 3D). The correlation was ex-
cellent for the five peptides binding to hA5 (R2 ¼ 84:4);
however, the correlation for hA6, ancA5/A6, and the pooled
samples was much worse (R2 ¼ 16). The poor correlation is
due to two peptides (one binding hA6, one binding ancA5/
A6) that have highly negative E, but low binding affinity.
Taken together, this analysis suggests there is some quantita-
tive information about binding affinity encoded in E, but that
it is likely best viewed as a classifier: peptides with E � �1:5
are predicted to bind with KD values around 50 lM.
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hA5 and hA6 Did Not Increase in Specificity Relative to
the Ancestor
We were now in a position to determine how specificity
changed over time for these proteins. We constructed a single
data set containing the 30,533 peptides for which we had
measurable values of E for all four proteins (hA5, hA6,
ancA5/A6, and altAll). If the specificity of hA5 and hA6 in-
creased over time, we would expect them to bind to a smaller
number of peptides than their ancestor. A more stringent
interpretation of the increasing specificity hypothesis might
further state that the set of peptides bound by hA5 and/or
hA6 should largely be a subset of the peptides bound by the
ancestor (fig. 1C).

We tested these hypotheses by constructing a Venn dia-
gram for all peptides with E � �1:5 for hA5, hA6, and
ancA5/A6 (fig. 4A). We found the hA5 set was larger than
the ancA5/A6 set (2,957 vs. 2,241 peptides), while the hA6 set
was essentially the same size as the ancA5/A6 set (2,414 vs.
2,241 peptides). Further, rather than hA5 and hA6 binding
subsets of ancA5/A6, both bound to more unique peptides
than peptides that overlapped with ancA5/A6 (fig. 4A). We
next asked whether this was robust to phylogenetic uncer-
tainty by calculating a Venn diagram for hA5, hA6, and altAll.
The Venn diagram for the alternate ancestral reconstruction
was similar to that for ancA5/A6: hA5 and hA6 did not gain
specificity relative to the ancestor (fig. 4B). Indeed, hA5 and
hA6 are less specific than altAll, as altAll binds to a much
smaller number of peptides than ancA5/A6.

Our analysis in figure 4A and B showed that hA5, hA6, and
ancA5/A6 bound to similar numbers of targets. We next
asked if this result was robust to our choice of E cut-off. If
we made the cutoff more stringent (more negative), would
we see a change in the pattern of specificity? Figure 4C shows

the number of peptides bound by each protein as a function
of Ecutoff. We found that hA5 binds to a larger set of peptides
than ancA5/A6 for all values of Ecutoff. In contrast, for an
Ecutoff < �2, hA6 does bind to fewer peptides than
ancA5/A6. Thus, with a more stringent cutoff, hA6 gained
moderate specificity relative to the ancestral protein. This
gain in specificity consists of hA6 binding new peptides, how-
ever, not hA6 binding a limited subset of the ancestral pep-
tides. This can be seen in fig. 4D, which shows the Venn
diagrams hA5, hA6, and ancA5/A6 (left) and hA5, hA6, and
altAll (right) using an Ecutoff of –4.5. hA6 has acquired new
peptides relative to either ancestor, even as it has a smaller
overall number of peptides than ancA5/A6.

Finally, we wanted to ask whether including the “missing”
responsive peptides with�1:5 < E < 0 would change our
conclusions about the specificity of these proteins. Peptides in
this range of E were depleted by competitor, but could not be
confidently identified because they overlapped with the unre-
sponsive distribution (fig. 2D). Although we could not identify
the specific peptides that had E in this range, we did know
their distribution. Using the mean and standard deviation of
the responsive distribution for each protein, we could there-
fore calculate the fraction of responsive peptides with E � �
1:5 and the fraction with�1:5 < E < 0. Since we knew the
number of peptides with E � �1:5, we could thus estimate
how many peptides, total, had E< 0. hA5, for example, had a
responsive distribution with a mean of –0.98 and a standard
deviation of 2.86. With this distribution, 8% of peptides had
E � �1:5 and 7% had �1:5 < E < 0. There were 2,957
peptides with E � �1:5, implying that there were 2,648
peptides with �1:5 < E < 0. Thus, we would estimate
that hA5 had 5,604 peptides with E< 0 in this experiment.

FIG. 3. Peptide enrichment indicates peptide binding. (A) Unlabeled competitor peptide competing off the fluorescently labeled probe peptide for
hA5 (purple), hA6 (orange), and ancA5/A6 (green). The points are experimentally measured data points (single biological replicate; error bars are
standard deviation of technical replicates; lines are a binding model fit to the data. The inset graphic shows the experimental design. In the absence
of competitor, polarization is high because the probe peptide is bound to the protein and thus rotates slowly. In contrast, once a competitor
peptide is added, the probe is displaced, leading to faster rotation and a loss of probe signal. (B) Binding curves for two representative peptides
binding to hA5 as measured by displacement of the fluorescently labeled probe: black (EGLDLMSILELIGGSAE; E ¼ �4:3) and pink
(SRQTTSTHEWVVGGSAE; E ¼ �0:7). No model could be reliably fit to the pink points. (C) Contingency table relating E to binding. Entries in
the table correspond to protein/peptide pairs in the set of 27 (hA5, hA6, and ancA5/A6 binding to nine different phage peptides). The v2 P value
and Matthews coefficient for the table are show below, indicating there is a statistically significant, positive relationship between E class and the
ability to detect binding. (D) Quantitative correlation between log10ðKDÞ and E for each peptide. Lines were determined by orthogonal distance
regression. The colors denote different proteins: hA5 (purple), hA6 (orange), and ancA5/A6 (green). The solid black line denotes a fit to all 17
points.
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Using this approach, we estimated the number of peptides
with E< 0 for all four proteins. hA5 and hA6 had 5,604 and
7,186 peptides, while ancA5/A6 and altAll had 5,172 and
3,293 peptides. We thus found no evidence that hA5 and
hA6 had increased specificity relative to the ancestor.

hA5 and hA6 Exhibit Diverging Specificity
This analysis revealed that hA5, hA6, and ancA5/A6 bind
to small, but overlapping, sets of all possible binding pep-
tides (fig. 4A). We next set out to better understand the
nature of the historical evolutionary changes. We split the
interaction targets of hA5 and hA6 into three categories:
ancestral (peptides shared with ancA5/A6), convergent
(peptides shared between hA5 and hA6, but not the an-
cestor), and divergent (peptides that are not shared by
any others). We then plotted this for hA5 and hA6 as a
function of Ecutoff (fig. 4E and F).

We found that hA5 gave a clear pattern of divergent evo-
lution (fig. 4E). If we look at moderately enriching peptides
(�4:0 � E � �1:5) we find that �50% of hA5’s peptides
are ancestral,�45% are divergent, and�5% are convergent.
For the highest enriching peptides (E < �4:0), we see the
fraction of divergent peptides climbs even higher; for
E � �5:3, all hA5 peptides were unique and thus—appar-
ently—divergent.

One explanation for this observation is a lack of sufficient
sampling: maybe the overall fraction of divergent peptides is
constant across E values, but that the low numbers of pep-
tides with low values of E led to a chance over-representation
of divergent peptides. To probe for this possibility, we as-
sumed that hA5 had populations like those reflected for mod-
erate enrichment (ancestral: 50%, divergent: 45%, and
convergent: 5%). We then walked down E and sampled the
appropriate numbers of peptides for each E. (For example, we
sampled a total of�600 hA5 peptides for an Ecutoff of –4 and
only�100 hA5 peptides for an Ecutoff of –5.5). This allowed us
to calculate the expected variation in the numbers of pep-
tides in the ancestral, divergent, or convergent categories due
to sampling. We found that the observed increase in the
relative number of divergent peptides could not be explained
by sampling for hA5 (p ¼ 6:3� 10�44 for E � �5:5;
fig. 5A). This indicates that hA5 has acquired an increased
number of highly enriching peptides relative to its ancestral
state.

We next turned our attention to hA6. Similar to hA5, it
gave a pattern of divergent evolution for moderately enrich-
ing peptides (�50% ancestral,�40% divergent,�10% con-
vergent) and then climbed to apparently 100% divergent for
the most negative values of E (fig. 4F). To see if this could be
explained by the small numbers of peptides observed at these

FIG. 4. hA5 and hA6 gained new targets since their last common ancestor. (A) Venn diagrams for overlap between number peptides observed for
hA5 (purple), hA6 (orange), and ancA5/A6 (green). The areas are proportional to the number of peptides. The absolute numbers are indicated on
the plot. (B) Venn diagram for hA5, hA6, and altAll. Colors and markers as in (A). (C) Number of peptides observed as a function of Ecutoff for hA5
(purple), hA6 (orange), ancA5/A6 (green), and altAll (blue). (D) Venn diagrams for ancA5/A6 and altAll for Ecutoff ¼ �4:5. The areas are on the
same scale as (A and B). (E) Fraction of hA5 targets that overlap with ancA5/A6 (“ancestral”; slate), overlap with neither ancA5/A6 nor hA6
(“divergent”; purple), or overlap with hA6 but not the ancestor (“convergent”; salmon). (E) Fraction of hA6 targets that overlap with ancA5/A6
(“ancestral”; green), overlap with neither ancA5/A6 nor hA5 (“divergent”; orange), or overlap with hA5 but not the ancestor (“convergent”;
salmon).
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values of E, we repeated the sampling analysis we performed
for hA5 for hA6. For hA6, we saw no evidence that the relative
proportions of divergent, convergent, and ancestral categories
changed as a function of enrichment (fig. 5B). Thus, we can-
not resolve whether hA6 has acquired a relatively higher pro-
portion of highly enriching targets since ancA5/A6.

Finally, we asked if our results were robust across biological
replicates. For each biological replicate, we started from the
raw reads and worked all the way through calculating the
Venn diagram in figure 4A and the patterns of evolutionary
divergence for fig. 4E and F. We obtained very similar results
with both biological replicates (supplementary fig. S10,
Supplementary Material online), suggesting these findings
are not the result of a replicate-specific artifact.

Overall, this analysis has revealed that on both lineages, and
with two different versions of the reconstructed ancestor, we
see that hA5 and hA6 did not gain specificity relative to their
ancestral protein. Both lineages maintained interactions with a
large number of ancestral protein targets, but also gained a set
of new targets. Many of the newly acquired targets were specific
to hA5 or hA6, respectively, suggesting a pattern of divergent
evolution. The set of partners shifted and grew (hA5) or shifted
and remained the same size (hA6); neither lineage gave a pat-
tern of simple increasing specificity over time.

Discussion
In this work, we combined ancestral sequence reconstruction
with a high-throughput assay to measure evolutionary
changes in the specificity of the proteins hA5 and hA6. In a
previous study of the biological binding partners of the mod-
ern proteins, we found that specificity increased since the last
common ancestor of the proteins (fig. 1). In this study, we
found the opposite: hA5, in particular, became slightly less
specific over the same evolutionary interval (fig. 4).

These results can be rationalized if we make our definition
of specificity more precise. Specificity may be viewed at two
levels: biological and intrinsic. Biological specificity measures
the ability of a protein to parse its biological environment. It is
determined by both the affinity of a protein for its potential
targets and the biological concentrations of the protein and
its targets. Such specificity can be tuned by selection, as al-
tering biological interactions can have a profound effect on an
organism’s fitness.

Intrinsic specificity, in contrast, measures the affinity of the
protein for all possible targets, regardless of whether a given
target is encountered by the protein in a biological context.
As a whole, intrinsic specificity is invisible to selection: a mu-
tation that only alters the ability of a protein to interact with a
partner it never encounters will not affect fitness. These la-
tent, promiscuous, interactions can, however, set up future
evolutionary change because the pre-existing binding inter-
action can be exploited for new biological functionality
(Khersonsky and Tawfik 2010; Copley 2012).

A protein with low intrinsic specificity may have a higher
latent capacity to form new interactions, potentially making it
more “evolvable.” If proteins indeed tend to gain intrinsic
specificity over time, one could even argue that they tend
to become less evolvable. This would be a striking evolution-
ary trend (Risso et al. 2013, 2014). Practically, it would also be
a strong argument for using reconstructed ancestral proteins
as the starting point for protein engineering: a protein with
lower intrinsic specificity would have a greater number of
latent interactions to exploit and optimize (Khersonsky and
Tawfik 2010; Risso et al. 2018).

Ancestral sequence reconstruction studies have, however,
generally probed changes in biological rather than intrinsic
specificity (Carroll et al. 2008; Eick et al. 2012; Risso et al. 2013,
2014; Pougach et al. 2014; Zou et al. 2015; Clifton and Jackson
2016; Devamani et al. 2016; Ma et al. 2016; Rauwerdink et al.
2016; Alhindi et al. 2017; Wheeler et al. 2018). Take our pre-
vious study on the evolution of S100A5 and S100A6 (Wheeler

FIG. 5. hA5 gained more highly enriched peptides since ancA5/A6. (A)
Cumulative number of hA5 peptides observed at or below each en-
richment level that are ancestral (slate), divergent (purple), or con-
vergent (salmon). The solid lines were observed experimentally (seen
in fig. 3C). The shaded regions indicate the 95% confidence intervals
for the number of expected peptides if the underlying proportions
were ancestral (0.5), divergent (0.45), and convergent (0.05). For
E < �4:0, the observed number of divergent peptides is elevated
above and the observed number of ancestral peptides is depressed
below the expectation. (B) Equivalent plot for hA6. Curves are ances-
tral (green), divergent (orange), and convergent (salmon). There is no
evidence for elevated numbers of divergent, highly enriched peptides
for hA6.
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et al. 2018). We selected known partners of S100A5 and
S100A6, and then asked whether those partners interacted
with ancA5/A6. We found that ancA5/A6 bound all of the
modern partners, indicating that S100A5 and S100A6 did,
indeed, acquire new biological specificity relative to their an-
cestor (fig. 1).

The current study, however, reveals that increased biolog-
ical specificity need not imply increased intrinsic specificity.
We found that human S100A5 and S100A6 both acquired
many new binding partners over the same interval they ac-
quired new biological specificity. Human S100A5, in particu-
lar, binds to more targets than its ancestor: it’s intrinsic
specificity decreased (fig. 3). This difference between our
results for biological and intrinsic specificity suggests we
must carefully define which form of specificity is under dis-
cussion when thinking about global evolutionary trends.

Do we expect a global trend in intrinsic specificity? In our
view, the answer is “no.” Because intrinsic specificity is not
under selection, the intrinsic specificity of the protein will be
determined by chance as the protein meanders through se-
quence space. Presumably, many more sequences encode low
intrinsic specificity than high intrinsic specificity proteins, just
as many more sequences encode low stability rather than
high stability proteins (Taverna and Goldstein 2002). As a
result, we would expect most evolutionary steps to decrease,
rather than increase intrinsic specificity.

Given this, intrinsic specificity would only increase if it was
somehow linked to some other feature under selection. One
might imagine, for example, that increasing biological specif-
icity necessarily increases intrinsic specificity for certain classes
of ligands. It is, however, not obvious that this will generally
hold true. A mutation that changes biological specificity alters
the chemistry of a protein’s binding interface, excluding some
intrinsic partners, and adding others. We see no reason to
assume the number of partners excluded would be system-
atically higher than the number added for most classes of
mutations and binding sites.

Our work does not rule out a trend of increased intrinsic
specificity over deep evolutionary time, but it does caution
against interpreting changes in biological specificity as evi-
dence for an overall trend. Testing for a global trend in in-
trinsic specificity will require studies of unbiased sets of
possible interaction partners. It will also necessitate studies
of multiple protein families, over deeper evolutionary time
scales, and with different classes of binding partners and
substrates.

Materials and Methods
All of our raw data, as well as the scripts necessary to repro-
duce the work have been published in the following reposi-
tory: https://github.com/harmslab/were-anc-less-specific.

Molecular Cloning, Expression, and Purification of
S100 Proteins
Proteins were expressed in a pET28/30 vector containing an N-
terminal His tag with a TEV protease cleavage site (Millipore).
For each protein, expression was carried out in Rosetta E.coli

(DE3) pLysS cells. 1.5 L cultures were inoculated at a 1:100 ratio
with saturated overnight culture. E. coli were grown to high log-
phase (OD600 ¼ 0.8–1.0) with 250 rpm shaking at 37�C.
Cultures were induced by addition of 1 mM IPTG along with
0.2% glucose overnight at 16�C. Cultures were centrifuged and
the cell pellets were frozen at 20�C and stored for up to
2 months. Lysis of the cells was carried out via sonication on
ice in 25 mM Tris, 100 mM NaCl, 25 mM imidazole, pH 7.4. The
initial purification step was performed at 4�C using a 5 mL
HiTrap Ni-affinity column (GE Health Science) on an €Akta
PrimePlus FPLC (GE Health Science). Proteins were eluted using
a 25 mL gradient from 25 to 500 mM imidazole in a background
buffer of 25 mM Tris, 100 mM NaCl, pH 7.4. Peak fractions were
pooled and incubated overnight at 4�C with�1:5 TEV protease
(produced in the lab). TEV protease removes the N-terminal
His-tag from the protein and leaves a small Ser-Asn sequence N-
terminal to the wild-type starting methionine. Next, hydropho-
bic interaction chromatography (HIC) was used to purify the
S100s from remaining bacterial proteins and the added TEV
protease. Proteins were passed over a 5 mL HiTrap phenyl-
sepharose column (GE Health Science). Due to the Ca2þ-de-
pendent exposure of a hydrophobic binding, the S100 proteins
adhere to the column only in the presence of Ca2þ. Proteins
were pre-saturated with 2 mM Ca2þ before loading on the
column and eluted with a 30 mL gradient from 0 mM to
5 mM EDTA in 25 mM Tris, 100 mM NaCl, pH 7.4.

Peak fractions were pooled and dialyzed against 4 L of
25 mM Tris, 100 mM NaCl, pH 7.4 buffer overnight at 4�C
to remove excess EDTA. The proteins were then passed once
more over the 5 mL HiTrap Ni-affinity column (GE Health
Science) to remove any uncleaved His-tagged protein. The
cleaved protein was collected in the flow-through. Finally,
protein purity was examined by SDS-PAGE. If any trace con-
taminants appeared to be present, we performed anion chro-
matography with a 5 mL HiTrap DEAE column (GE). Proteins
were eluted with a 50 mL gradient from 0-500 mM NaCl in
25 mM Tris, pH 7.4 buffer. Pure proteins were dialyzed over-
night against 2 L of 25 mM TES (or Tris), 100 mM NaCl, pH
7.4, containing 2 g Chelex-100 resin (BioRad) to remove diva-
lent metals. After the final purification step, the purity of
protein products was assessed by SDS PAGE and MALDI-
TOF mass spectrometry to be> 95%. Final protein products
were flash frozen, dropwise, in liquid nitrogen and stored at
�80�C. Protein yields were typically on the order of 25 mg/1.5
L of culture.

Preparation of Biotinylated Proteins for Phage Display
A mutant version of hA5 with a single N-terminal Cys resi-
dues was generated via site-directed mutagenesis using the
QuikChange lightning system (Agilent). The Cys was intro-
duced in the Ser–Asn tag leftover from TEV protease cleavage
as Ser–Asn–Cys. The proteins were expressed and purified as
described in the previous section. A small amount of the
purified proteins were biotinylated using the EZ-link BMCC-
biotin system (ThermoFisher Scientific).�1 mg BMCC-biotin
was dissolved directly in 100% DMSO to a concentration of
8 mM for labeling. Proteins were exchanged into 25 mM
phosphate, 100 mM NaCl, pH 7.4 using a Nap-25 desalting
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column (GE Health Science) and degassed for 30 min at 25�C
using a vacuum pump (Malvern Instruments). While stirring
at room temperature, 8 mM BMCC-biotin was added drop-
wise to a final 10� molar excess. Reaction tubes were sealed
with PARAFILM (Bemis), and the maleimide-thiol reactions
were allowed to proceed for 1 h at room temperature with
stirring. The reactions were then transferred to 4�C and in-
cubated with stirring overnight to allow completion of the
reaction. Excess BMCC-biotin was removed from the labeled
proteins by exchanging again over a Nap-25 column (GE
Health Science), and subsequently a series of three
concentration-wash steps on a NanoSep 3 K spin column
(Pall corporation), into the Ca-TeBST-loading buffer.
Complete labeling was confirmed by MALDI-TOF mass spec-
trometry by observing the �540Da shift in the protein peak.
Final stocks of labeled proteins were prepared at 10 mM by
dilution into the loading buffer.

Phage Display
Phage display experiments were performed using the PhD-12
peptide phage display kit (NEB). All steps involving the pipet-
ting of phage-containing samples was done using filter tips
(Rainin). We prepared 100 lL samples containing phage
(5:5� 1011 PFU) and 0:01 lM biotin-protein (or biotin alone
in the negative control) at room temperature in a back-
ground of Ca2þ-TeBST loading buffer (50 mM TES, 100 mM
NaCl, 2 mM CaCl2, 0.01% Tween-20, pH 7.4) to ensure Ca2þ-
saturation of the S100 proteins. For the experiments using a
peptide competitor, we included the peptide
RSHSGFDWRWAMEALTGGSAE at 20 lM in the loading
buffer. This peptide (named A6cons in the original report),
binds all four proteins at the canonical binding site with KD

between 1 and 8 lM (Wheeler et al. 2018). Samples were
incubated at room temperature for 2 h. Each sample was then
applied to one well of a 96-well high-capacity streptavidin
plate (previously blocked using PhD-12 kit blocking buffer
and washed 6� with 150 lL loading buffer). Samples were
incubated on the plate with gentle shaking for 20 min. 1 lL of
10 mM biotin (NEB) was then added to each sample on the
plate and incubated for an additional five minutes to com-
pete away purely biotin-dependent interactions. Samples
were then pulled from the plate carefully by pipetting and
discarded. Each well was washed 5� with 200 L of loading
buffer by applying the solution to the well and then imme-
diately pulling off by pipetting. Finally, 100 L of EDTA-TeBST
elution buffer (50 mM TES, 100 mM NaCl, 5 mM EDTA, 0.01%
Tween-20, pH 7.4) was applied to each well and the plate was
incubated with gentle shaking for 1 h at room temperature to
elute. Eluates were pulled from the plate carefully by pipetting
and stored at 4 �C. Eluates were tittered to quantify eluted
phage as follows. Serial dilutions of the eluates from 1 : 10 to
1 : 105 were prepared in LB medium. These were used to
inoculate 200 L aliquots of mid-log-phase ER2738 E. coli
(NEB) by adding 10 L to each. Each 200 L aliquot was then
mixed with 3 mL of premelted top agar, applied to a LB agar
XGAL/IPTG (Rx Biosciences) plate, and allowed to cool. The
plates were incubated overnight at 37 �C to allow the forma-
tion of plaques. The next morning, blue plaques were

counted and used to calculate PFU/mL phage concentration.
Enrichment was calculated as a ratio of experimental samples
to the biotin-only negative control.

To generate the input phage library, the commercially-
produced library was first screened in duplicate against
each of the four proteins as described above. Each of these
lineages was subsequently amplified in ER2738 E. coli (NEB) as
follows. 20 mL 1:100 dilutions of an ER2738 overnight culture
were prepared. Each 20 mL culture was inoculated with one
entire sample of remaining phage eluate. The cultures were
incubated at 37 �C with shaking for 4.5 h to allow phage
growth. Bacteria were then removed by centrifugation, and
the top 80% of the culture was removed carefully with a
filtered serological pipette and transferred to a fresh tube
containing 1/6 volume of PEG/NaCl (20% w/v PEG-8000,
2.5 M NaCl). Samples were incubated overnight at 4 �C to
precipitate phage. Precipitated phage were isolated by centri-
fugation and subsequently purified by an additional PEG/
NaCl precipitation on ice for 1 h. These individually amplified
pools were then resuspended in 200 lL each of sterile load-
ing buffer and mixed together to form a pre-conditioned
library in order to minimize the impact of sampling on the
subsequent panning experiment. The pool was diluted 1:1
with 100% glycerol and stored at �20 �C for use in the final
panning experiments.

Preparation of Deep Sequencing Libraries
Phage genomic ssDNA was isolated from leftover amplified
eluates from each round of panning using the M13 spin kit
(Qiagen). Products were stored in low TE buffer. These ssDNA
were used as the template for two replicate PCRs with the Cs1
forward (50—ACACTGACGACATGGTT CTACAGTGGTACC
TTTCTATTCTCACTCT—30) and PhD96seq-Cs2 reverse (50—
TACGGTAGCAGAGACTTG GTCTCCCTCA TAGTTAGCGT
AACG—30) primers. Products were isolated from these PCR
reactions using the GeneJet gel extraction kit (Thermo
Scientific) and pooled. The pooled products were then used
as templates for a secondary reaction with the barcoded pri-
mers. Products were isolated from these final PCRs using the
GeneJet gel extraction kit. Concentration of barcoded samples
was measured by A260=A280 using a 1 mm cuvette on an
Eppendorf biospectrometer. Multiplexing was done by mixing
samples according to mass. The concentration of the multi-
plexed library was corrected using qPCR with the P5 and P7
Illumina flow-cell primers. The library was then diluted to a final
concentration of 10 nM and Illumina sequenced on two lanes of
a HiSeq 4000 instrument, using the Cs1 F’ as the R1 sequencing
primer. The lanes were spiked with 20% PhiX control DNA due
to the relatively low diversity of the library.

Our fastq files are available for download from the NCBI
short read archive with accession PRJNA646756.

Phage Display Analysis Pipeline
We performed quality control on three read features. First, we
verified that the sequence had exactly the anticipated length
from the start of the phage sequence through the stop codon.
Second, we only took sequences in which the invariant phage
sequence differed by at most one base from the anticipated
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sequence. This allows for a single point mutation and or se-
quencing errors, but not wholesale changes in the sequence.
Finally, we took only reads with an average phred score better
than 15. The vast majority of the reads that failed our quality
control did not have the variable region, representing rever-
sion to phage with a wildtype-like coat protein. This analysis is
encoded in the hops_count.py script (https://github.com/
harmslab/hops_enrich), which takes a gzipped fastq file as
input and returns the counts for every peptide in the file.

Identifying the Read Count Cutoff
One critical question is at what point the number of reads
correlates with the frequency of a peptide. If we set the cutoff
too low, we incorporate noise into downstream analyses. If
we set the cutoff too high, we remove valuable observations
from our data set. To identify an appropriate cutoff, we stud-
ied the mapping between ci (the number of reads arising from
peptide i) and fi (the actual frequency of peptide i in the
experiments). Our goal was to find Pðfijci;NÞ: the probability
peptide i is at fi given we observe it ci times in N counts. Using
Bayes theorem, we can write:

Pðfijci;NÞ ¼
Pðcijfi;NÞPðfiÞ

PðciÞ
; (2)

where N is the total number of reads. We calculated Pðcijfi;
NÞ assuming a binomial sampling process: what is the prob-
ability of observing exactly c counts given N independent
samples when a population with a peptide frequency fi?
This gives the curve seen in supplementary fig. S2A,
Supplementary Material online. We then estimated dPðfiÞ
from the distribution of frequencies in the input library, con-
structing a histogram of apparent peptide frequencies (sup-
plementary fig. S2B, Supplementary Material online).
Empirically, we found that frequencies followed an exponen-
tial distribution over the measurable range of frequencies.
Finally, we assumed that all counts have equal prior proba-
bilities, turning PðciÞ into a scalar that normalizes the integral
of Pðfijci;NÞ so it sums to 1.

Using the information from supplementary fig. S2A and B,
Supplementary Material online, we could then calculate max
ðPðfijci;NÞÞ for any number of reads in an experiment N. This
corresponds to the maximum likelihood estimate of fi given
we observe ci counts in N reads. Supplementary fig. S2C,
Supplementary Material online, shows this calculation for N
¼ 2:0� 107 reads—a typical number of reads from our ex-
perimental replicates. We found the curve was linear above
three reads. Below this, counts no longer correlates linearly
with frequency, as it is possible to obtain one or two reads
from random sampling from low-frequency library members.
To be conservative, we used a cutoff of six counts for all
downstream analyses. In total, 74.0% of reads passed our
quality control and read cutoff (supplementary table S1,
Supplementary Material online).

Measuring Enrichment Values
We next set out to measure changes in the frequency of
peptides between the competitor and non-competitor

samples. The simplest way to do this would be to identify
peptides seen in both experiments, and then measure how
their frequencies change between conditions. Unfortunately,
these proteins all bind a wide swath of peptide targets, and
relatively few peptides were shared between conditions. This
approach would thus exclude the majority of sequences.
Worse, because we are interested in peptides that are lost
when competitor peptide is added, ignoring peptides with no
counts in the competitor sample means ignoring some of the
most informative peptides.

To solve this problem, we clustered similar peptides and
measured enrichment for peptide clusters rather than indi-
vidual peptides. We extracted all peptides that were observed
across the competitor and noncompetitor samples for a given
protein. We then used DBSCAN to cluster those peptides
according to sequence similarity, as measured by their
Hamming distance (Ester et al. 1996). This revealed extensive
structure in our data. For example, hA5 yielded 8,645 clusters
with more than one peptide, incorporating more than half of
the unique peptides (supplementary fig. S3A, Supplementary
Material online). We chose clustering parameters that led to
highly similar peptides within each cluster, as can be seen by
the representative sequence logos for three clusters of hA5
(supplementary fig. S3B, Supplementary Material online).
Sequences that were not placed in clusters were treated as
clusters with a size of one.

We then used the enrichment of each cluster to estimate
the enrichment of individual peptides. We defined enrich-
ment as:

Ecluster ¼ �ln

Pi�N

i¼1

bi

Pi�N

i¼1

ai

0
BBB@

1
CCCA; (3)

where N is the total number of peptides in the cluster, bi is the
frequency of peptide i in the competitor sample, and ai is the
frequency of peptide i in the noncompetitor sample. We then
made the approximation that all members of the cluster have
the same enrichment:

Ei � Ecluster; (4)

allowing us to estimate the enrichment of all i peptides in
the cluster (supplementary fig. S3C, Supplementary
Material online). Peptides lost because of competition
for the interface will add zeros to the numerator of equa-
tion (3), leading to an overall decrease in enrichment.
Peptides missed because of finite sampling will add zeros
evenly to the competitor and non-competitor samples,
leading to no net enrichment.

We tested this cluster-based approximation using the 8,672
peptides of hA5 for which we could directly calculate enrich-
ment (i.e., those peptides seen in both the competitor and
noncompetitor experiments). We calculated the enrichment
of each peptide individually and compared these values to
those obtained by the cluster method. There is no systematic
difference in the values estimated using the two methods, and
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the linear model explains 98.4% of the variation between the
two methods.

We clustered peptides using our own implementation of
the DBSCAN algorithm (Ester et al. 1996) using the Hamming
distance. The main parameter for DBSCAN clustering is e—
the neighborhood cut-off. Clusters are defined as sequences
that can be reached through a series of e-step moves. We
found that e ¼ 1 gave the best results for our downstream
analysis. Our whole enrichment pipeline—including cluster-
ing—can be run given a peptide count file for the noncom-
petitor experiment and a peptide-count file for the
competitor experiment using the hops_enrich.py script
(https://github.com/harmslab/hops_enrich).

Peptide Binding by Fluorescence Polarization
We did the fluorescence polarization experiments in 50 mM
TES, 100 mM NaCl, and 0.01% Tween-20, pH 7.4, thus matching
the phage display experimental buffer. We ordered all nine test
peptides and the probe peptide in milligram quantities at 95%
purity (Genscript). For the probe peptide, we used “5FAM-
GFDWRWGMEALTGGGSAE,” where 5FAM indicates an N-ter-
minally linked 5-carboxyfluorescein moiety. We dissolved all
peptides to 10 or 20 mM (depending on solubility) in DMSO.
The only exception was SRQTTSTHEWVVGGGSAE, which we
dissolved in ddH2O.

We measured fluorescence anisotropy using a SpectraMax
i3 plate reader (Molecular Devices) with 96-well black plates
(Corning). Prior to reading each plate, we shook for 5 s and
then acquired with 500 ms integration time. Prior to the set of
experiments, we optimized detector height and calibrated the
plate’s xy position to maximize signal. We then kept this cal-
ibration throughout the set of experiments. For each experi-
ment, we recorded both vertical (vv) and horizontal (vh)
emission channels and then converted to arbitrary polariza-
tion units by:

R ¼ vv � Gvh

vv þ 2Gvh
(5)

with G set to 1.0. Titrations were done by serial dilution
through conditions on individual plates, followed by mea-
surement of all wells. We did all measurements in technical
triplicate. We used custom software to programmatically re-
move technical replicate outliers.

We measured probe peptide affinity for each protein by
increasing protein concentration from 0 to�200 lM protein
in the presence of 2 mM CaCl2 and 0:03 lM probe peptide.
We fit the curve to a single-site binding model:

Pð½protein�Þ � DPmax
½protein�

½protein� þ KD;probe
þ P0 (6)

where P0 is the polarization of the peptide in the absence of
protein, DPmax is the change in signal from unbound peptide
to bound to the protein, and KD;probe is the probe dissociation
constant. After recording the titration curve in the presence of
CaCl2, we added 5 mM EDTA to all wells and remeasured the
curve.

For our production experiments, we added increasing
amounts of competitor peptide to wells with between 2.4
and 4.2 mM protein (monomer). Each well also contained
probe peptide at the same concentration as the protein. We
selected these concentrations to maximize the amount of
signal change upon addition of competitor peptide KD;probe.
We calculated the expected signal change by:

DPpredicted ¼ DPmax �
½MX�
½X�T

(7)

where DPmax ¼ 0:135 (as determined by our initial fits to extract
probe peptide KD;probe), ½X�T was the total probe concentration,
and ½MX� was the concentration of the probe/protein complex
prior to adding competitor peptide. We calculated ½MX� by:

½MX� ¼
ð½X�Tþ½M�T þ KD;probeÞ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½X�Tþ½M�T þ KD;probeÞ2 � 4½X�T½M�T

q
2

(8)

where ½M�T was the total protein concentration.
Prior to fitting a binding model to each curve, we converted

it from polarization to fractional saturation. We did so by first
fitting the single-site binding model to the data to obtain an
estimate of the initial polarization (P0) for the protein/peptide
pair. We then subtracted this value of P0 to obtain a baseline-
subtracted polarization. We then divided the baseline-
subtracted polarization by DPpredicted, yielding a fractional satu-
ration (h). We did not fit data for which maxðhÞ < 0:5.

We then fit a reduced form of the single-site binding model
to the data:

h ¼ ½protein�
½protein� þ KD;apparent

(9)

Finally, we corrected the resulting KD;apparent to account for
the effect of the competitor peptide (Hulme and Trevethick
2010):

KD;peptide ¼
KD;apparent

1þ ½X�T 	 ð1� d=2Þ=KD;probe þ d=ð1� dÞ
(10)

where ½X�T is the total probe peptide concentration and
d ¼ ½MX�=½X�T.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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