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Abstract

Crossbreeding is a powerful tool for improving productivity and profitability in aquaculture. We conducted a pilot study of
an artificial cross between two important cultivated scallops in China, Chlamys farreri and Mimachlamys nobilis, to test the
feasibility of interspecific hybridization. Reciprocal hybridization experiments were performed using a single-pair mating
strategy (M. nobilis R 6 C. farreri = and C. farreri R 6 M. nobilis =). The fertilization of each pair was tracked using
fluorescence staining of the gametes, and the chromosomes of the F1 hybrid larvae were examined via conventional
karyotyping and genomic in situ hybridization (GISH). We observed moderate fertilization success in both interspecific
crosses, although the overall fertilization was generally less rapid than that of intraspecific crosses. Conventional
karyotyping showed that 70.4% of the viable F1 larvae in M. nobilis R 6C. farreri = and 55.4% in C. farreri R 6M. nobilis =
comprised hybrid karyotypes (2n = 35 = 6m+5sm+11st+13t), and the results were further confirmed by GISH. Interestingly,
we detected a few F1 from the M. nobilis R 6 C. farreri = cross that appeared to have developed gynogenetically. In
addition, chromosome fragmentations, aneuploids and allopolyploids were observed in some F1 individuals. Our study
presents evidence that the artificial cross between M. nobilis and C. farreri is experimentally possible. Further investigations
of the potential heterosis of the viable F1 offspring at various developmental stages should be conducted to obtain a
comprehensive evaluation of the feasibility of crossbreeding between these two scallop species.
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Introduction

Heterosis (hybrid vigor), defined as an increase in the

performance (e.g., the growth rate, output, and tolerance of

environmental extremes) of hybrids over both parental species, has

been widely tested or established in many commercial species in

aquaculture [1–6]. Crossbreeding has been shown to be effective

for improving the productivity and disease resistance of some

scallops. For example, Bower et al. [7] reported that hybrid

scallops from Patinopecten yessoensis 6 P. caurinus possessed high

heterosis that shows a resistance to infection by Perkinsus qugwadi, a

lethal pathogen of P. yessoensis. Cruz and Ibarra [8] compared the

growth and survival of two stocks of the catarina scallop (Argopecten

circularis), as well as for their reciprocal crosses, and described a

strong maternal effects and heterosis in the hybrids. Yang et al. [9]

found that the hybrid offspring of Chlamys farreri and P. yessoensis

possessed heterosis in both growth and disease resistance. Wang et

al. [10] performed reciprocal hybridization between Peruvian

scallop, A. purpuratus, and bay scallop, A. irradians. The former one

distributes naturally along the Pacific coasts of South America and

was introduced to China 2007 and 2008, while the latter one

distributes naturally along the Atlantic coast from New Jersey up

north to Cape Cod in eastern North America and was introduced

to China in 1982. Both of them showed similar karyotypes

(2n = 32 = 5st + 11t). The hybrids of these two Argopecten scallops

exhibited great increase in production traits as well as some other

interesting new characteristics.

C. farreri and Mimachlamys nobilis are two of the most important

cultivated marine scallop species in China. With the increased

density of mariculture in recent years, the majority of stocks have

demonstrated slow growth and/or experienced extensive mortal-

ities, thereby, posing a serious threat to the Chinese scallop

industry [11,12]. These two scallops are distinct in geographic

distributions and thermal preference. C. farreri is commonly found

along the sea coasts of northern China, Japan, Korea and Sakhalin

in Russia, while M. nobilis distributes along the coasts of the

southern China and Japan. C. farreri lives in temperatures ranging

from 15 to 25uC, but M. noblilis survives with warmer temperature

range, from 18 to 30uC [13]. These two species also have highly

divergent genomes [14,15] and karyotypes [16,17]. Because of this

ecological and genetic heterogeneity, C. farreri and M. nobilis may

potentially represent a good model system for testing the feasibility

of crossbreeding to obtain desirable scallop breeds (i.e., desirable

hybrids with wider thermal tolerances). Recently, single-pair

reciprocal crosses between C. farreri and M. nobilis were artificially

performed. To verify the identity of the F1 hybrids, we used
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genomic in situ hybridization (GISH) to examine the genomic

constitution of the larvae. GISH is one of the most useful

techniques for hybrid identification and was first established for

plants by Schwarzacher et al. [18]. This technique uses the total

genomic DNA from one species as the probes labeled with

fluorescent dyes in in situ hybridization [19,20]. Excess amounts of

unlabeled total genomic DNA from another species are simulta-

neously used as blocking DNA to increase the specificity of probes

and to ensure the discrimination of genomes/chromosomes from

related species. Under a fluorescence microscope, the chromo-

somes with fluorescent - labeled probes differentially compared to

the ones with unrelated DNA sequences. These particular features

of GISH make it a powerful tool for analyzing interspecific and

intergeneric hybrids and allopolyploid species as well as introgres-

sion, addition and substitution lines [20,21].

The objectives of the present study were to examine the

fertilization in the reciprocal hybridization of C. farreri and M.

nobilis and to identity the F1 hybrids from each artificial cross. A

variety of experimental approaches, including gametic fluores-

cence staining, conventional karyotyping and GISH, were applied

to examine the cytological process of fertilization and the genomic

compositions of the F1 hybrids and to evaluate the feasibility of

artificial hybridization between these two scallop species.

Materials and Methods

Artificial hybridization
Sexually mature C. farreri and M. nobilis (approximately two

years old) were collected from the Xunshan scallop hatchery in

Shandong Province, China. C. farreri and M. nobilis were induced

to ovulate and the insemination was performed according to the

method outlined by Wang and Wang [13]. Artificial crosses were

conducted with the following four different combinations: M.

nobilis R 6C. farreri =, C. farreri R 6M. nobilis =, M. nobilis R 6M.

nobilis =, and C. farreri R 6 C. farreri =. All of the crosses were

performed based on a single-pair mating scheme (one male to one

female).

Observation of fertilization by fluorescent staining
The fertilized eggs and developing embryos from each cross

were sampled every 5 minutes from the initial time of the mixture

of sperm and eggs, fixed with 2% glutaraldehyde and 2.5%

paraformaldehyde in phosphate-buffer saline (10 mM PBS,

pH = 7.4) and stored at 4uC until use. Prior to the examination,

the eggs or embryos were stained with Hoechst 33258 (Molecular

Probes) for 5 to 10 minutes in the dark and observed with a Nikon

E-600 fluorescent microscope equipped with an appropriate filter

for Hoechst 33258. Digital images were recorded using a CCD

camera (COHU).

Chromosome preparation and karyotyping
Chromosome preparations from the adult scallops were made

using the protocol established by Wang et al. [17]. To obtain the

chromosomes of the hybrids, the trochophores were collected and

cultured in 0.01% colchicine at room temperature for 2 hours.

The larvae were then exposed to 0.075 M KCl solution for

30 minutes, fixed with Carnoy’s fixative (ethanol:glacial acetic

acid = 3:1), and stored at 220uC until use. The fixed larvae were

dissociated into fine pieces by gentle pipetting in 50% acetic acid

solution and the resulting cell suspension was dropped onto a pre-

heated glass slide and air-dried. The chromosome preparations for

GISH were preserved at 220uC until use. The preparations for

the traditional karyotyping were stained with 5% Giemsa’s

solution in phosphate-buffer (pH = 7.4) for 20 minutes and

photographed using a Nikon E-600 microscope. The karyotype

was determined from more than 10 good metaphase plates and

classified according to the criteria defined by Levan et al. [22].

Genomic in situ hybridization (GISH)
Total genomic DNA from C. farreri and M. nobilis was isolated

from the adductor muscle using a standard phenol/chloroform

extraction protocol [23]. The genomic DNA probes were labeled

with biotin-11-dUTP by nick translation kit (Roche) following the

manufacturer’s protocol. The biotinylated probes were resolved at

a concentration of 5 ng/ml in a hybridization solution of 26SSC,

50% deionized formamide (Shanghai Sangon), 10% dextran

sulfate salt (Shanghai Sangon), 16Denhardt’s (Shanghai Sangon),

0.1% SDS (BBI) and 500 ng/ml salmon testis DNA (Amresco).

Unlabeled blocking DNA was made by autoclaving DNA into

fragments of approximately 100–200 bp in length. The blocking

DNA was added to the probe solution. The ratio of genomic

probes/blocking DNA (P/B) was optimized using a range from

1:10 to 1:30. The identification of the chromosomal composition

in the hybrids was analyzed using GISH, with the protocol

described by Bi and Bogart [24]. The hybridization signals were

detected using a Nikon E-600 fluorescent microscope equipped

with the appropriate filters for FITC and PI. The digital images

were recorded using a CCD camera and analyzed with a Lucia-

FISH Image System under the default settings. At least 50

metaphases were examined for each sample.

Results and Discussion

Fertilization of interspecific hybridization
The fertilization of the four artificial crosses was examined by

the fluorescence staining of the nuclei of the gametes and early

embryos. As an example, the detailed fertilization process of M.

nobilis R 6C. farreri = is shown in Fig. 1. The mature eggs of M.

nobilis and C. farreri were 60–70 mm in diameter and remained at

the metaphase stage of meiosis I. The sperm nuclei produced by

both species were approximately 1 mm in diameter. In both of the

interspecific crosses (M. nobilis R6C. farreri = and C. farreri R6M.

nobilis=), the sperm did not bind to and penetrate the eggs as

rapidly as they did in the two intraspecific crosses (M. nobilis R 6
M. nobilis = and C. farreri R 6C. farreri =). Under the activation of

the dispersed sperm nucleus, the eggs released their first polar

body (PB1) and second polar body (PB2) successively and

completed the meiotic divisions. The male and female pronuclei

were then formed when the PB2 was released. The two pronuclei

expanded and moved towards each other, fused, and initiated the

mitosis of the first cleavage. In both interspecific crosses, a small

portion of the fertilized eggs was found to be misshapen, and most

of these misshapen eggs showed a high mortality rate during

embryogenesis. Polyspermy was not detected during fertilization.

It is probable that the divergent genomes and chromosomes of

C. farreri and M. nobilis cause hybrid lethality and sterility, thereby,

producing a post-zygotic reproductive barrier between the two

species. Furthermore, in many marine invertebrates, fertilization is

accomplished externally. These organisms may have evolved

cellular and molecular mechanisms to ensure species-specificity in

gamete recognition and interactions [25]. However, previous

results showed that such reproductive barriers were not evident in

at least 51% of the hybrids in C. farreri R6M. nobilis = and 82% in

M. nobilis R 6 C. farreri = [26,27]. The observations of the

development of the early embryos and juveniles suggest that the

majority of the F1 hybrids were viable, although it is probable that

they would be sterile at maturity owing to their unbalanced

chromosome numbers. In fact, we found that the time required for

Cytogenetic Examination of Hybrid Scallops
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the recognition and reaction between the heterospecific gametes

was much longer than that found for the intraspecific crosses. This

result suggested that interspecific gametic incompatibility is indeed

present but is imperfect. The extent of the incompatibility also

differed between the two interspecific crosses, as shown by their

different fertilization rates (51% vs. 82%). A differential fertiliza-

tion rate between reciprocal crosses has also been observed in the

artificial hybridization of some fish species [28] and the scallops, C.

farreri and P. yessoensis [29]. A plausible explanation of these

observations might be that there is less compatibility between the

M. nobilis nuclear genome and the C. farreri cytoplasm than

between the C. farreri nuclear genome and the M. nobilis cytoplasm.

Karyotypic and GISH identification of interspecific
hybrids

The karyotype of the offspring from each cross was classified

using the method described by Levan et al. [22]. The karyotype of

M. nobilis was 2n = 32 = 6m+26t (Fig. 2A), and the karyotype of C.

farreri was 2n = 38 = 6m+10sm+22st (Fig. 2B). These results are

consistent with those previously reported [16,17]. The chromo-

somes of both species were generally small with an average of less

than 2 mm in length, and no satellites or secondary constrictions

were detected. The karyotype of M. nobilis was characterized by its

three long, metacentric chromosomes, with relative lengths of

13.03, 11.52 and 7.53, respectively, whereas the relative lengths of

the remaining telocentric chromosomes ranged from 3.66 to 6.67

(Table S1). Compared with M. nobilis, C. farreri didn’t have

telocentric chromosomes, its chromosomes were relatively small,

and the relative lengths of the 38 chromosomes did not vary

drastically. Most of the hybrids in the two interspecific crosses

(70.4% in M. nobilis R 6C. farrer = and 55.4% in C. farreri R 6M.

nobilis =) exhibited 35 chromosomes per cell (Table 1). The

karyotype of the hybrids from both crosses was composed of

6m+5sm+11st+13t (Fig. 2C). The number and morphology of the

chromosomes in these hybrids indicated that they received one

haploid genome from each parent.

With a P/B ratio of 1:10, the GISH technique effectively

distinguished all of the chromosomes inherited from M. nobilis and

C. farreri in the hybrid genomes. The chromosomes from M. nobilis

and C. farreri were identified with distinct fluorescence signals and

confirmed the results obtained by the conventional karyotyping

(Fig. 3). The majority of the hybrids in both crosses contained 35

chromosomes, the sum of the chromosomes number of the haploid

genomes of M. nobilis (n = 16) and C. farreri (n = 19). The

fluorescence signals were not uniform across the chromosomes,

as noted in nearly all of the metaphases that we examined. This

phenomenon was found among the different chromosomes and

also along the same individual chromosomes (Fig. 3). An increased

Figure 1. Cytological observation of the fertilization in M. nobilis R6C. farreri = crosses by fluorescent microscope. (1) Sperm bound
to the egg. (2) Sperm penetrating the egg. (3) Meiotic anaphase I of the egg. (4) Release of the first polar body. (5) Meiotic anaphase II of the egg. (6)
Release of the second polar body; female and male pronuclei are formed. (7, 8) Fusion of female and male pronuclei. (9) Formation of polar lobe and
the first mitotic division. SP: Sperm. CH: Chromosome. SN: Sperm nucleus. PB1: First polar body. PB2: Second polar body. MP: Male pronucleus. FP:
Female pronucleus. PL: Polar lobe. Bar = 20 mm.
doi:10.1371/journal.pone.0027235.g001
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concentration of blocking DNA failed to promote a uniform

hybridization of the probes over the complete length of the

chromosomes. Because GISH is a method based primarily on the

differences in repetitive sequences, this phenomenon might be

initiated by the uneven clustering of repetitive sequences along the

chromosome arms or on different chromosomes in the same cell.

In our experiments, the hybridization signals were found to be

stronger in the chromosomal peri-centromeric and/or centromeric

heterochromatin regions than in the chromosome arms. This

finding could reflect a more rapid rate of evolution and divergence

in the heterochromatin regions [30], where species-specific

repetitive DNA accumulates rapidly in closely related species

[31,32]. As a result, the blocking DNA did not effectively block

these regions. Strong GISH signals were also discovered in the

telomeric and/or peri-telomeric regions of some of the chromo-

somes, especially in C. farreri (Fig. 3B and 3D). Similarly, we

hypothesized that the highly conserved heterochromatin sequenc-

es clustered in these regions may have produced this phenomenon.

Direct evidence for this hypothesis was reported in a sequencing

study of a fosmid library of C. farreri [33] in which various species-

specific DNA satellites were found in the genome. These specific

sequences were mapped to the peri-telomeric regions of 12–13

pairs of chromosomes of C. farreri via fluorescence in situ

hybridization (FISH) [34], a result concordant with the strong

signals that we observed in the GISH experiments.

Rare gynogen-like offspring initiated by the interspecific
cross of M. nobilis R 6 C. farreri =

During the examination of the fertilization of M. nobilis R 6C.

farreri =, we found that a few of the M. nobilis eggs appeared to

proceed to the first cleavage without the incorporation of sperm

(Fig. 4). A similar phenomenon was not detected in either the

intraspecific crosses or in the other interspecific cross, C. farreri R6
M. nobilis =. Although the majority of the F1 hybrids contained 35

chromosomes, approximately 12.7% of the larvae from the M.

nobilis R6C. farreri = cross that we examined showed a karyotype

identical to that of M. nobilis, 2n = 32 = 6m+26t. No haploids were

found. This discovery was further verified by the GISH analysis. In

these metaphase spreads, all of the chromosomes were painted

with the M. nobilis genomic DNA probes (Fig. 5A). For the artificial

crosses, we used a single-pair mating strategy, and this approach

was essential to ensure complete interspecific hybridization and to

prevent contamination by the gametes from unexpected individ-

uals/species. The maternal M. nobilis was carefully examined and

shown not to be a hermaphrodite. This result suggested that these

gynogen-like offspring might be generated by a cryptic mechanism

during interspecific hybridization. We hypothesize that the C.

farreri genome does not contribute to these gynogen-like progeny

and that the sperm from the parental C. farreri may have only

functioned as stimulators to initiate the further development of M.

nobilis eggs (gynogenesis). After activation, the eggs resumed their

first and second meiotic divisions, released two polar bodies, and

proceeded with the process of embryogenesis. The gynogen-like

offspring were also observed in hybrids between C. farreri R 6 P.

yessoensis =, and this observation was explained by the asynchro-

nous behaviors during mitosis and the replacement of the paternal

chromosomes [35].

The artificial induction of gynogenesis in mollusks is of interest

to both commercial aquaculturists and researchers in the study of

developmental biology and genetics [6]. With the exception of the

results obtained by traditional methods, such as cold shock

accompanied by the stimulation with UV-inactivated sperm

[36,37], gynogenesis initiated by interspecific hybridization has

only been reported in unisexual vertebrates [38]. Unisexual

Figure 2. Chromosomes and karyotypes of M. nobilis (A), C.
farreri (B), and the F1 hybrids (C). Bar = 5 mm.
doi:10.1371/journal.pone.0027235.g002

Table 1. Chromosome counts of scallop hybrids and their
parents.

M. nobilis R Chromosome
number

#30 31 32 33 34 35 36 37 $38 total

6 Cell number 5 4 101 3 1 3 2 3 0 122

M. nobilis = Frequency (%) 4.1 3.3 82.7 2.5 0.8 2.5 1.6 2.5 0 100

C. farreri R Chromosome
number

#32 33 34 35 36 37 38 39 $40 total

6 Cell number 2 3 1 2 0 4 97 6 0 115

C. farreri = Frequency (%) 1.7 2.6 0.9 1.7 0 3.5 84.4 5.2 0 100

M. nobilis R Chromosome
number

#30 31 32 33 34 35 36 37 $38 total

6 Cell number 4 3 21 4 7 117 2 3 5 166

C. farreri = Frequency (%) 2.4 1.8 12.7 2.4 4.2 70.4 1.3 1.8 3.0 100

C. farreri R Chromosome
number

#30 31 32 33 34 35 36 37 $38 total

6 Cell number 7 6 5 9 4 62 2 5 12 112

M. nobilis = Frequency (%) 6.2 5.3 4.5 8.0 3.6 55.4 1.8 4.5 10.7 100

doi:10.1371/journal.pone.0027235.t001
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Figure 3. Representative metaphase chromosomes and karyotypes of the F1 hybrids of M. nobilis R6C. farreri = (A, B) and C. farreri R
6M. nobilis = (C, D) examined by GISH. CF: chromosomes from C. farreri. MN: chromosomes from M. nobilis. Chromosomes are painted by FITC

Cytogenetic Examination of Hybrid Scallops
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females may undergo a chromosome self-duplication event during

the last mitosis prior to the meiotic division during oogenesis, a

process termed ‘‘premeiotic endomitosis’’ [38–40]. The eggs are

unreduced after meiotic division and are genetically identical to

their maternal parent. The sperm produced by sympatric sexual

males can, subsequently, activate the further development of the

unreduced eggs [41]. Because no haploids were found in the

hybrid larvae, we speculated that a cryptic chromosome-doubling

event might have occurred prior to the first cleavage. An

alternative hypothesis is that fusion of the female pronucleus with

the PB2 rather than with the sperm nucleus took place in some

eggs. It was surprising that we did not find any triploid in the

offspring. Both mechanisms may be necessary only for the

maintenance of diploidy but could not satisfactorily explain the

rejection of sperm nucleus to increase the ploidy level (2n to 3n),

and the initiation of a gynogenetic mode of development.

Furthermore, if these gynogen-like offspring were derived entirely

from their maternal parent, we would expect that all of the loci in

their nuclear genomes to be homozygous. Further molecular

studies on the F1 hybrids, such as DNA microsatellite diagnoses,

can be used to test this prediction.

Chromosome elimination and rare allopolyploids in the
interspecific hybrids

In contrast with the interspecific cross of M. nobilis R6C. farreri

=, we observed no gynogen-like hybrids of C. farreri R 6M. nobilis

=. However, we found many cases of aneuploidy, with

chromosome number either greater or fewer than the expected

diploid chromosome numbers of the hybrid genome (2n = 35).

About 44.6% of cells from C. farreri R 6 M. nobilis = and 29.6%

from M. nobilis R6C. farreri = were aneuploids, much higher than

the intraspecific cross groups: 17.3% for M. nobilis and 15.6% for

C. farreri, indicating the instability of the hybrid genome. However,

we cannot rule out that some of the aneuploids could also result

from technical shortcomings in chromosome preparation as

described in other shellfish [42,43]. As shown in Fig. 6A,

chromosome elimination and fragmentation in some of the

hybrids were found. In the current study, whole chromosome

eliminations were more commonly observed than the fragmenta-

tions and the majority of the eliminated chromosomes were

derived from the M. nobilis genome rather than the C. farreri

genome according to GISH results. In addition, we found that

more than 16% of hybrid individuals contained metaphases with

chromosome numbers greater than 35 (Table 1) and up to 75 in

some cases. For example, using GISH, we found that 1–2% of the

metaphases consisted of one M. nobilis chromosome set and three

C. farreri chromosome sets (Fig. 6B and 6C). These hybrids appear

to include both diploid and polyploid cells to form a mosaic

genome.

Chromosome abnormality is known to be one of the causes of

hybrid lethality. It is probable that such lethality is induced by a

genetic incompatibility between the paternal genome and

maternal cytoplasm [44]. Chromosome elimination has been

observed in the natural hybrids of some insects, such as the genus,

Nasonia. This outcome might be influenced by the ratio of parental

nuclear genomes and/or cytoplasm and might always cause

chromosomes from one parent to be eliminated by their

asynchronous behaviors during mitosis [45,46]. It is possible that

the chromosome elimination and fragmentations observed in the

present study were associated with a similar mechanism because

the cell cycle of M. nobilis is generally shorter than that of C. farreri

[13]. As a result, the paternal genomic components derived from

M. nobilis were more frequently eliminated during mitosis (Fig. 6A).

Polyploidy, frequently termed ‘‘whole genome duplication’’, is a

major force in the evolution of many eukaryotes, and most

angiosperm species have undergone at least one round of

Figure 4. Observations of gynogenetic eggs derived from the
interspecific cross of M. nobilis R 6 C. farreri =. (1) The egg has
released the first polar body with a sperm binding to it. (2) The egg
proceeds to meiotic anaphase II without incorporating a sperm nucleus.
(3, 4) The egg releases the second polar body without incorporating a
sperm nucleus. SP: Sperm. PB1: First polar body. PB2: Second polar
body. FP: Female pronucleus. Bar = 20 mm.
doi:10.1371/journal.pone.0027235.g004

Figure 5. Chromosomes of a gynogen-like hybrid examined by
GISH. (A) All of the chromosomes are painted green using the M.
nobilis genomic DNA probes. (B) No C. farreri chromosomes or
chromosome segments were found when using the C. farreri genomic
DNA as probes. Bars = 5 mm.
doi:10.1371/journal.pone.0027235.g005

(green) and counterstained by PI (red). In (A, C), the chromosomes originated from M. nobilis are identified in green using the labeled genome DNA
probes from M. nobilis. In (B, D), the chromosomes from C. farreri are identified in green using the labeled genome DNA probes from C. farreri.
Bars = 5 mm.
doi:10.1371/journal.pone.0027235.g003
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polyploidy in their evolutionary history [47]. Allopolyploidy is

prevalent in plants and is usually associated with an obvious hybrid

vigor. It is rare in animals, and is often associated with unisexuality

in vertebrates [38]. In this study, the exact timing and mechanism

of the alloploidization events that we observed are unclear. It is

possible that the allotetraploids are produced by accidental

inhibition of PB1 and subsequent release of one set of

chromosomes as ‘‘PB2’’, or by fusion of the female pronucleus

with PB1 and the male pronucleus. Similar phenomenon has been

documented in C. farreri that PB1 inhibition results in complicated

segregation patterns that lead to the formation of triploids,

tetraploids, pentaploids, and a wide range of aneuploids [48].

Owing to the rare occurrence, cryptic mechanisms, and unknown

fate of the self-chromosome duplications, it is difficult to predict

whether and how such events would influence the performance of

hybrid scallops.

In conclusion, our study demonstrates that interspecific

hybridization between two scallops is experimentally possible.

The majority of the hybrid larvae from the two crosses were viable

and contained the expected chromosome constituents. Gynogens,

allopolyploids and aneuploids were detected in a small portion of

the offspring, but their rare occurrence implies that they are

unlikely to play a major role in contributing to the overall heterosis

of the hybrids. Although these two species can interbreed

reciprocally, whether their offspring will achieve heterosis or will

actually be subject to hybrid depression requires further

investigation. For example, future studies should compare the

growth and survival rate, shell size, body weight, resistance to

pathogens and temperature fluctuations, and other desired

characteristics between the hybrids and their parents.
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35. Lü ZM, Yang AG, Wang QY, Liu ZH, Zhou LQ (2006) Cytogenetic analysis on

the hybrids from reciprocal crosses of Chlamys farreri 6Patinopecten yessoens. High

Tech Lett 16(8): 853–858.

36. Wada KT, Komaru A, Uchimura Y (1989) Triploid production in the Japanese

pearl oyster, Pinctada fucata martensii. Aquaculture 76: 11–19.

37. Guo XM, Cooper K, Hershberger WK, Chew KK (1991) Production of

tetraploid embryos in the Pacific oyster, Crassostrea gigas: comparison among

different approaches. J Shellfish Res 10: 236.

38. Avise JC (2008) Clonality: The Genetics, Ecology, and Evolution of Sexual

Abstinence in Vertebrate Animals. New York: Oxford University Press. pp

87–96.

39. Macgregor HC, Uzzell TM (1964) Gynogenesis in salamanders related to

Ambystoma jeffersonianum. Science 143: 1043–1045.

40. Bogart JP, Bi K, Fu J, Noble D, Niedzwiecki J (2007) Unisexual salamanders

(genus Ambystoma) present a new reproductive mode for eukaryotes. Genome 50:

119–136.

41. Dawley RM, Bogart JP, eds (1989) Evolution and Ecology of Unisexual

Vertebrates. NY State Mus Bull 466, Albany. 301 p.

42. Zhao Y, Bao ZM, Bi K, Huang XT, Wang J, et al. (2006) Karyotypes of hybid

scallop (hybridizing cross the female Patinopecten yessoensis with the male Chlamys

farreri) and their parents. Acta Oceanol Sin 28(1): 100–105.

43. Cai MY, Ke CH, Luo X, Wang GZ, Wang ZY, et al. (2010) Karyological studies

of the hybrid larvae of Haliotis disversicolor supertexta female and Haliotis discus discus

male. J Shellfish Res 29: 735–740.

44. Fujiwara A, Abe S, Yamaha E, Yamazaki F, Yoshida MC (1997) Uniparental

chromosome elimination in the early embryogenesis of the inviable salmonid

hybrids between masu salmon female and rainbow trout male. Chromosoma

106: 44–52.

45. Breeuwer JAJ, Werren JH (1990) Microorganisms associated with chromosome

destruction and reproductive isolation between two insect species. Nature 346:

558–560.

46. Reed KM, Werren JH (1995) Induction of paternal genome loss by the paternal-

sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): a

comparative study of early embryonic events. Mol Reprod Dev 40: 408–418.

47. Lim KY, Soltis DE, Soltis PS, Tate J, Matyasek R, et al. (2008) Rapid

Chromosome Evolution in Recently Formed Polyploids in Tragopogon (Aster-

aceae). PLoS ONE 3(10): e3353.

48. Yang HP, Zhang FS, Guo XM (2000) Triploid and Tetraploid Zhikong Scallop,

Chlamys farreri Jones et Preston, Produced by Inhibiting Polar Body I. Mar

Biotechnol 2: 466–475.

Cytogenetic Examination of Hybrid Scallops

PLoS ONE | www.plosone.org 8 November 2011 | Volume 6 | Issue 11 | e27235


