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In the last 20 years, fragment-based drug discovery (FBDD) has become a popular and
consolidated approach within the drug discovery pipeline, due to its ability to bring several
drug candidates to clinical trials, some of them even being approved and introduced to the
market. A class of targets that have proven to be particularly suitable for this method is
represented by kinases, as demonstrated by the approval of BRAF inhibitor vemurafenib.
Within this wide and diverse set of proteins, protein kinase CK1δ is a particularly interesting
target for the treatment of several widespread neurodegenerative diseases, such as
Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis.
Computational methodologies, such as molecular docking, are already routinely and
successfully applied in FBDD campaigns alongside experimental techniques, both in
the hit-discovery and in the hit-optimization stage. Concerning this, the open-source
software Autogrow, developed by the Durrant lab, is a semi-automated computational
protocol that exploits a combination between a genetic algorithm and a molecular docking
software for de novo drug design and lead optimization. In the current work, we present
and discuss a modified version of the Autogrow code that implements a custom scoring
function based on the similarity between the interaction fingerprint of investigated
compounds and a crystal reference. To validate its performance, we performed both a
de novo and a lead-optimization run (as described in the original publication), evaluating the
ability of our fingerprint-based protocol to generate compounds similar to known CK1δ
inhibitors based on both the predicted binding mode and the electrostatic and shape
similarity in comparison with the standard Autogrow protocol.
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GRAPHICAL ABSTRACT |

1 INTRODUCTION

Protein kinase CK1δ is a Ser/Thr protein kinase belonging to the
casein kinase 1 family. In mammals, seven distinct genes
encoding for casein kinase proteins are present, each
producing a different isoform (α, β, γ1, γ2, γ3, δ, and ε)
(Knippschild et al., 2005). CK1 family proteins use exclusively
ATP as a phosphate source for their kinase activity, which is
carried out by the protein in its monomeric form. Each isoform is
constitutionally active and does not require the presence of a
cofactor to exert its activity (Knippschild et al., 2014).

From a biological function point of view, the members of this
family have been historically related to different physiological
mechanisms, such as cell replication (Xu et al., 2019), DNA repair
(Behrend et al., 2000), and circadian rhythm (Lee et al., 2009).

From a structural perspective, the members of the CK1 family
are characterized by the typical bilobed structure of the globular
Ser-Thr kinase proteins, with the N-term lobe consisting mainly
of β-sheets, and a larger C-term lobe, constituted primarily of α-
helices. The two domains are connected by a protein region
named the “hinge region,”which forms a highly conserved pocket
for ATP binding (Knippschild et al., 2014).

As for other members of the CK1 family, CK1δ recognizes the
canonical phospho-primed structural motif pSer/pThr-X1-2-Ser/
Thr, where X stands for any amino acid and pSer/pThr represents
the phospho-primed residue (Meggio et al., 1991). The CK1
kinases are also able to recognize non-phosphorylated
sequences, as far as they contain strongly acidic residues (Asp
or Glu) that can make up for the absence of the phosphorylated
residue (Xu et al., 2019). The structural motif that can be
recognized by the CK1 proteins is widespread in many cellular
proteins and, because of this, over 140 substrates have been
reported both in vitro and in vivo (Knippschild et al., 2014),
underlining the pleiotropic character of this protein family. Due
to the great variability of its substrates, CK1δ is involved in many

cellular pathways, among which the main ones are the Wnt-
pathway, the Hippo pathway, the p53 regulation pathway, and the
Hedgehog pathway (Xu et al., 2019).

The endogenous regulation of CK1δ, on the other hand, can be
carried out through various mechanisms, including
autophosphorylation or phosphorylation by other protein
kinases (Graves and Roach, 1995; Bischof et al., 2013),
interactions with other protein and/or cellular components,
and subcellular sequestration (Milne et al., 2001; Xu et al.,
2019). In addition, homodimerization excludes ATP from the
binding site, thus inhibiting kinase activity (Longenecker et al.,
1998; Hirner et al., 2012).

In recent years, several studies have highlighted the importance of
CK1δ in neurodegenerative diseases, particularly tauopathies, such as
Alzheimer’s disease (AD), Parkinson’s disease (PD), and
amyotrophic lateral sclerosis (ALS) (Perez et al., 2011). In addition
to having unknown etiology, these illnesses are all characterized by
loss of neuronal function, with neurotransmitter deficiency,
misfolding, and protein aggregation (Breijyeh and Karaman,
2020). Clinical symptoms are manifested differently, depending on
the neuronal area involved (Lee et al., 2001).

AD is a progressive neurodegenerative disorder that
mainly involves the neurons of the hippocampus (Selkoe,
2001). On the extracellular side, the main marker of the
disease is represented by the accumulation of β-amyloid
peptides, produced by β-secretase 1 and γ-secretase
enzymes, which lead to neuronal death (J and DJ, 2002).
Meanwhile, on the intracellular part, the illness presents
lesions related to both cytoplasmic accumulations of
vacuoles with abnormal dimensions and dense granular
content and the assembly of fibrils and filaments within the
neuronal body. These types of lesions are characterized by the
accumulation of hyperphosphorylated Tau protein not only in
the filaments, but also within the vacuoles (Ghoshal et al.,
1999).
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The correlation between CK1δ activity and tau protein
aggregates in various neurodegenerative diseases has been
confirmed by co-immunoprecipitation studies, which highlight
that the presence of CK1δ is associated with hyperphosphorylated
tau aggregates (Schwab et al., 2000; Li et al., 2004). CK1δ
phosphorylates tau protein at the Ser202/Thr205 and Ser369/
Ser404 residues in vitro (Li et al., 2004; Perez et al., 2011). The
phosphorylation sites are the same as those involved in binding
with tubulin, highlighting the key role of kinase in the
pathogenesis of AD (Li et al., 2004). It is not clear whether the
hyperactivity of CK1δ is due to an overtranscription of its gene,
altered protein turnover, or both causes, but it has been observed
that the concentration of the protein CK1δ in an AD-affected
hippocampus is 30 times higher than normal (Ghoshal et al.,
1999).

In PD, on the other hand, the pathology is characterized by the
accumulation of Lewy bodies, consisting of aggregates of α-
synuclein hyperphosphorylated by CK1δ at the level of Ser129
residues (Okochi et al., 2000). This process determines a massive
loss of neuronal function at the substantia nigra level (Surmeier,
2018).

CK1δ also plays a key role in ALS, a neurodegenerative
disorder in which intracellular inclusions of TDP-43 (TAR
DNA-binding protein) are found in the frontotemporal lobe.
It was established that TDP-43 can be phosphorylated by CK1δ at
29 different sites (Kametani et al., 2009).

These pathologies are all characterized by the absence of
effective pharmacological therapy: in fact, there are no EMA-
approved drugs on the market that can solve, and therefore cure,
these diseases, but there are only palliative therapies for the
temporary improvement of the patient’s quality of life, thus
resulting in a high social cost (Dementia, 2021). For these
reasons, CK1δ appears as an interesting therapeutical target in
the field of neurodegeneration, as witnessed by the increasing
interest in the research for inhibitory candidates for this protein
during the last 15 years.

Concerning the identification of novel kinase inhibitors, an
approach that has proven to be particularly successful is the so-
called fragment-based drug discovery (FBDD), as demonstrated
by the approval of the BRAF inhibitor vemurafenib (Bollag et al.,
2012) (employed in the treatment of metastatic melanoma) and
by several other kinase inhibitors which are at various stages of
clinical trials (Erlanson et al., 2016; Schoepfer et al., 2018).

This approach revolves around the exploitation of
“fragments,” i.e., compounds that respect the “Rule of Three”
(molecular weight <300, number of hydrogen bond donor/
acceptor ≤ 3, log P≤3), as a starting point for the rational
development of novel mature, drug-like, active molecules
(Hajduk, 2006; Jhoti et al., 2013). The main reason for the
success of FBDD is the ability to sample a larger portion of
the chemical space compared to the one occupied by drug-like
molecules, thus increasing the success rate in finding novel
scaffolds for targets of interest (Hall et al., 2014).

This methodology heavily relies on very sensitive biophysical
methods, such as X-ray crystallography (XRC), nuclear magnetic
resonance (NMR), or surface plasmon resonance (SPR), to
perform large screening campaigns on libraries composed of

molecules with low molecular weight and high solubility, to
find hit compounds (Erlanson et al., 2004; Murray and Rees,
20092009). These hit fragments usually have a low affinity for the
target, ranging from low millimolar to high micromolar (hence
the need for very sensitive screening techniques), but a higher
binding efficiency compared to traditional drug-like molecules,
being able to establish high-quality interaction with the target
(Schultes et al., 2010). Fragment hits can then be easily combined
(either through a linking or a merging process) or chemically
modified (growing) to increase their affinity for the target,
allowing for the development of potent and selective active
compounds (Rees et al., 2004).

Alongside the aforementioned experimental techniques, in the
last decade, a prominent role in FBDD campaigns has been
played by computer-aided drug discovery (CADD) techniques,
such as molecular docking or molecular dynamics (Bissaro et al.,
2020). These computational approaches have been routinely and
successfully applied for performing large screening on virtual
fragment libraries, for the characterization of the fragment
interaction mode with the target and to aid the fragment-to-
lead optimization in a less time-consuming, more rational, and
more efficient way. Some examples of software specifically
designed for FBDD are LUDI (Böhm, 1992), HOOK (Eisen
et al., 1994), CAVEAT (Lauri and Bartlett, 19941994), and
RECORE (Maass et al., 2007). Moreover, commercial drug
discovery suites, such as Schrödinger, MOE, and OpenEye,
have implemented several tools related to the fragment
optimization process.

Among the plethora of software available for FBDD, the open-
source software Autogrow, developed by the Durrant lab, is
particularly interesting. As thoroughly described in the work
of Spiegel and Durrant (2020), the open-source software
Autogrow is a Python written code that combines a genetic
algorithm with docking calculation based on the Vina (Trott
and Olson, 2010) docking software to perform a semi-
automatized process for both de novo drug design and lead
optimization. The latest release of the Autogrow (version 4.0.3,
the one used in this work) was developed with the idea of making
the codebase modular, thus allowing the third-party
implementation of different conversion scripts, molecular
docking programs, scoring functions, and reaction libraries, to
better suit the need of different research groups.

A recent scientific work published by our laboratory led to the
identification of seven novel fragment compounds that bind the
hinge region of CK1δ with a low-micromolar IC50 (Bolcato et al.,
2021). Attracted by the idea of exploiting a semi-automatized
computational protocol for the optimization of our newly
discovered fragment compounds, we decided to investigate if
this protocol would be suitable for our needs. Since it is notorious
that molecular docking programs are usually very efficient and
optimized with regard to the conformational search, but are
usually lacking in the scoring phase (Chen, 2015; Chaput and
Mouawad, 2017) [especially for molecules-like fragments that
deviate from the drug-like chemical space on which these scoring
functions have been trained (Verdonk et al., 2011; de Souza Neto
et al., 2020)], we decided to investigate if the implementation of a
different scoring protocol based on protein–ligand interaction
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fingerprint would improve the performance of the Autogrow
protocol, concerning the ability of the program to generate
compounds similar to known inhibitors based on their
interaction scheme and electrostatic and shape similarity.

2 MATERIALS AND METHODS

2.1 Hardware Overview
Each general molecular modeling operation has been performed
on a Linux Workstation equipped with an 8 core Intel Xeon®
CPU E5-1620 CPU. For more intensive calculations, such as the
Autogrow runs, a 64 core AMD Opteron™ Processor 6376 CPU
cluster was exploited. Both the workstation and the cluster run
Ubuntu 16.04 as their operative system.

2.2 Structure Preparation
In the case of protein kinase CK1δ, 23 protein–ligand complexes
between the protein and small drug-like molecules are available in
the Protein Data Bank (Berman et al., 2000) (PDB ID; 3UYT,
3UZP, 4HGT, 4HNF, 4KB8, 4KBA, 4KBC, 4KBK, 4TN6, 4TW9,
4TWC, 5IH5, 5IH6, 5MQV, 5OKT, 5W4W, 6F1W, 6F26, 6GZM,
6HMP, 6HMR, 6RCG, and 6RCH). The crystals with codes
6RU6, 6RU7, and 6RU8 were not considered in this study
because they contain the natural substrate adenosine-5′-
diphosphate. One of the structures [PDB ID: 4KB8 (Mente
et al., 2013)] is composed of two different CK1δ–ligand
complexes. For this reason, the system has been separated into
two different entries (namely, 4KB8A and 4KB8B). Because of
this, the total number of complexes considered in our study is 24.

Each of the mentioned complexes has been downloaded and
properly prepared for subsequent computational analysis with
the “Structure Preparation” tool implemented in the Molecular
Operating Environment (MOE) (Molecular Operating
Environment (MOE), 2021) 2019.01 suite. The missing
hydrogen atoms were appropriately added with the MOE
“Protonate 3D” program (setting the pH for the protonation
at a value of 7.4) and were then energetically minimized
according to the AMBER10: EHT (Case et al., 2008) force
field implemented in MOE. After the preparation phase, the
protein–ligand complexes were properly aligned and superposed
with the MOE dedicated tool, to make the binding site
coordinates coherent among the different crystallographic
structures. These complexes were saved and used at a later
stage for the generation of the pharmacophore model (see
Section 2.4).

Afterward, each ligand was separated from its respective
protein. All the small molecules were collected in a database
and prepared for docking calculations exploiting several packages
from the QUACPAC OpenEye (QUACPAC, 2021) suite. For
each molecule, the most probable tautomeric state was selected
with the “tautomers” program, the three-dimensional
coordinates were rebuilt using the “Omega” tool, the partial
charges were attributed with the “MolCharge” program
according to the MMFF94 force field, and finally, the
dominant protonation state at pH 7.4 was determined by the
“FixPka” tool.

2.3 Cross-Docking
Each of the aforementioned 24 CK1δ crystallographic ligands,
prepared as described in Section 2.2, was docked inside each of
the correspondent 24 CK1δ protein structures exploiting two
different molecular docking pieces of software, namely GOLD
(Jones et al., 2002) (based on a genetic algorithm, developed and
distributed with a commercial license from CCDC) and PLANTS
(Korb et al., 2006) (an Ant-Colony-Optimization docking
algorithm, developed by the University of Tübingen and free
for use for academics).

This approach was chosen to follow the principles of
“consensus docking” (Houston and Walkinshaw, 2013), which
is based on the fact that data obtained by combining results
coming from docking programs that operate in an orthogonal
way are associated with higher robustness.

For both GOLD and PLANTS, 10 poses per molecule were
collected. The default parameters were used for both protocols.
Concerning the choice of the scoring function, Chemscore was
selected for GOLD, while PLANTSChemPLP was selected for
PLANTS.

A total of 1,152 (24 ligands × 24 proteins × 2 docking protocols)
independent docking runs were performed, and the results were then

FIGURE 1 | Visual representation of the pharmacophore model used in
this scientific work. Features are represented as spheres. Orange spheres
indicate an aromatic ring, with an orientation determined by the small orange
pin, while the pink spheres indicate a hydrogen bond donor/acceptor.
For visual reference, the 4TN6 complex is also reported in this figure, with the
protein represented in teal ribbons and the PFO ligand represented as orange
sticks.
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analyzed using an in-house Python script. The script collects the
RMSD between each docking pose and the correspondent crystal
reference pose, outputting two different plots. The first plot is a
heatmap that illustrates the RMSD values for the best docking pose
generated for each ligand onto each protein. The second plot is a
histogram that re-elaborates the previous results to give a visual
representation of the “success rate” of each protein: a successful
docking run is obtained when the RMSD between the docking pose
and the crystal reference is below the arbitrarily chosen 2 Å threshold
value so that the “success rate” is defined by the percentage ratio of the
successful docking runs for each protein (i.e., the percentage of
docking experiments where the RMSD falls below the threshold
value).

2.4 Pharmacophore Modeling
Based on previously published works on the same target, we took
advantage of the structural information about known inhibitors
of CK1δ in the form of crystal structures of their complex with the
kinase deposited in the PDB. The same 24 protein–ligand
complexes mentioned in Section 2.2 were subjected to the
MOE Pharmacophore model tool: shared interaction features
(with a 50% threshold value for feature retention) were then used
in the generation of the pharmacophore model.

As can be seen in Figure 1, the final model consisted of four
features (represented as spheres in the image), namely a hydrogen
bond donor and a hydrogen bond acceptor interacting with
Leu85, an aromatic ring in the proximity of the hinge region,
and another aromatic ring adjacent to the first one in the inner
part of the binding pocket.

2.5 Autogrow
Autogrow4 (AutoGrow4, 2020) is a fully open-source code
written in Python and developed by the Durrant lab that
combines a genetic algorithm with docking calculation based
on the Vina (Eberhardt et al., 2021) docking software (version
1.2.0) to perform a semi-automatized process for both de novo
drug design and lead optimization.

Molecules are submitted to the program in the form of SMILES
strings. The genetic algorithm part of the code uses a series of
synthetically feasible reactions to perform a defined number of
mutation and crossover operations (i.e., growing and merging) on
submitted chemical entities, creating a full population (called
generation) ofmolecules to feed to themolecular docking program.

This generation is then docked using the Vina docking
software. After the docking stage, the genetic algorithm
retrieves the score for each docking pose, which it uses to
rank molecules and pick the most fitted members of the
generation to promote them to the next generation. This
iterative process is repeated for a user-defined number of
generations or until an earlier termination criterion is met.

The code is released under the Apache2 license, is freely
available at https://durrantlab.pitt.edu/autogrow4/, and works
both in Python 2.7 and ≥3.6 environment. A detailed
description of how the latest Autogrow release works is
provided in the work of Spiegel and Durrant (2020).

Two different versions of the Autogrow code were used in
this scientific work. The first one was downloaded from the
official repository and used as is, without any modifications to
the source code. The second one was the result of an in-house

FIGURE 2 | Two heatmaps that summarize the results of the cross-docking experiment performed before the Autogrow runs to select the protein structure to use
for subsequent calculations. Panel (A) reports the results for the GOLD-Chemscore protocol, while Panel (B) encompasses the results of the PLANTS-PLANTSChemPLP

one. On the vertical axis, the PDB code of the protein is reported, while on the horizontal axis the PDB code of the ligand is indicated. The colored squares report the
RMSD values for the best docking pose generated by the two docking protocols according to the color bar located on the right side of the image: color ranges from
blue (indicating a low RMSD; minimum value is 0 Å, indicating a perfect superposition between the docking pose and the crystal reference) to red (maximum value is 4 Å,
indicating a high deviation between the docking pose and the crystal reference).
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modification of the source code performed to customize the
scoring stage of the docking process. The traditional
Autogrow protocol uses the Vina standard scoring function
(from now on, defined as VINA), which encompasses some
elements of knowledge-based potentials and others of a
typical empiric scoring function (Eberhardt et al., 2021).
Instead, our modified version of the Autogrow code
implements an alternative scoring function (from now on,
defined as IFPCS) based on the similarity between
protein–ligand interaction fingerprints.

The crystal complex of a known inhibitor is chosen as
reference (in our case, the ligand PFO from complex 4TN6
was chosen) and its binding mode is codified into a bit vector
exploiting the InteractionFingerprint function from the
fingerprint module of the Open Drug Discovery Toolkit
(Wójcikowski et al., 2015) Python Library. This function
converts the protein–ligand interaction into a bit array
according to the residue of choice and the type of
interaction. Each protein residue is represented by eight
bits, one for each type of interaction considered
(hydrophobic contacts, aromatic face to face, aromatic edge
to face, hydrogen bond with protein acting as donor, hydrogen
bond with protein acting as acceptor, salt bridge with protein
acting as the positively charged member, salt bridge with
protein acting as the positively negative member, and ionic

bond with a metal ion), so that the final vector will have a size
of r×8, where r stands for the number of protein residues.

During the scoring phase of our custom Autogrow run,
each docking pose is also codified into an Interaction
Fingerprint vector, the same way as for the crystal
reference. Then, the two vectors are transformed from
sparse to dense, making use of the appropriate functions
from the Numpy Python library, before the comparison
between the reference and the query fingerprint is executed
using the cosine similarity metrics, exploiting the appropriate
function of the Scikit-learn Python library. The resulting
score, which ranges from 1 (indicating a complete
agreement and coherence between the two binding modes)
to 0 (indicating that the two binding modes are not coherent),
is then multiplied by −1 to comply with the selection
mechanism of Autogrow genetic algorithm, which favors
the most negative scores, as is usually the case for most
classic scoring functions, like the one used by Vina.

IFPCS � A · B
‖A‖‖B‖p( − 1). (1)

Equation 1 is the mathematic formulation of the IFPCS
scoring function. This scoring function is the inverse of the
cosine similarity between two vectors, A and B, representing the
Interaction Fingerprint for the reference and the query ligand,

FIGURE 3 | The overall “success rate” in reproducing the correct crystallographic binding mode for each of the 24 CK1δ complexes considered in the study. The
“success rate” is defined as the percentage of successful docking runs for each protein in the cross-docking experiment, where a successful docking run is defined as a
docking calculation where the RMSD between the best docking pose and the crystal reference falls below an arbitrarily chosen threshold value of 2 Å. Panel (A) reports
the results for the GOLD-Chemscore protocol. Panel (B) reports the results for the PLANTS-PLANTSChemPLP protocol. Panel (C) encompasses the combined
“success rate” for each protein, defined as the average between the success rate for each protocol. Protein from the complex 4TN6 was chosen as the most
representative CK1δ structure for successive calculations.
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respectively. Values range from −1 (indicating maximum coherence
between the two binding modes) to 0 (indicating the lowest possible
correspondence between the two binding modes).

3 RESULTS

3.1 Cross-Docking
Since 24 different protein–ligand complexes were available for
CK1δ (the target for our computational study), but only one at
a given time can be used for docking calculations, we had to
carefully evaluate the one most suitable for our needs. The
choice of the protein structure to use for docking calculation is
not trivial, for several reasons. When a ligand gets in contact
with a protein, the binding event may cause a change in the
structure of the protein itself (Li and Ji, 2019). These
modifications are mainly depictable in the binding site and
may also be extended to other regions. In a crystallographic
complex, this effect is highlightable by differences in the shape
of the binding site among the different crystal
structures available for a single protein (Csermely et al., 2010).

One of the possible approaches to accomplish this task, the one
that we used in our workflow, is known as “cross-docking”
(Wierbowski et al., 2020). This technique consists in taking all
the protein–ligand complexes available for a target, separating all
the ligands from their respective co-crystallized structure, and
docking all the different ligands in the binding site of each
different protein structure. By analyzing the docking results, it
is possible to define the crystallographic protein structure that has
the highest tendency to correctly reproduce ligands’
crystallographic conformation.

For these reasons, we performed a cross-docking
experiment on our 24 CK1δ complexes to decide which
one to pick for subsequent calculation. Each ligand was
docked into each protein structure using two different
docking protocols, GOLD-Chemscore and PLANTS-
PLANTSChemPLP, for a total of 1,152 independent docking
runs. For each ligand, the root-mean-square deviation
(RMSD) between each docking pose and the
crystallographic conformation was calculated. The poses
with the lowest RMSD in each docking run were selected
and their RMSDs were plotted, obtaining the graphs
represented in Figure 2. A detailed description of the
methodology used for the cross-docking experiment is
provided in Section 2.3.

To visualize the results more clearly, the data from the plots
reported in Figure 2 were re-elaborated to obtain a single
indicator of the performance of each protein in reproducing
the correct binding mode for docked ligands. We opted for
calculating the “success rate” for each protein structure: a 2 Å
threshold value was chosen to discriminate between successful
and unsuccessful docking runs. For each protein, the percentage
of successful docking runs (the “success rate”) was calculated
accordingly and plotted in a histogram.

Figure 3 encompasses the results of this second analysis,
reporting the success rate for both the GOLD-Chemscore and
PLANTS-PLANTSChemPLP protocols. Moreover, since we

adopted the principle of “consensus docking,” as mentioned in
Section 2.3, we decided to calculate the average success rate
between the two docking protocols. As can be seen in Figure 3,
the overall “success rate” obtained by the combination of data
from the two docking protocols indicates the protein from the
complex 4TN6 as the protein that is, on average, more able than
the other ones to correctly reproduce the crystallographic binding
mode of docked ligands. Although the difference in the success
rate between the first and the second protein is low, in the context
of several consequential docking runs where thousands of
compounds are considered at a given time, even small
differences in the percentage success rate could have a big
impact on the quality of the run, considering that the
prioritization of compounds from one generation to another is
based upon their docking-predicted ability to retain the
interaction features that characterize the binding mode of
known inhibitors. For this reason, we used the protein 4TN6
as a representative CK1δ structure for our subsequent
calculations with Autogrow.

3.2 Benchmark De Novo Run
To assess the performance of our alternative, fingerprint-based,
Autogrow protocol (defined as IFPCS, while the traditional one is
VINA), we first performed a benchmark de novo run, using the
same conditions as the ones described in the work of Spiegel and
Durrant (2020).

A 30-generation run was performed for each protocol, using
the “Fragment_MW_100_to_150.smi” library provided in the
Autogrow repository and described in the original publication.
Configuration files for both de novo runs in the JSON format are
available in the Supplementary Material, while a detailed
description of both Autogrow and our alternative scoring
approach is described in Sections 2, 2.5.

In order to validate the performance of both protocols, we
opted for evaluating the quality of the generated compounds by
filtering each generation of poses using a pharmacophore model.
This filter, which has already been proved to identify true binders
in previous related works (Cescon et al., 2020; Bolcato et al.,
2021), was used to retain only those poses which complied with
known requirements for binding to the CK1δ pocket. This metric
was used to determine if there is any advantage in incorporating a
knowledge-based element in the generation of novel potential
inhibitors of CK1δ, steering the compound selection process
toward the ones that assume a pharmacophore-like binding
mode. These pharmacophore-like compounds were then
characterized by calculating their molecular weight and the
similarity of their shape and electrostatic properties to crystal
CK1δ inhibitors taken as reference. For this purpose, the EON
(Eberhardt et al., 2021) package from the OpenEye suite was used.
Each compound passing the pharmacophore filter was compared
with each crystallographic ligand, calculating the electrostatic and
shape similarity (ETcombo). The best value for each ligand was
extracted and used for the elaboration of the a posteriori analysis,
whose results are reported in Figures 4, 5.

As can be seen in Figure 4A, which shows the average molecular
weight of compounds that pass the pharmacophore filter for each
generation, theVINAprotocol rapidly reaches the peak of the average
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FIGURE 4 |Comparison of the performance of the two Autogrow protocols in the benchmark de novo runs regarding their ability to generate compounds that pass
the pharmacophore filter. The VINA protocol is reported as a blue line, while the IFPCS one is reported as an orange line. Panel (A) depicts, for each protocol, the average
molecular weight of compounds within the population that pass the pharmacophore filter on a per-generation basis. The vertical axis reports the molecular weight, while
the horizontal axis reports the generation number. Panel (B) depicts, for each protocol, the distribution of generated compounds that pass the pharmacophore filter
regarding their molecular weight and the similarity of shape and electrostatic properties to crystal inhibitors taken as reference. The vertical axis reports the average
molecular weight in Da, while the horizontal axis reports the ETcombo value. Blue dots represent compounds generated by the VINA protocol, while orange dots represent
compounds generated by the IFPCS one.

FIGURE 5 | The ability of the two Autogrow protocols in the benchmark de novo run to produce compounds that have a high degree of similarity concerning shape
and electrostatic properties to the crystallographic ligands, chosen as reference. The probability distribution of the ETcombo score for compounds populating each
generation is reported as a histogram, where the vertical axis reports the probability density while the horizontal axis reports the ETcombo value. Two distributions are
reported within each plot: the blue bars refer to compounds generated with the VINA protocol, while the orange bars refer to compounds generated with the
IFPCS one.
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molecular weight (around generation 6), while our IFPCS protocol has
a slower but regular growth that reaches values comparable to the
VINA protocol from around generation 27 onwards. This difference
is probably related to the fact that theVINA scoring function is biased
toward the selection of larger compounds, which can make a good
number of non-specific interactions with the target, while our IFPCS
one is biased toward the selection of compounds that have a similar
interaction pattern compared to a reference compound, regardless of
their dimensions.

As depicted in Figure 4B, which illustrates the distribution of
generated compounds across all generations concerning their
molecular weight and their electrostatic and shape similarity with
crystal CK1δ inhibitors, this different selection process results in the
production of compounds with different properties: the blue dots,
which represent the compounds generated by the VINA protocol,
are mostly located in the left-upper portion of the graph, indicating
that most of the compounds generated by the traditional protocol
have a high molecular weight but a low level of similarity with
known inhibitors. On the contrary, the upper-right part of the graph
(high molecular weight, high electrostatic, and shape similarity) is
mostly populated with orange dots, which represent the compounds
generated by our IFPCS protocol.

The difference in the selection process is also highlighted in Figure 5,
which illustrates the distribution of compounds across a representative
subset of generations concerning their electrostatic and shape similarity:
the graph clearly shows how the VINA protocol does not improve the
similarity of generated compounds while increasing the number of
generations. On the contrary, the orange population (which represents
the compounds generated by the IFPCS protocol) gradually shifts toward
the right part of the plot passing from earlier to later stage generations,
indicating that the compounds passing the pharmacophore filter

increase their electrostatic and shape similarity passing from one
generation to another. Another comparison of the performances of
the two protocol is given in Figure 6, which reports the progressive
enrichment in compounds with a high degree of similarity to reference
inhibitors within the total population. An example of a high-scoring
compound generated by our IFPCS protocol is reported in Figure 7,
where its chemical structure and the comparison between its docking-
predicted binding mode and the crystal pose of the PFO ligand from
reference crystal complex 4TN6 is shown.

3.3 Benchmark Lead-Optimization Run
To further evaluate the validity of our custom scoring protocol, we
also performed a benchmark lead-optimization run, using once again
the same conditions as the ones reported in the work of Spiegel and
Durrant (2020).

A 5-generation run was performed for each protocol, using a
library composed of the 24 crystallographic ligands mentioned in
the previous sections and another 316 fragments obtained from
the fragmentation of crystallographic ligands exploiting the
“fragmenter_of_smi_mol.py” Python script provided by the
Autogrow developers, using the BRICS fragmentation rule, for
a total of 340 compounds fed to the algorithm. In this case,
configuration files for both benchmark runs in the JSON format
are available in the Supplementary Material.

To assess the performance of both protocols, we applied the
same criteria described previously for the de novo runs, focusing
once again on compounds passing the pharmacophore filter

FIGURE 6 | The capability of the two different Autogrow protocols in the
benchmark de novo run to produce compounds that have a high degree of
similarity concerning shape and electrostatic properties to the crystallographic
ligands, chosen as reference. For each generation, the percentage of
compounds within the total population whose ETcombo exceeds a defined
threshold value is reported. Three different cutoff values are reported: 0.50,
0.75, and 1.00, respectively.

FIGURE 7 | The superposition between the docking-predicted binding
mode of a high-scoring compound (MMS1) from the benchmark de novo run
performed with the IFPCS scoring protocol and the reference crystal binding
pose of compound PFO from the structure deposited in the Protein Data
Bank with accession code 4TN6. On the left part of the image, the protein
kinase CK1δ ATP binding site is reported in teal ribbon, the pose of the
compound MMS1 is shown as orange sticks, while the pose of compound
PFO is shown as green sticks. On the right part of the image, the chemical
structure of the compound MMS1 is reported.
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FIGURE 8 |Comparison of the performance of the two Autogrow protocols in the benchmark lead-optimization runs regarding their ability to generate compounds
that pass the pharmacophore filter. The VINA protocol is reported as a blue line, while the IFPCS one is reported as an orange line. Panel (A) depicts, for each protocol, the
average molecular weight of compounds within the population that pass the pharmacophore filter on a per-generation basis. The vertical axis reports the molecular
weight, while the horizontal axis reports the generation number. Panel (B) depicts, for each protocol, the distribution of generated compounds that pass the
pharmacophore filter regarding their molecular weight and the similarity of shape and electrostatic properties to crystal inhibitors taken as reference. The vertical axis
reports the average molecular weight in Da, while the horizontal axis reports the ETcombo value. The blue dots represent compounds generated by the VINA protocol,
while the orange dots represent compounds generated by the IFPCS one.

FIGURE 9 | The ability of the two Autogrow protocols in the benchmark lead-optimization run to produce compounds that have a high degree of similarity with
regard to shape and electrostatic properties to the crystallographic ligands, chosen as reference. The probability distribution of the ETcombo score for compounds
populating each generation is reported as a histogram, where the vertical axis reports the probability density while the horizontal axis reports the ETcombo value. Two
distributions are reported within each plot: the blue bars refer to compounds generated with the VINA protocol, while the orange bars refer to compounds
generated with the IFPCS one.
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described in Section 2.4 and characterizing them about their
molecular weight and electrostatic and shape similarity compared
to crystal CK1δ inhibitors.

Figure 8B illustrates the distribution of compounds across
all five generations regarding their ETcombo and their
molecular weight: as can be seen, there is little to no
difference between the two protocols, with the two
populations being practically superimposable. However,
contrary to what might be suggested by this plot, there is a
significant difference in the performances of the two
protocols, which is highlighted in Figures 8A, 9, 10.

As can be noticed in Figure 8A, the average molecular
weight of compounds passing the pharmacophore filter grows
by about 90 Da, passing from the first to the last generation in
the case of our IFPCS protocol. On the contrary, the average
molecular weight of pharmacophore-like compounds
generated by the traditional VINA protocol does not
increase with the number of generations, but slightly
decreases over time, falling even below the average
molecular weight of the first generation derived from the
IFPCS protocol. Furthermore, Figure 9 illustrates how, as
previously seen in the benchmark de novo run, the
similarity of compounds passing the pharmacophore filter
increases over time when the IFPCS scoring protocol is
adopted, while it slightly decreases and does not improve
over time in the case of the traditional VINA scoring protocol.
Particularly, this trend is also confirmed by Figure 10, which
shows how the IFPCS protocol can produce a quicker
enrichment of the population in high-similarity compounds
compared to the traditional VINA one. As for the previous
case, an example of a high-scoring compound generated in the

last and final generation of the IFPCS run is reported in
Figure 11.

3.4 Prospective De Novo Run
Encouraged by the results of our benchmark runs, we decided to
perform a prospective runwith the IFPCS protocol, applying the same
operating conditions as before. This time, the starting library was
modified to add to the compounds used for the benchmark runs
seven fragment ATP-competitive CK1δ inhibitors identified during a
previous virtual screening campaign from our laboratory (Bolcato
et al., 2021). The idea behind this runwas to evaluate the ability of our
IFPCS scoring protocol to generate interesting novel potential CK1δ
inhibitors derived from in-house, readily available compounds.

The chemical structure of the seven fragments used in this run
is reported in Figure 12.

To verify the quality of this run, we performed the same analysis as
for the benchmark runs. The results of this analysis are summarized
in Figures 13–15, respectively. As remarked in Figure 14, the same
trend seen in the benchmark de novo run can also be observed in the
case of this prospective run: while the VINA protocol is not able to
increase the shape and electrostatic similarity to known inhibitors
over time, the IFPCS protocol can produce a shift of the orange
population toward higher ETcombo values. As illustrated by Figure 13,
which reports a comparison between the benchmark de novo run
performed with the VINA protocol and the prospective de novo run
carried out with the IFPCS protocol, the trend in both the distribution
of compounds regarding their molecular weight and ETcombo and the
growth ofmolecular weight over time are similar to the benchmark de

FIGURE 10 | The capability of the two different Autogrow protocols in
the benchmark lead-optimization run to produce compounds that have a high
degree of similarity concerning shape and electrostatic properties to the
crystallographic ligands, chosen as reference. For each generation, the
percentage of compounds within the total population whose ETcombo exceeds
a defined threshold value is reported. Three different cutoff values are
reported: 0.50, 0.75, and 1.00, respectively.

FIGURE 11 | The superposition between the docking-predicted binding
mode of a high-scoring compound (MMS2) from the benchmark lead-
optimization run performed with the IFPCS scoring protocol and the reference
crystal binding pose of compound PFO from the structure deposited in
the Protein Data Bank with accession code 4TN6. On the left part of the
image, the protein kinase CK1δ ATP binding site is reported in teal ribbon, the
pose of the compound MMS2 is shown as orange sticks, while the pose of
compound PFO is shown as green sticks. On the right part of the image, the
chemical structure of the compound MMS2 is reported.
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FIGURE 12 | Chemical structure of the seven fragment CK1δ inhibitors derived from the work of Bolcato et al. (2021).

FIGURE 13 | Performance of the two Autogrow protocols in the prospective de novo runs regarding their ability to generate compounds that pass the
pharmacophore filter. The VINA protocol is reported as a blue line, while the IFPCS one is reported as an orange line. Panel (A) depicts, for each protocol, the average
molecular weight of compounds within the population that pass the pharmacophore filter on a per-generation basis. The vertical axis reports the molecular weight, while
the horizontal axis reports the generation number. Panel (B) depicts, for each protocol, the distribution of generated compounds that pass the pharmacophore filter
regarding their molecular weight and the similarity of shape and electrostatic properties to crystal inhibitors taken as reference. The vertical axis reports the average
molecular weight in Da, while the horizontal axis reports the ETcombo value. The blue dots represent compounds generated by the VINA protocol, while the orange dots
represent compounds generated by the IFPCS one.
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novo run. Figure 13B clearly shows how the upper-right portion of
the graph, which hosts compounds with both high molecular weight
and ETcombo values, is populated exclusively by orange dots, which

represent compounds generated with the IFPCS scoring protocol.
Interestingly, Figure 14A highlights how there is much less difference
in the growth rate of molecular weight between the IFPCS run (which
is contaminated by the presence of our seven CK1δ-inhibiting
fragments) and the benchmark VINA run, suggesting that
performances of the IFPCS could improve if some high-quality
pharmacophore-like fragments are included in the starting library.
However, despite the quicker growth of molecular weight, the quality
of generated compounds follows the same trend seen in the
benchmark de novo run, as reported in Figure 15. As for the
previous cases, an example of a high-scoring compound is
reported in Figure 16.

4 DISCUSSION

The open-source software Autogrow4 (AutoGrow4, 2020) is an
interesting piece of code that utilizes a combination between a
genetic algorithm and the Vina (Trott and Olson, 2010)
molecular docking software to semi-automatize the processes
of fragment growing and lead optimization. Thanks to the
modular nature of the codebase, we implemented an
alternative scoring protocol (IFPCS) based on the similarity of
protein–ligand interaction fingerprint between a crystal reference
and query compounds, exploiting the appropriate function from
the open-source library Open Drug Discovery Toolkit
(Wójcikowski et al., 2015), and we compared its performances
with the traditional Autogrow scoring protocol (VINA), which is
based on the Autodock Vina scoring function.

FIGURE 14 | The ability of the two Autogrow protocols in the prospective de novo run to produce compounds that have a high degree of similarity with regard to
shape and electrostatic properties to the crystallographic ligands, chosen as reference. The probability distribution of the ETcombo score for compounds populating each
generation is reported as a histogram, where the vertical axis reports the probability density while the horizontal axis reports the ETcombo value. Two distributions are
reported within each plot: the blue bars refer to compounds generated with the VINA protocol, while the orange bars refer to compounds generated with the
IFPCS one.

FIGURE 15 | The capability of the two different Autogrow protocols in
the prospective de novo run to produce compounds that have a high degree
of similarity concerning shape and electrostatic properties to the
crystallographic ligands, chosen as reference. For each generation, the
percentage of compounds within the total population whose ETcombo exceeds
a defined threshold value is reported. Three different cutoff values are
reported: 0.50, 0.75, and 1.00, respectively.
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The VINA protocol uses a scoring function that
incorporates some elements of knowledge-based potentials
and some others of empirical scoring functions. As is the case
for many scoring functions, the score is biased toward higher
molecular weight compounds, which can establish a higher
number of non-specific interactions with the target (Chen,
2015). For this reason, usually, molecular docking programs
are efficient in sampling the conformational space available
for the ligand within the binding site but are weaker in
prioritizing the right binding mode among a set of
reasonable hypotheses generated by the search algorithm
(Chaput and Mouawad, 2017). This is especially true in the
case of fragments, which deviate from the drug-like properties
of compounds upon which traditional scoring functions have
been trained (Verdonk et al., 2011).

As thoroughly discussed in the work of Bolcato et al. (Bolcato
et al., 2021), one possible solution to the scoring problem is to apply a
pharmacophore filter to poses generated by the molecular docking
program. When several structural pieces of information are available
in the formof protein–ligand crystal complexes for a certain target (as
is the case for protein kinase CK1δ, the case study for this work), a
good solution to reduce the false positive rate of molecular docking
programs is to build a pharmacophore model that encompasses the
most prominent interaction features that are required to bind ligands
to the target active site (Peach and Nicklaus, 2009). In the case of a
program like Autogrow, where the selection mechanism that

determines which compounds to promote to the next generation
is based on the docking score, we thought it would be interesting to
incorporate a knowledge-based element in the pose selection
mechanism in the form of a comparison between the interaction
fingerprint of query compounds and known inhibitors, to bias the
selection mechanism toward molecules that respect the required
features to bind to the target.

To validate our IFPCS scoring protocol, we performed both a de
novo and a lead-optimization benchmark run, using the same
operative conditions described in the original work of Spiegel and
Durrant (2020) but on a different target. The protein target of choice
was the protein kinase CK1δ, a pharmaceutically relevant target in the
field of neurodegenerative diseases for which several crystal complexes
with inhibitors are available in the PDB. The benchmark de novo run
was performed on a library composed of 6,103 fragment compounds
whose molecular weight falls between 100 and 150Da, while the
benchmark lead-optimization run was carried out on a library
composed of 24 crystallographic ligands of the protein kinase
CK1δ and 316 fragments derived from the fragmentation of
crystallographic ligands using the BRICS rule. To compare the
capabilities of the two protocols, we filtered each generation of
compounds with the same pharmacophore filter already utilized in
previous scientific works on the target (Cescon et al., 2020; Bolcato
et al., 2021).We then proceeded to evaluate the quality of compounds
that pass the pharmacophore filter, considering both the size and the
similarity of shape and electrostatic properties of query compounds
compared to the crystallographic ligands taken as reference.

As illustrated by the results of our analysis (Sections 3.3, 3.4,
respectively), there is a substantial difference in the performances of
the two protocols: while both protocols can generate a certain amount
of compounds that pass the pharmacophore filter (therefore
possessing the right structural features that are required for the
interaction with the target), in both scenarios the IFPCS scoring
function outperforms the traditional VINA one regarding the ability
to select and prioritize pharmacophore-like compounds that have a
similar shape and electrostatic properties compared to known
inhibitors of the protein kinase CK1δ. This is particularly evident
in the lead-optimization scenario, where within each generation
passage, the average molecular weight of compounds that pass the
pharmacophore filter steadily increases, passing from the typicalMW
of a fragment-like compound to the MW of a grown, mature, lead
candidate, while the contrary happens in the case of the VINA
protocol, with the average MW of the compounds that pass the
pharmacophore filter steadily decreasing, falling even below the value
of the first generation from the IFPCS protocol.Moreover, when poses
from each generation are compared with the ones of crystallographic
ligands concerning the shape and electrostatic similarity, a similar
trend can be noticed. While the VINA protocol can select high-
quality compounds in the first generation, compared to the IFPCS
one, at later stages during the run a progressive reduction in the
similarity between the query and reference compounds can be
noticed, contrary to what happens when the IFPCS scoring
protocol is utilized. This can be explained considering the
different nature of the two scoring functions: the VINA protocol
is biased toward bigger, therefore higher scoring, compounds, while
the IFPCS protocol favors compounds that respect the interaction
pattern of the reference crystallographic ligand, regardless of their

FIGURE 16 | The superposition between the docking-predicted binding
mode of a high-scoring compound (MMS3) from the benchmark de novo run
performed with the IFPCS scoring protocol and the reference crystal binding
pose of compound PFO from the structure deposited in the Protein Data
Bank with accession code 4TN6. On the left part of the image, the protein
kinase CK1δ ATP binding site is reported in teal ribbon, the pose of the
compound MMS3 is shown as orange sticks, while the pose of compound
PFO is shown in green sticks. On the right part of the image, the chemical
structure of the compound MMS3 is reported.
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size. For this reason, the IFPCS protocol tends to favor smaller
compounds in the first generations, as long as they are complying
with the constraint imposed by the reference interaction fingerprint,
increasing the possibility to maintain in the population high-quality
fragment to be optimized via themutation and crossover operation of
the genetic algorithm. On the contrary, the VINA protocol selects
high MW compounds in the first generation that have little to no
space for meaningful chemical modifications, giving low priority to
those smaller compounds that will have a lower number of
interactions with the target, thus resulting in lower docking score.
Overall, our IFPCS protocol seems preferable in those cases where
structural data are available in the form of protein–ligand complex
structure, as is the case for a good number of targets nowadays, while
the traditional protocol seems a valid choice in those cases where such
structural information is missing.

A recent virtual screening campaign performed in our laboratory
led to the identification of seven novel fragment compounds that are
ATP-competitive CK1δ inhibitors (Bolcato et al., 2021). Curious to
see if our protocol would have been able to produce novel potential
CK1δ that incorporates structural features of our seven fragments, we
performed a second de novo run, using the same conditions as for the
benchmark one, except for the introduction in the starting library of
those seven fragment compounds. The same analysis performed on
the benchmark runs showed that the performance of our IFPCS
scoring protocol is even better when the Autogrow protocol is seeded
with high-quality fragments that have the right structural feature to
interact with the target. Usually, in a typical FBDD campaign, the
identification of fragment binders either through virtual or
experimental screening leads to the discovery of several potential
starting points for the hit-to-lead fragment optimization phase. Our
preliminary study showed that it is possible to obtain meaningful
results even in those cases where the starting library is populated by
fragments that are randomly selected and not specifically tuned for
the target of choice, but it certainly benefits from the contamination
of the starting library with fragments that are known binders,
indicating that the application of the IFPCS protocol could lead to
some interesting results in those cases where the known binders
constitute a bigger fraction of the starting library. Concerning this,
this approach could be utilized to evaluate the competitiveness of
newly found scaffolds with the already existing ones, based on the
simplicity to derive those scaffolds with common and feasible
chemical reactions, therefore producing a good number of
derivatives with increased affinity for the target.

5 CONCLUSION

In the present work, we presented and benchmarked a custom
version of the open-source Autogrow4 which implements an
alternative scoring protocol based on the similarity between
protein–ligand interaction fingerprint of query compounds
compared to a crystal reference. To demonstrate the
applicability of our protocol in a pharmaceutically relevant
scenario, we tested its capability to generate compounds that
have similar binding and structural features to known inhibitors

of the protein kinase CK1δ, a protein that is involved in several
neurodegenerative diseases, such as AD, PD, and ALS.

A benchmark de novo run and a lead-optimization one
were both carried out to compare the performance of our
IFPCS scoring protocol against the traditional one
implemented in the original version of the Autogrow code,
using the same conditions as the one reported in the original
publication by Spiegel et al. Compared to the traditional
Autogrow protocol, which uses the default scoring function
of the Vina docking software, our IFPCS protocol was able to
generate, on average, compounds that were bigger and more
similar to crystallographic ligands from the point of view of
the shape and electrostatic properties, while retaining the key
protein–ligand interaction features required for the inhibition
of CK1δ.

The custom Autogrow version used in this work, which
implements our alternative IFPCS scoring protocol, along with
the JSON configuration files used for each run and a YAML
file to reconstitute the Python environment to run the custom
version of the code, is available in the Supplementary
Material.
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