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Abstract 

Background:  Despite recent advances in cellular cryo-electron tomography (CET), 
developing automated tools for macromolecule identification in submolecular 
resolution remains challenging due to the lack of annotated data and high structural 
complexities. To date, the extent of the deep learning methods constructed for this 
problem is limited to conventional Convolutional Neural Networks (CNNs). Identifying 
macromolecules of different types and sizes is a tedious and time-consuming task. In 
this paper, we employ a capsule-based architecture to automate the task of macro-
molecule identification, that we refer to as 3D-UCaps. In particular, the architecture is 
composed of three components: feature extractor, capsule encoder, and CNN decoder. 
The feature extractor converts voxel intensities of input sub-tomograms to activities of 
local features. The encoder is a 3D Capsule Network (CapsNet) that takes local features 
to generate a low-dimensional representation of the input. Then, a 3D CNN decoder 
reconstructs the sub-tomograms from the given representation by upsampling.

Results:  We performed binary and multi-class localization and identification tasks on 
synthetic and experimental data. We observed that the 3D-UNet and the 3D-UCaps 
had an F1−score mostly above 60% and 70%, respectively, on the test data. In both 
network architectures, we observed degradation of at least 40% in the F1-score when 
identifying very small particles (PDB entry 3GL1) compared to a large particle (PDB 
entry 4D8Q). In the multi-class identification task of experimental data, 3D-UCaps had 
an F1-score of 91% on the test data in contrast to 64% of the 3D-UNet. The better F1
-score of 3D-UCaps compared to 3D-UNet is obtained by a higher precision score. We 
speculate this to be due to the capsule network employed in the encoder. To study the 
effect of the CapsNet-based encoder architecture further, we performed an ablation 
study and perceived that the F1-score is boosted as network depth is increased which 
is in contrast to the previously reported results for the 3D-UNet. To present a reproduc-
ible work, source code, trained models, data as well as visualization results are made 
publicly available.

Conclusion:  Quantitative and qualitative results show that 3D-UCaps successfully 
perform various downstream tasks including identification and localization of macro-
molecules and can at least compete with CNN architectures for this task. Given that 
the capsule layers extract both the existence probability and the orientation of the 
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molecules, this architecture has the potential to lead to representations of the data that 
are better interpretable than those of 3D-UNet.

Keywords:  Biomedical imaging, Cellular cryo-electron tomography, Macromolecule 
identification, Deep learning, Capsule network

Introduction
Understanding biological processes inside a single cell requires detailed knowledge of 
native structures and the spatial distribution of macromolecular complexes. Although 
recent advances in cellular cryo-electron tomography (CET) enable researchers to per-
form 3D visualization of such complex structures in sub-molecular resolution and close 
to their native state, a lack of annotated data hinders them from developing automated 
segmentation tools for these structures. Localizing and identifying macromolecular 
structures in crowded cell environments using fully automated approaches like deep 
learning (DL) models is not fully explored. Figure 1 illustrates the problem of identifying 
such complex structures. In essence, most of the proposed architectures [1–3] are lim-
ited to Convolutional Neural Networks (CNN) requiring large-scale training data sets 
annotated by time-consuming user interventions.

Currently the standard method for macromolecule (particle) localization and identi-
fication is template matching (TM) [4]. In TM the whole tomogram is scanned using 
a template density map of the desired molecule and a cross-correlation score is com-
puted for every voxel in the volume. The most highly ranked cross-correlation scores are 
considered possible particle locations on which sub-volumes can be extracted for down-
stream tasks like classification and sub-tomogram averaging. The drawbacks of template 
matching include high computational complexity and difficulties in identification of par-
ticles with similar structure.

Various research areas in computer vision like medical imaging have been revolution-
ized by DL approaches. Recently, several fully automated 2D approaches were proposed 

Fig. 1  Visualization of macromolecule localization for proteasomes and ribosomes in a sample tomogram of 
real data set
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for macromolecule identification by different CNN architectures. The first proposed 
method, DeepPicker, is a 2D CNN with seven layers [5]. The approach includes four pre-
processing steps that score, clean, filter, and sort the 2D micrographs. Then, the CNN 
model is trained using the micrographs and the results of the network are passed through 
the aforementioned four-step pre-processing stage again. Later, DeepCryoPicker [3] was 
proposed that has thirteen layers and is trained using small sub-regions extracted from 
2D micrographs. In post processing, the sub-regions are stitched together to generate 
the complete micrograph. Other supervised algorithms include DeepEM [6], Topaz [7] 
and crYOLO [8]. The former uses the positive-unlabeled learning technique to train a 
2D CNN for detecting non-globular asymmetric particles. All these previous models 
were developed for single particle analysis where the purified proteins are imaged with 
the transmission electron microscope, resulting in a large number of 2D images each 
containing thousands of particles. In CET, however, possible target particles need to be 
identified in the crowded 3D environment of real cells and from a limited number of 
tomograms.

In a recent work, Moebel et al. proposed the DeepFinder model [2], which employs the 
3D-UNet architecture [9] for macromolecule identification in CET images. The model 
is trained using 3D sub-volumes of the tomograms centered on individual molecules. 
To validate their model the authors used the synthetic SHREC’19 data set [10] with 
10 tomograms plus three experimental data sets consisting of 50, 4, and 5 tomograms, 
respectively. They report that the model performs better for multi-class identification 
scenarios than for binary classification. Similar to previous research works [1, 3], they 
study the F1 score evolution with respect to the number of particles in the training set 
and report that the performance degrades when the number of annotated particles in 
the tomograms is too low. Also, it is pointed out that binary identification of macromol-
ecules using a limited data size is challenging. Other 3D macromolecule identification 
algorithms include the one developed by Che et al. [1] based on the Deep Small Recep-
tive Field [11] and CB3D [12] models. CNN architectures are known to be data-hungry. 
Despite the breakthroughs in data acquisition techniques, preparing a CET data set with 
a reasonable number of particles as samples to adjust the network weights has remained 
a bottleneck in this field mainly due to the time-consuming process of annotation.

Motivated by the promising previous results [1, 2], we employ a new 3D DL-based 
architecture based on CapsNet [13], that is known to be data-efficient [14, 15]. The 3D 
version of CapsNet was proposed by Zhao et al. [16]. Later, Nguyen et al. [17] replaced 
the encoder section of the 3D-UNet with a 5-layer 3D CapsNet to perform MRI image 
segmentation. This model is called 3D-UCaps and has three main components: a feature 
extractor, an encoder with five layers of 3D capsules, and a decoder consisting of five 
layers of 3D convolutions. Here, we modify the 3D-UCaps structure to perform mac-
romolecule identification and segmentation. Our experiments and visualization results 
show that the model performs successfully in both binary and multi-class macro-mole-
cule identification by learning general features like texture and geometrical shapes of the 
particles extracted by the encoder.

The main contributions of this study are two-fold: First, a deeper neural network archi-
tecture is introduced that successfully performs multi-class and binary molecule identi-
fication on the test data. Second, a CapsNet architecture is used to improve multi-class 
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and binary classification when having a limited amount of data. Here, data are consid-
ered to be limited if they contain less than 10,000 annotated particles.

The rest of the paper is organized as follows: In the first section, we briefly explain data 
sets and models employed for macromolecule identification and localization. In the pro-
ceeding section, we evaluate the model through various experiments. This is followed 
by presenting numerical and visual results. Finally, we discuss the limitations and future 
work of the research line.

Materials and methodology
Data set

We employed two data sets to perform our experiments. The first is an experimental 
data set and is composed of four tomograms, each annotated for two macromolecules, 
namely 70S ribosomes from E. coli, and 20S proteasomes from T. acidophilum, respec-
tively. Figure 2 illustrates the density maps of the particles used in our study.

The original voxel dimensions of the tomograms were 3712× 3712× 1392 with a 
voxel size of 1.1 Å. For all experiments reported here, tomograms were down-sampled 
to 410× 410× 154 voxels to yield an isotropic voxel size of 10  Å. Down-sampling is 
needed to increase the receptive field such that the neural network can see even large 
macromolecules in their full extent. In addition to down-sampling, a low-pass Gauss-
ian filter [18] is applied to the tomograms. Tomograms were reconstructed from tilt 
series acquired in the angular range of ±60◦with a 3◦ increment. The expert annotation 
was obtained by applying template matching followed by multi-ref classification [19] in 
STOPGAP [20]. Table 1 shows the distribution of the particle classes over all tomograms 
in the experimental data set. For more detail please see Additional file 1. The experimen-
tal data will be available for research purposes upon request and it will be made publicly 
available on EMPIAR database in near future.

Fig. 2  From Left to Right the density maps of the particles used in this paper are: Proteasome (5fmg), 
Ribosome (4v4r), Eukaryotic Chaperonin TRiC/CC (4d8q), Rubisco (1bxn), and ATPase domain of Ssb1 
Chaperone (3gl1)

Table 1  Distribution of proteasomes and ribosomes in the experimental data set

T1 T2 T3 T4 Total

Proteasomes (5FMG) 327 314 323 281 1245

Ribosomes (4V4R) 196 176 206 168 746

Total 523 490 529 449 1991
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The second data set consists of the 10 simulated tomograms that have been released 
for the SHREC’19 challenge by the University of Utrecht [10]. The data set contains 12 
different molecules of different size and shape. The average number of molecules per 
tomogram is 208 per class. In order to have a fair comparison of the accuracy and F1 
scores between the two data sets, we selected three particles that cover large, medium-
sized, and tiny macromolecules. The size of the simulated tomograms is 512× 512× 512 
voxels. No down-sampling or denoising was applied to the tomograms. Table 2 shows 
the number of particles per tomogram in the SHREC’19 data set.

Method

In order to train the networks, pairs of tomograms and ground truth labels are needed. 
In the simulated data, the exact particle locations are known while in the experimental 
data such coordinates are provided by an expert. Similar to Moebel et  al. [2], we use 
sphere-shaped masks to generate ground truth labels, that is, 3D spheres enclosing each 
macromolecule instance at the respective location in the tomogram with a radius cor-
responding to the size of the target macromolecule. The main drawback of sphere-shape 
masks is that they add a certain amount of label noise to the ground truth. However, 
we selected this mask generation strategy in order to show the robustness of our model 
against label noise in the training data. Example of a generated mask using our devel-
oped GUI is shown in Fig. 3.

The first set of experiments is meant to evaluate the proposed method for binary and 
multi-class particle localization and identification. To do so, we generate training data 
sets for different numbers of classes. For the experimental data, we generate two binary 
and one multi-class subset, denoted as PT-BG, RB-BG, and PT-RB-BG, where PT, RB, 
and BG stand for Proteasome, Ribosome, and Background, respectively. As mentioned 
before, for the SHREC’19 data set, we use only three classes of macromolecule out of 
the available 12 classes. We selected 4D8Q, 1BXN, and 3GL1 as representatives of large, 
medium-sized, and tiny particle classes. Here, we refer to these binary and multi-class 
subsets as 4D8Q-BG, 1BXN-BG, 3GL1-BG, and 4D8Q-1BXN-3GL1-BG, respectively. 
We keep 17 % of the total particles for validation by applying 6-fold cross-validation on 
the training data; no data augmentation is used.

We chose DeepFinder1 as the model for numerical comparison as this can be con-
sidered state of the art. DeepFinder is based on the UNet structure that employs the 
encoder-decoder paradigm with skip connections. The encoder is a down-sam-
pling network component employing max-pooling and convolution layers to extract 

Table 2  Distribution of macromolecular particles in the SHREC’19 data set

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 Total

4D8Q 239 180 222 207 198 217 210 207 200 210 2090

1BXN 198 205 213 241 209 215 202 197 206 220 2106

3GL1 207 235 195 221 203 213 220 196 201 191 2082

Total 644 620 630 669 610 645 632 600 607 621 6278

1  https://​gitlab.​inria.​fr/​serpi​co/​deep-​finder.

https://gitlab.inria.fr/serpico/deep-finder
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general features of the samples while the decoder is an up-sampling component using 
the extracted features, skip connections and upconvolution to output high-resolution 
label maps. It consists of two down-/up-sampling layers in both components with filters 
of size 3× 3× 3 . The number of network parameters is ∼ 903 K. We train this network 
using all the aforementioned binary and multi-class data sets for macromolecule identi-
fication and localization.

Next, we employed the 3D-UCaps to define a network architecture for the same task, 
that is, macromolecule identification and localization. Figure 4 shows the block diagram 
of the network with more details about kernel sizes and number of layers.

Similar to DeepFinder, 3D-UCaps2 is based on a UNet structure with a 5-layer 
encoder-decoder component. However, 3D-UCaps is different in that it uses a 3D Cap-
sNet in the encoder part instead of a classical CNN architecture. In addition, the net-
work is initialized with a feature extractor component that converts voxel intensities to 
activities of local features so that it can be used by the primary capsules of the encoder. 
The 3D capsules in the encoder then extract the contextual information. The decoder 
benefits from skip connections and batch normalization layers. We set the size of the 
kernels in the feature extractor to be 5× 5× 5 and the output to be a feature map of size 
h× w × d × 64 . These outputs are reshaped into grids of h× w × d , each representing a 
64D feature vector. The convolutional layers of the decoder have filters of size 3× 3× 3 . 

Fig. 3  Mask generation

2  https://​github.​com/​VinAI​Resea​rch/​3D-​UCaps.

https://github.com/VinAIResearch/3D-UCaps


Page 7 of 16Hajarolasvadi et al. BMC Bioinformatics          (2022) 23:360 	

The total number of trainable parameters is ∼ 3M . It should be noted that an equivalent 
CNN architecture with the same amount of parameters would require a larger amount 
of data to be fully optimized. All training experiments were performed on an Nvidia 
Quadro RTX 6000 GPU. To present a reproducible work, our specific implementations 
of these methods and results are made publicly available3,4.

The main motivation to adopt this architecture is that CNN performance degrades 
when an image holds a slightly different orientation of the same object compared to the 
images used during training. In other words, in order to detect macromolecules from 
any viewpoint, we must have all those viewpoints within the training data because the 
prior knowledge of the geometrical relationships cannot be modeled in the network 
architecture. That is, a CNN-based model cannot capture the spatial relationships of 
the entities. This is mainly due to stacking layers on top of each other to build abstract 
context from low-level features. However, capsule-based architectures are robust toward 
geometrical transformations by encapsulating multiple layers within a capsule and cap-
turing internal structures of the entities. As mentioned before, one challenge in particle 
identification using CET images is that particles can appear in many varying orienta-
tions. Since CapsNet is viewpoint-invariant, it can handle the identification problem 
requiring fewer varying viewpoints of the same particle.

CNNs use replicas of extracted features and max-pooling to output scalar feature 
detectors which are replaced by vector-output capsules and routing-by-agreement 
in CapsNet. Here, the learned features are still replicated across the space by having 
higher-level capsules covering larger regions of the image. However, unlike max-pooling, 
information about exact location of the particle is not discarded but place-coded. This 
is achieved using a routing algorithm that prevents exponential depth growth by choos-
ing which capsules will be activated in the next layer. Capsules of each layer apply a set 
of learned filters to detect features and orientation of a particle. If the capsules agree 

Fig. 4  Block diagram of the 3D-UCaps network architecture. Numbers indicate capsule dimensions and 
channels at the encoder and decoder, respectively

3  https://​github.​com/​noush​inha/​DeepET.
4  https://​github.​com/​noush​inha/​3D-​UCaps.

https://github.com/noushinha/DeepET
https://github.com/noushinha/3D-UCaps
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strongly on particle existence, then the output is propagated to the most relevant cap-
sules of the next layer. The route of activated capsules represents a low-level-to-high-
level hierarchy of the particles. This allows to have architectures with deeper or higher 
number of down-/up-sampling layers. The features learned by CNNs contain only the 
information about existence and texture features aggregated through lower-level layers 
to the higher-level ones. This leads to the problem that CNNs do not generalize well 
to unseen geometrical changes of the input image. In CapsNets, fine-grained informa-
tion is retained through learned features aggregated in higher-level layers. The outputs 
of each capsule is a high-dimensional vector encoding presence and orientation of the 
particles. In fact, CapsNets use the non-linear squash function to represent the probabil-
ity that the particle is present. This function can be written as:

Here, the total input and vector output of capsule j is indicated by sj and vj , respectively. 
Let W ij be the weight matrix and ui be the vectors predicted by the layer below. Then, sj 
is calculated as a weighted sum by:

where cij are coupling coefficients.
It is also important to mention that CNNs have difficulty in generalizing to new view-

points when trained on limited amount of data [13], while CapsNets convert intensi-
ties into vectors of instantiating parameters and then apply transformation matrices to 
overcome that problem. We modified the architecture slightly by replacing the dilated 
convolutions in the feature extractor with regular ones as the spreading out of the recep-
tive field was deteriorating the result. The cross-entropy (CE) loss is replaced by joint 
Dice and CE loss to achieve a better classification performance. Also, instead of using 
Masked Mean-Squared Error for reconstruction loss, we used weighted cross-entropy 
that is reported to be more successful in case of having imbalanced samples [2].

Experimental results and analysis
Experiments

Hyper-parameters like batch size and optimizer were set to similar values for both net-
works. Other parameters like number of epochs mentioned here were defined based on 
the network convergence. The models were computationally trained with the ADAM 
optimizer algorithm with a learning rate of 0.0001. The batch size was set to 24 and the 
patch size to 64 × 64 × 64 voxels. Due to the small size of the macromolecules within 
the large tomograms, there is a high class imbalance between the particle classes and the 
background class. Only around 1 % of the voxels represent macromolecules while the rest 
are background voxels [2]. To address this problem, networks were trained using train-
ing patches extracted using the macromolecule locations. Networks were trained for 300 
epochs with an early stopping criterion and it was always the case that an under-trained 
3D-UCaps with early stopping converged in less than 300 epochs.

vj =
�sj�

2

1+ �sj�
2

sj

�sj�

sj =

i

cijW ijui,
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Figure  5 depicts the learning curves for binary and multi-class training of 3D-UNet 
and 3D-UCaps on the real data. The two models exhibited similar rate of decay, however, 
the 3D-UNet converged to a lower average loss for PT-BG data set than the 3D-UCaps 
(0.03 vs. 0.06). For the PT-RB-BG dataset, 3D-UCaps achieved a significantly lower aver-
age loss (0.12 vs. 0.20). The average loss is comparable when training is done using the 
RB-BG data set. In this case, 3D-UCaps and 3D-UNet were optimized with loss values of 
0.10 and 0.09, respectively. The learning curve represents the segmentation quality and 
generalization capabilities of each model while the F1 scores represented in the next sec-
tion quantify the localization performance.

In order to assess the quality of a prediction, the F1 score is commonly used. It is based 
on two other measures, Precision and Recall. Precision is the ratio of correctly predicted 
positive observations and total predicted positive observations. It helps to understand 
how often the model correctly predicts positive. This metric is important when the cost 
of predicting a false positive is high. Recall, on the other hand, is an important factor 
when the cost of predicting false negatives is high. In fact, Recall presents the ratio of 
correctly predicted positive observations and all observations in the positive class. In 
order to have a correct interpretation of the performance, F1 score is introduced as a 
metric that considers both Precision and Recall. This score is the weighted average of 
Precision and Recall and takes both false positives and false negatives into account. 
Thus, it is reliable when we have an imbalanced class distribution. These metrics are 
defined as follows:

3D‑UNet

DeepFinder (3D-UNet) is trained for multi-class and binary macromolecule identi-
fication. Moebel et al. used four different data sets [2]. The fourth data set had the 
same number of tomograms and the lowest number of annotations and classes as 

Pr =
TP

TP + FP
, Re =

TP

TP + FN
, F1 = 2×

Pr× Re

Pr+ Re

Fig. 5  Learning curve for the 3D-UCaps and 3D-UNet network architectures using PT-BG, RB-BG, and 
PT-RB-BG of the experimental data set
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our real data set. As a result, we followed almost the same training scheme as Moe-
bel et al. Table 3 compares F1 score, Precision and Recall for training the networks 
under multi-class and binary macromolecule identification using real and simulated 
data. Results are presented for both validation and test data. A large gap between the 
validation and test results suggests an over-fitting problem.

Training 3D‑UCaps

Similarly, 3D-UCaps is trained on real and simulated data under multi-class and 
binary classification scenarios. In general, the multi-class scenario provided a better 
performance, which is in line with the available results in the literature [2, 3]. Similar 
to 3D-UNet, we present the F1 score, Precision and Recall for training 3D-UCaps in 
Table  4. Training is done with similar hyper-parameters mentioned in the Experi-
ments section.

Table 3  3D-UNet performance comparison for F1 score, Precision (Pr.), Recall (Re.) with respect to the 
number of classes

†Training patch size is 32× 32× 32 . More details is in “Case Study” section

Validation Test

F1 Pr. Re. F1 Pr. Re.

Real data

PT-BG 0.91 0.89 0.92 0.79 0.77 0.81

RB-BG 0.73 0.64 0.85 0.60 0.54 0.67

PT-RB-BG 0.73 0.70 0.77 0.64 0.61 0.68

SHREC’19

4D8Q-BG 0.93 0.89 0.97 0.93 0.90 0.96

1BXN-BG 0.83 0.73 0.95 0.82 0.71 0.98

3GL1-BG† 0.50 0.39 0.71 0.29 0.22 0.42

4D8Q-1BXN-3GL1-BG 0.80 0.74 0.87 0.69 0.64 0.74

Table 4  3D-UCaps performance comparison for F1 score, Precision (Pr.), Recall (Re.) with respect to 
the number of classes

†Training patch size is 32× 32× 32 . More details is in “Case Study” section

Validation Test

F1 Pr. Re. F1 Pr. Re.

Real data

PT-BG 0.93 0.95 0.91 0.74 0.77 0.71

RB-BG 0.83 0.89 0.77 0.68 0.76 0.62

PT-RB-BG 0.93 0.96 0.90 0.91 0.95 0.87

SHREC’19

4D8Q-BG 0.92 0.95 0.89 0.92 0.95 0.88

1BXN-BG 0.88 0.90 0.85 0.86 0.89 0.82

3GL1-BG† 0.51 0.55 0.47 0.32 0.26 0.41

4D8Q-1BXN-3GL1-BG 0.86 0.91 0.81 0.71 0.79 0.64
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Comparison and analysis

From Tables  3 and  4, it can be seen that both models show a robust performance 
regardless of type of data (real or simulated) being used for training. However, regard-
ing the difference between the F1 scores of validation and test sets, we can observe 
that the experimental data show larger performance degradation than the artificial 
data. This could be explained by incorrect labels generated during annotation and 
lower signal-to-noise ratio of the experimental data set. In particular, there were dif-
ferences of 0.19 and 0.13 between F1 scores of validation and test sets of PT-BG data 
set for 3D-UNet and 3D-UCaps, respectively.

A close F1 score of validation and test data demonstrates a successful learning pro-
cedure that relies on general features such as geometrical shapes and textures. In 
general, we observed that the F1 scores between 3D-UNet and 3D-UCaps were close. 
However, we can see that the slightly higher F1 score of 3D-UCaps often coincides 
with a higher Precision score (Bold in Table 4). This can be seen more prominently 
when we look at pixel-wise predictions on the individual tomograms. To support this 
observation, we overlapped a representative predicted mask with a ground truth mask 
to evaluate the True Positives (TP), False Positives (FP), False Negatives (FN), and 
True Negatives (TN) using pseudo colors. We noticed that the 3D-UCaps predicted 
more TP pixels than the 3D-UNet (see Figs. 6 and 7, subregion 2). The 3D-UNet, in 
contrast, predicted more FN pixels which causes a reduction of the overall F1 score 
(see Figs. 6 and 7, subregion 1). By further investigation of the predicted masks, we 
also observed that in general the mask region was over-predicted in the 3D-UNet (see 
Fig. 7, rings of FP pixels), whereas the 3D-UCaps predicted a subregion of the ground 
truth mask (see Fig.  6, rings of FN pixels). We speculate that the better precision 

Fig. 6  Representation of a predicted mask overlapped with a ground truth mask (3D-UCaps)

Fig. 7  Representation of a predicted mask overlapped with a ground truth mask (3D-UNet)
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of 3D-UCaps compared to 3D-UNet is due to the capsule network employed in the 
encoder.

The aforementioned interpretation is justified by illustrating the area under the preci-
sion-recall curve (AUPRC) in Fig. 8. AUPRC is another performance metric for imbal-
anced data. Here the baseline in AUPRC curve is defined as the fraction of positive 
pixels over total number of pixels.

Visualization

Figure 9 presents a visualization of the results for the test tomogram of the multi-class 
scenario in experimental set. Visualization on the validation data on other scenarios and 
data set are provided within the material of the code implementation. Prediction is per-
formed on the patches with an overlap of 25 voxels and stitched afterward to generate 
the whole tomogram. It is important to note that naturally, the stitching process pro-
duces sharp edges and other artifacts around the borders that is addressed by averaging 
on those regions.

Architecture evaluation

In this section, we analyse the model performance by applying slight changes to the 
3D-UCaps architecture. We study the effect of reducing the number of layers on the per-
formance. Moebel et al. [2] report that using more than two down-sampling stages does 
not improve the result. Originally, 3D-UCaps has 5 layers. In order to study such effect 
within the 3D-UCaps structure, we discarded 3 layers from the encoder and decoder. 

Fig. 8  Precision-recall curve, left: 3D-UCaps, right : 3D-UNet 

Fig. 9  Visualization of the label maps for the multi-class scenario; From left to right: ground truth, 3D-UNet, 
and 3D-UCaps results. Red spheres indicate proteasome macromolecules while blue represents ribosomes
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Then, we used the set of bench-marked parameters to train the network on the experi-
mental data. Figure 10 compares the results of the 5- and 2-layers 3D-UCaps using the 
validation set of the experimental data. Our experimental results show that the 5-layer 
network always performs better than the 2-layer network.

Ablation study

Originally, 3D-UCaps uses dilated convolution in the feature extractor component. 
Dilated convolution modifies convolution kernels by defining a spacing between the val-
ues in the kernel. The main reason behind using dilated convolution is having a larger 
receptive field without extra computational cost. We conducted two experiments to 
study the effect of dilated convolution by replacing the dilated convolutions with regular 
ones. The enlarging behaviour of the dilated kernels appeared to be destructive by reduc-
ing the F1 scores in multiclass experimental data from 91% to 86%. Also, enlarging the 
kernel size of convolution kernels in the encoder from 3× 3× 3 to 5× 5× 5 degraded 
the performance from 91% to 83%. The deterioration of the result is more dramatic in 
the case of binary classification of small particles.

Case study

We also studied the performance of the models considering localization of tiny particles 
like 3GL1. This is particularly of high importance as it is reported that localization of 
particles with small radius in binary classification scenarios is extremely challenging [2]. 
We trained the 3D-UCaps using patches of size 643 and 323 where the former is the rea-
sonable size for a particle with radius 13 located at the center of the patch. We observed 
that choosing an appropriate patch size based on the probe particle is playing an impor-
tant role. Reducing the patch size from cubes of 643 voxels to 323 improved the perfor-
mance considerably. However, the patch size reduction has a limitation considering the 
kernel sizes of the network. Once, we decreased the patch dimension to 163 , the network 
performance drops again due to having large kernels. Reducing the patch size for tiny 
particles helps reducing the background noise fed to the system at the training time. Fig-
ure 11 compares the results of 3D-UCaps with respect to training patches of size 64, 32, 
and 16.

Fig. 10  Comparison of the F1 scores between the 5- and 2-layers 3D-UCaps
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Performance

As mentioned before, all training procedures were achieved using an Nvidia Quadro 
RTX 6000 GPU, by using Cuda 11 and cuDNN 8. In Table  5, we display the average 
training and inference time required to train and test the models using the simulated 
data and the set of hyper-parameters reported in the Experiments section.

Discussion
In this study, a new deep learning approach based on capsule networks is employed for 
macromolecule segmentation in CET. The network consists of a U-Net architecture 
where the encoder component is a 3D CapsNet while the decoder is based on the con-
ventional 3D CNN applying the volumetric segmentation. Also, a feature extractor is 
used for initializing the primary capsules of the encoder. The performance of the net-
work is better than the 3D-UNet in multi-class scenarios and the results of binary clas-
sification is also slightly improved.

While the amount of data used for training both models were similar, the number 
of trainable parameters in 3D-UCaps is larger than that of 3D-UNet. This means we 
achieved a deeper architecture that can be trained with limited amount of data while 
preserving the performance in terms of accuracy and F1 score. Our ablation study 
supports the idea of having higher number of layers is possible by using Capsule lay-
ers in the encoder component. Having deeper architectures is significant because low-
level extracted features merely reveal abstract properties like edges about the detected 
objects. However, it is the high-level extracted features that present more complex con-
cepts like geometrical shapes, locality, and hierarchy of the object with respect to its 

Fig. 11  Comparison of the F1 scores for training 3D-UCaps using patches of size 64× 64× 64 , 32× 32× 32 , 
and 16× 16× 16

Table 5  3D-UCaps performance comparison for F1 score, Precision (Pr.), Recall (Re.) with respect to 
the number of classes. h and m stand for hour and minutes, respectively

3D-UNet 3D-UCaps

Training (h) Test (m) Training (h) Test (m)

Multi-class 20 6 48 14

Binary 7 6 15 11
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neighborhood region. Another advantage of the 3D-UCaps network are the small dif-
ferences between validation and test results that show that no overfitting occurred. As 
Capsule layers extract both the existence probability and the orientation of the object, 
such architectures are of high importance in downstream tasks such as macromolecule 
reconstruction or submolecular unit detection.

A slight drawback of the 3D-UCaps model is the high computational time for train-
ing, which is approximately twice as high compared to 3D-UNet. However, the inference 
time is reasonable once the pre-trained model is available.

Future work includes reducing the model complexity and computational cost of the 
training, improving segmentation result on the test data, as well as studying other hybrid 
architectures that use CapsNet for tasks where extracted orientation features plays an 
important role.
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