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The recent finding that β-catenin levels play an important rate-limiting role in processes
regulating insulin secretion lead us to investigate whether its binding partner α-catenin
also plays a role in this process. We find that levels of both α-E-catenin and α-N-catenin
are rapidly up-regulated as levels of glucose are increased in rat clonal β-cell models
INS-1E and INS-832/3. Lowering in levels of either α-catenin isoform using siRNA
resulted in significant increases in glucose stimulated insulin secretion (GSIS) and this
effect was attenuated when β-catenin levels were lowered indicating these proteins have
opposing effects on insulin release. This effect of α-catenin knockdown on GSIS was not
due to increases in insulin expression but was associated with increases in calcium influx
into cells. Moreover, simultaneous depletion of α-E catenin and α-N catenin decreased
the actin polymerisation to a similar degree as latrunculin treatment and inhibition of ARP
2/3 mediated actin branching with CK666 attenuated the α-catenin depletion effect on
GSIS. This suggests α-catenin mediated actin remodelling may be involved in the regula-
tion of insulin secretion. Together this indicates that α-catenin and β-catenin can play
opposing roles in regulating insulin secretion, with some degree of functional redundancy
in roles of α-E-catenin and α-N-catenin. The finding that, at least in β-cell models, the
levels of each can be regulated in the longer term by glucose also provides a potential
mechanism by which sustained changes in glucose levels might impact on the magnitude
of GSIS.

Introduction
The proper control of glucose homeostasis relies on the appropriate levels of insulin being secreted
from the β-cells in the pancreas so there has been an intense effort to understand the mechanisms by
which glucose levels control insulin secretion [1,2]. Some parts of the process are understood. It is
clear that the initial retention of insulin containing vesicles inside the cells and their release upon
glucose stimulation involves regulation of the microtubules and the actin cytoskeletons [3,4]. The
acute release of insulin upon glucose stimulation requires ATP production and subsequent closure of
the ATP sensitive K+ channel. The resulting membrane depolarisation leads to increased activity of
voltage sensitive L-type calcium channels and the consequent influx of calcium allows t-snare/v-snare
interactions that permits insulin granules to fuse with the plasma membrane [1,2].
β-cells are also a polarised cell type and this is important for proper GSIS [5–7]. They have mem-

brane domains facing the blood vessels that interact with the extracellular matrix via focal adhesions
and these are important for proper regulation of GSIS [8,9]. The lateral domains play an equally
important role and appear to be where most of the glucose transporters and calcium channels are
located [6,7]. It is clear that adherens junctions play an important role in forming interactions of
lateral domains and there is a growing body of evidence that these adherens junctions also play an
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important role in the processes allowing the β-cells to release insulin in response to changes in extracellular
glucose concentration [5,10–15]. These studies were initially restricted to showing a requirement for the cell
surface cadherins but we have recently begun to investigate the role of the intracellular proteins that associate
with cadherins and mediate their effects in the cell. The two most well studied components of these complexes
are β-catenin, which binds directly to the cadherins, and α-catenin, which binds indirectly to the cadherins by
binding first to β-catenin [16]. We have previously shown that loss of β-catenin results in attenuation of GSIS
suggesting an important role for this protein in this process [17,18]. These effects appear to be independent of
transcriptional effects of β-catenin but the full mechanisms remain to be elucidated, including the role of other
proteins associated with β-catenin such as α-catenin.
One interesting finding of our previous work is that glucose exposure rapidly increases β-catenin levels in

β-cells [17,18]. We have also recently shown that β-catenin levels increase rapidly in several regions of the
hypothalamus after feeding which raises the possibility that such mechanisms may be important in regulating
secretion of other hormones regulating energy metabolism [19]. This suggests that dynamic regulation of this
protein could be playing a role in modulating the potential of β-cells to release insulin. The levels of β-catenin
are regulated by ubiquitination and proteasomal degradation and the association of α-catenin with β-catenin is
important in modulating this process [16].
Here we investigate the role of α-catenin in β-cell models INS-1E and INS-832/3. We find that levels of

α-catenin isoforms in β-cell models rise following glucose exposure in a similar time frame to which β-catenin
levels rise. However, we find loss of α-catenin has the opposite effect to loss of β-catenin and causes large
increases in glucose stimulated release of insulin from β-cells. These increases are associated with parallel
increases in voltage dependent calcium influxes into the β-cells lacking α-catenin and these are necessary for the
increased insulin secretion. Moreover, α-catenin depletion in INS-1E cells decreases the actin polymerisation
suggesting that α-catenin mediated regulation of GSIS may occur through modulation of actin cytoskeleton.

Experimental procedures
Cell culture
INS-1E cells were kindly provided by Professor C. B. Wollheim and INS-1 832/3 cells were kindly provided by
Professor Christopher B. Newgard.INS-1E and INS-832/3 β-cells were maintained in RPMI 1640 medium con-
taining 11.1 mM glucose, supplemented with 10% (v/v) FBS (fetal bovine serum), 100 units/ml penicillin,
100 mg/ml streptomycin, 10 mM Hepes, 2 mM L-glutamine, 1 mM sodium pyruvate (all Gibco, Life
Technologies), and 50 mM 2-mercaptoethanol. Glucose treatment experiments were performed in confluent
cells in six well culture plates and insulin secretion experiments were performed on >80% confluent cells in
12-well culture plates after serum-starvation in Krebs-Ringer Bicarbonate Hepes buffer (KRBH: 119 mM NaCl,
4.74 mM KCl, 1.19 mM MgSO4, 25 mM NaHCO3, 1.19 mM KH2PO4, 2.54 mM CaCl2 and 50 mM Hepes),
pH 7.4, with 0.2% BSA (low fatty acid).

Cell transfection
All siRNAs and siRNA transfection reagents were purchased from Life Technologies and used according to
manufacturer’s instructions. All siRNA transfections were performed using reverse transfection method with
either negative control siRNA (StealthTM RNAi siRNA Negative Control, Med GC) or siRNA specific for α-E
catenin (RSS 358211, RSS 316764, RSS 316766), α-N catenin (RSS 311110, RSS 311111, RSS 355878) or
β-catenin (RSS331357) at a final concentration of 30 nM using Lipofectamine™ 2000 transfection reagent.
5 × 105 INS-1E cells were used in each well of 12 well plate and cells were plated in media lacking antibiotics.
24 h after transfection, medium was replaced with RMPI with antibiotics and experiments were performed 48 h
after transfection.

Cell lysate preparation for western blot
After treatments, cells were rinsed with ice-cold 1xPBS and lysates were collected in buffer containing 20 mM
Tris–HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM sodium pyrophos-
phate, 1 mM β-glycerol phosphate, 1 mM vanadate, 100 mM NaF, 1 mM 4-(2-aminoethyl) benzenesulfonyl
fluoride hydrochloride (AESBF), 4 mg/ml aprotinin, 0.4 mg/ml pepstatin, 4 mg/ml leupeptin, and 30 mM
N-[N-(N-Acetyl-L-leucyl)-L-leucyl]-L-norleucine (ALLN). Lysates were centrifuged at 16 100×g for 10 min,
and supernatants were analysed by polyacrylamide gel electrophoresis for Western blotting.
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Western blot analysis
Western blot analysis was done using antibodies against α-E catenin (1 : 1000; Cell Signalling Technologies,
catalogue number # 240) and α-N catenin (1;1000; Cell Signalling Technologies, catalogue number 2163) and
total β-catenin (1 : 2000: Symansis, catalogue number 3024C), α-tubulin (1 : 20 000; Sigma–Aldrich, catalogue
number T6074) and β-actin (1 : 20 000; Sigma–Aldrich, catalogue number A1978). After overnight incubation
at 4°C with primary antibodies, membranes were washed and incubated with respective secondary antibodies
anti-mouse IgG HRP (1 : 20 000; Sigma–Aldrich), anti-rabbit IgG HRP (1 : 10 000 Santa Cruz biotechnology)
or anti-sheep IgG HRP (1 : 20 000; Dako) for 1 h at room temperature and developed with Clarity™ Western
ECL substrate (Bio-Rad Laboratories).

Measuring insulin concentrations
Forty-eight hours after siRNA transfection, cells were starved in KRBH buffer. After starvation, media were
replaced with KRBH containing either 0.5 mM or 10 mM glucose for 2 h. To measure the amount of secreted
insulin levels, aliquots of supernatants were collected, and insulin concentrations were measured using the
AlphaLISA Insulin Assay kit (PerkinElmer) according to the manufacturer’s instructions. To measure the total
insulin content, cell lysates were collected, diluted accordingly and performed AlphaLISA insulin assay.

F actin G actin assay
INS-1E cells were plated in 12 well plate during siRNA transfection. Forty-eight hours after siRNA transfection,
cells were washed with PBS and lysed with actin stabilisation buffer 50 mM NaCl, 5 mM MgCl2, 50 mM PIPES,
5 mM EGTA, 5% (v/v) glycerol, 0.1% Nonidet P-40,, pH 6.9, 0.1% Triton X-100, 0.1% Tween 20, 0.1%
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Figure 1. α-E catenin and α-N catenin protein levels increase with glucose stimulation.

After serum starvation in KRBH buffer, INS-1E cells (A) and INS 832/3 cells (D) were stimulated with 10 mM glucose or 15 mM, respectively for 3 h

and lysates were subjected to western blot analysis using α-tubulin as a loading control. (B and C) Densitometry analysis of α-catenin protein levels

in western blot images of INS-1E lysates and (E and F) INS-832/3 lysates. Results are mean ± S.E.M of three independent experiments. * P < 0.05

and ** P < 0.01 compared with control glucose condition as assessed by unpaired t-test (1B,C,E,F). Results are representative of least three

independent experiments.
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2-mercaptoethanol, 0.001% Antifoam A, 1 mM ATP, and protease inhibitors. Cells were collected by scraping
and homogenised by passing through a 24-gauge needle five times. Cell lysates were incubated at 37°C for
10 min and centrifuged at 2000×g for 5 min to separate the cell debri. The G-actin was separated from F-Actin
by centrifuging at 10 000×g for 1 h at 37°C. F-Actin pellet was resuspended in Milli-Q water containing 10 μM
of cytochalsin D. Latrunculin-A was used as a negative control that reduces actin polymerisation and phalloidin
was used as a positive control for actin polymerisation. F-Actin and G-Actin samples were run on 8% SDS
PAGE gel and the expression of α-E catenin, α-N catenin and β-actin proteins were analysed.

Statistical analysis
Results are presented as means ± S.E.M. Statistical differences were determined using two-way ANOVA with
Dunnett’s or Tukey’s post hoc test or unpaired t-tests and statistical significance is displayed as * P < 0.05 or
** P < 0.01. Statistical analyses were performed using statistical software package GraphPad Prism 6.0
(GraphPad Software Inc.).

Results
We find that increasing levels of glucose in INS-1E cells from 0.5 mM to 10 mM resulted in an increase in the
levels of both α-E and α-N catenin in these cells which broadly parallels the increases we observe in β-catenin
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Figure 2. α-catenin responds to glucose at physiologically relevant concentrations and in a time dependent manner.

(A–D) Following serum starvation in KRBH buffer, INS-1E cells were stimulated with 10 mM glucose for the indicated time. Cell lysates were

subjected for western blot analysis using α-E catenin, α-N catenin antibodies and β-actin and α-tubulin as loading controls. (E–G) After serum

starvation, INS-1E cells were stimulated with increasing concentrations of glucose ranging from 2 mM-8 mM for 3 h and cell lysates were subjected

for western blot analysis. Results are representative of at least three independent experiments. Results are mean ± S.E.M. of 2–4 independent

experiments * P < 0.05 and ** P < 0.01 compared with control glucose condition as assessed by unpaired t-test (1B,D,F,G).
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(Figure 1A–C). Similar results were seen in the INS-1 832/3 cells (Figure 1D–F). These increases occur in a
time dependent manner(Figure 2A–D) and across a physiologically relevant range of glucose concentrations
(Figure 2E–G) suggesting their potential involvement in insulin secretion process. Furthermore, we see an
increase in α-N catenin levels when α-E catenin is depleted in these cells using siRNA but not an increase in
α-E catenin when α-N catenin is depleted (Figure 4A) indicating that α-N catenin might compensate for the
loss of α-E catenin in this system.
We independently investigated the roles of both of the isoforms of α-catenin in insulin secretion. Depletion

of each isoform alone surprisingly resulted in an increase in GSIS in INS-1E (Figure 3A–D). Similar results
were found in INS-1 832/3 cells (data not shown). Simultaneous depletion of both α-catenin isoforms had an
additive increase on GSIS (Figure 4A,B). This effect of α-catenin depletion was the opposite of what we find
when we deplete β-catenin, therefore we investigated the effect of simultaneous knockdown of both α- and
β-catenin (Figure 4C,D). In these experiments we find that α-catenin induced increase in GSIS was almost
totally attenuated when β-catenin was also knocked down. To investigate the mechanism by which α-catenin
might be regulating insulin secretion we investigated the possibility that α-catenin was increasing levels of
insulin overall in the β-cells but this was not the case (Figure 5A). We next investigated whether loss of
α-catenin affected calcium influx into the cells. We used FLIPR to investigate the effects on voltage sensitive
calcium influx into the β-cells initiated by K+ induced depolarisation. We find that KCl mediated increases in
insulin release were increased in α-catenin depleted cells (Figure 5B) and that this is associated with a large
increase in calcium influx into the cells (Figure 5C). Consistent with this influx in calcium being linked to
the increase in insulin secretion we find that the calcium channel blocker nifedipene largely attenuated the
increases in insulin secretion in the α-catenin depleted cells at a concentration of drug at which it is selective
for L-type channels (Figure 5D).
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Figure 3. α-catenin involve in the negative feedback mechanism during glucose stimulated insulin secretion.

INS-1E cells were transfected with either control siRNA or siRNA specific for α-E catenin or α-N catenin. Forty-eight hours after siRNA transfection,

cells were serum starved for 2 h and stimulated with either 0.5 mM Glucose or 10 mM glucose for 2 h. Insulin concentrations were measured by

performing alphaLIZA assays and were normalised to total protein content. (A) Immunoblot analysis of α-E catenin levels in INS-1E lysates after

siRNA transfection and (B) insulin concentrations in supernatants of negative control or α-E catenin siRNA transfected cells. (C) Immunoblot

analysis of α-N catenin protein level in INS-1E lysates after siRNA transfection and (D) insulin concentrations in supernatants of negative control or

α-N catenin siRNA transfected cells. Results are mean ± S.E.M. * P < 0.05 and ** P < 0.01 compared with control glucose stimulated condition as

assessed by two-way ANOVA. Similar results were obtained in at least three independent experiments.
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As α-catenin is a well-known actin cytoskeleton regulator, we investigated the effect of α-catenin depletion
on actin polymerisation. When we simultaneously knockdown α-E catenin with α-N catenin we find that the
ratio between filamentous (F)-actin and monomeric (G)-actin is significantly reduced (Figure 6A,B), similar to
the effect of latrunculin which is also known to potentiate the GSIS [20]. Furthermore when we inhibit actin
branching with ARP 2/3 inhibitor CK666, α-catenin knockdown effect on GSIS is attenuated indicating the
α-catenin mediated regulation of insulin secretion potentially involves the regulation of branching of the actin
cytoskeleton (Figure 6C,D).

Discussion
Adherens junctions play an important role in the regulation of some vesicle trafficking processes, including
GSIS [5,18,21,22]. β-catenin mediates some effects of adherens junctions [23] and we have previously shown its
is required for the proper translocation of GLUT4 containing vesicles in adipocytes [21] and of insulin
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Figure 4. α-E catenin and α-N catenin is functionally redundant in β-cells.

INS-1E cells were transfected with negative control siRNA, α-E catenin siRNA, α-N-catenin siRNA or a combination of both α-E catenin and

α-N-catenin siRNA. (A) Immunoblot analysis of INS-1E lysates after siRNA transfection using α-E catenin antibody, α-N catenin antibody and

α-Tubulin. (B) Insulin concentrations in supernatants of siRNA transfected cells. β-catenin depletion attenuates α-E catenin knockdown effect on

glucose stimulated insulin secretion. INS-1E cells were transfected with negative control siRNA, α-E catenin siRNA, β-catenin siRNA or a

combination of both α-E catenin and β-catenin siRNA. (C) Immunoblot analysis of INS-1E lysates after siRNA transfection. (D) Insulin concentrations

in supernatants of siRNA transfected cells. Results are mean ± S.E.M. * P < 0.05 and ** P < 0.01 compared with control siRNA. glucose stimulated

condition as assessed by two-way ANOVA. # P < 0.05 compared with control siRNA glucose stimulated condition as assessed by t-test. Similar

results were obtained in at least three independent experiments.
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containing vesicles in β-cells [18]. The current study further explores the mechanisms involved by examining
the role of the β-catenin binding partner α-catenin in GSIS. These studies show α-catenin is involved in
negative feedback regulation of GSIS. At least in these these rat clonal model β-cell models the most likely
interpretation of our data is that both α-E-catenin and α-N-catenin isoforms play functionally redundant roles
in this process. We find that lowering α-catenin levels has a similar effect on insulin secretion and actin
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Figure 5. α-E catenin depletion affects Calcium influx to β-cells.

(A) Forty-eight hours after siRNA transfection total insulin contents in the cell lysates were measured by alphaLIZA and normalised to total protein

content. Similar results were obtained in at least two independent experiments. (B) INS-1E cells were transfected with either control siRNA or siRNA

specific for α-E catenin. Forty-eight hours after siRNA transfection, cells were serum starved for 2 h and stimulated with either 4.7 mM KCl or

30 mM KCl for 2 h. Insulin concentrations were measured by performing alphaLISA assays and were normalised to total protein content. Results are

mean ± S.E.M. * P < 0.05 and ** P < 0.01 compared with control/low glucose condition as assessed by two-way ANOVA. Similar results were

obtained in at least three independent experiments. (C) α-catenin depletion increases the K+ stimulated Calcium flux into β-cells. INS-1E cells were

transfected either with negative control siRNA or siRNA specific for either α-E catenin or α-N catenin. Forty-eight hours after siRNA transfection

cells were incubated with calcium binding dye for 1 h at 37°C and readings were taken for 225 s at 2 s intervals. At 40 s, 10 ml of KCl was added to

each well, such that the final KCl concentration is 30 mM. Relative Fluorescence units (RFU) were calculated by subtracting each fluorescence

signal from initial fluorescence signal in different siRNA conditions. Similar results were obtained in at least three independent experiments.

(D) Nifedipine treatment attenuates the α-E catenin knockdown effect on K+ stimulated insulin secretion. Forty-eight hours after siRNA transfection

cells were stimulated with 10 mM glucose in the presence or absence of Calcium channel inhibitor-Nifedipine. Insulin concentrations were

measured by performing alphaLISA assays and were normalised to total protein content. Results are mean ± S.E.M. * P < 0.05 and ** P < 0.01

compared with control/low glucose condition as assessed by two-way ANOVA.
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polymerisation to that clasically seen with latrunculin suggesting the α-catenin is important in maintaining
appropriate cytoskeletal architecture to achieve proper regulation of insulin secretion.
Our evidence indicates that one role of the α-catenin is to regulate the processes regulating calcium levels in

the β-cells following membrane depolarisation. Consistent with this it has previously been shown that dispersed
β-cells have spontaneous fluctuations in intracellular calcium levels while stable calcium levels are seen in con-
fluent β-cells [24]. The confluent β-cells have adherens junctions which provide a pool of α-catenin localised
near the plasma membrane [25] and this could be involved in restraining the calcium fluxes. We have previ-
ously shown that lowering β-catenin levels attenuates glucose and KCl mediated release of insulin [17,18] but
we did not find any effect of lowering β-catenin on calcium influx.
We find that reductions in β-catenin strongly attenuate the increases in GSIS seen when α-catenin levels are

reduced indicating that the requirement for β-catenin in insulin secretion dominates over the effect of
α-catenin. This suggests it is possible that the pool of β-catenin/α-catenin heterodimers act separately from
α-catenin homodimers. The dimeric form of α-catenin is known to play a key role in regulating the actin cyto-
skeleton, a process known to be important in the control of insulin secretory vesicles [3,4]. Alpha-catenin
dimers control the switch of actin from branch chains to linear cable structures by competing with for binding
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Figure 6. α-catenin depletion affects actin polymerisation in INS-1E cells.

INS 1-E cells were transfected with either control siRNA or siRNA specific for α-E catenin and α-N catenin siRNA. Phalloidin was used as a positive

control for actin polymerisation while latrunculin was used as a negative control. (A) F-actin was separated from G-actin by ultracentrifugation and

expression of F-actin and G-actin were analysed by performing western blot analysis using β-actin antibody. (B) F-actin and G-actin ratio was

analysed by densitometry. Results are mean ± S.E.M of four independent experiments. * P < 0.05 and ** P < 0.01 compared with control siRNA as

assessed by unpaired t-test. INS-1E cells were transfected with either control siRNA or siRNA specific for α-E catenin and α-N catenin. Forty-eight

hours after siRNA transfection cells were serum starved and stimulated with 10 mM Glucose in the presence of either DMSO or CK666. (C) Lysates

were used for western blot analysis to confirm the knockdown. (D) AlphaLIZA assays were performed to measure the secreted insulin

concentrations. Results are mean ± S.E.M. * P < 0.05 and ** P < 0.01 compared with control/low glucose condition as assessed by two-way ANOVA.
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with the ARP 2/3 protein[25]. Consistant with this it has previously been shown that knockdown of N-WASP,
which is an activator of ARP 2/3, suppresses GSIS suggesting that activation of ARP 2/3 is important for
proper GSIS [26]. In our system where we lower α-catenin levels there will be less inhibitory effect on ARP 2/3
leading to more branched actin filaments and less linear actin cables, which can potentially give easy access to
insulin granules to fuse with the plasma membrane. In accordance with this hypothesis, we found that when
we inhibit actin branching with ARP 2/3 inhibitor CK666 in an α-catenin depleted system the α-catenin knock-
down effect on insulin secretion is reduced. Overall these findings suggest that α-catenin mediated regulation of
GSIS may occur through modulation of actin dynamics though the details by which α-catenin regulates GSIS
remain to be resolved in future studies.
Our findings here that levels of α-catenin proteins are important in regulating insulin secretion means that

factors controlling levels of these proteins have the potential to impact on the ability of β-cells to release
insulin. Our finding that α-catenin levels change rapidly in response to changes in glucose in β-cell models
thus suggests a mechanism by which high glucose levels might feed back to control levels of insulin secretion.
This would potentially be important in fine-tuning insulin secretion in normal states but it would also be of
interest to understand how changes in the levels of these proteins might be involved in causing the changes in
β-cell function bought about by long term exposure to insulin resistant and diabetic states. Very little informa-
tion is available on this although a redistribution of α-catenin away from adherens junctions has been observed
in islets of mice fed a high fat diet [27].
Overall these studies show that α-catenin and β-catenin play opposing roles in regulating GSIS. The

α-catenin is able to inhibit both calcium fluxes and insulin secretion while the β-catenin plays a separate role
that is required for GSIS with the relative levels of each thus having potential to influence the overall ability of
β-cells to secrete insulin after membrane depolarisation. However, since these studies are confined to rat clonal
β-cell models, further studies will be required to understand whether these mechanisms play a role in the
regulation of insulin secretion in functional islets where the proper cellular architecture will be present.
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