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Genome-wide association studies have identified loci associated with Alzheimer’s Disease (AD), but iden-
tifying the exact causal variants and genes at each locus is challenging due to linkage disequilibrium and 
their largely non-coding nature. To address this, we performed a massively parallel reporter assay of 3,576 
AD-associated variants in THP-1 macrophages in both resting and proinflammatory states and identified 47 
expression-modulating variants (emVars). To understand the endogenous chromatin context of emVars, we 
built an activity-by-contact model using epigenomic maps of macrophage inflammation and inferred condi-
tion-specific enhancer-promoter pairs. Intersection of emVars with enhancer-promoter pairs and microglia 
expression quantitative trait loci allowed us to connect 39 emVars to 76 putative AD risk genes enriched for 
AD-associated molecular signatures. Overall, systematic characterization of AD-associated variants enhances 
our understanding of the regulatory mechanisms underlying AD pathogenesis. 

lzheimer’s disease (AD) is a progressive neurode-
generative disease that impacts over 26 million 
people around the world1. Despite its global bur-

den, treatment options are limited, in large part because 
molecular mechanisms underlying AD remain unclear. 
Common variation is a major source of risk for AD, 
explaining 33% of total phenotypic variance2. The most 
recent genome-wide association study (GWAS) identified 
75 genomic regions associated with AD3. The critical next 
step is to distill biological mechanisms of AD risk from 
common variant associations.

Understanding the functional impact of common 
variation is challenging because most GWAS-identified 
genetic variants reside in non-coding genomic regions 
with poorly understood functionality4,5. Causal variants 
are thought to alter the regulatory activity of non-coding 
loci. However, a GWAS locus typically contains dozens 
of non-coding variants, each requiring high-throughput 
functional validation. Once causal variants are identified, 
pinpointing their target genes is also challenging, because 
non-coding loci can alter transcription of genes millions of 
base pairs away via chromatin loops6–9. Importantly, these 
variant-gene relationships are dynamically regulated in a 

A cell type- and context-specific fashion10,11,12–15, highlighting 
the importance of understanding the functional impact 
of risk variants in the relevant cellular context. 

Multiple lines of evidence suggest that AD risk variants 
promote disease by altering gene regulation in immune 
cells16,17. Previous studies have shown that genetic risk 
factors for AD are enriched in open chromatin regions 
in macrophages and microglia13,18. Moreover, peripheral 
monocytes and macrophages have been shown to infil-
trate AD brains19, and complex crosstalk between periph-
eral and central immune cells has been proposed to con-
tribute to neuroinflammation and disease progression in 
AD20,21. Finally, AD brains have been found to harbor spe-
cific subclasses of microglia known as disease associated 
microglia (DAMs) that exhibit a distinct proinflammatory 
expression profile and correlate with overall amyloid 
level and neurofibrillary tangle pathology22–24,12–15. There-
fore, it is important to study the regulatory impact of AD 
risk variants in immune cells such as macrophages and 
microglia, not only under resting conditions but also in 
a proinflammatory state, to better model the pathogenic 
process of AD development.

Here we employed a massively parallel reporter assay 
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(MPRA), a high-throughput technology for quantifying 
regulatory activity of genetic variants25–29, on 3,576 AD risk 
variants spanning 25 GWAS loci30 in resting and LPS+IN-
Fγ-treated macrophages, which we refer to as “proin-
flammatory macrophages.” Empirical characterization 
via MPRA identified 47 putative causal AD risk variants 
across 12 loci that show both enhancer and allelic activity. 
To understand the regulatory impact of these variants, 
we leveraged gene regulatory networks using RNA-seq, 
H3K27ac ChIP-seq, ATAC-seq, and Hi-C datasets in rest-
ing and proinflammatory macrophages31. Together, we 
mapped empirically validated variants to 76 putative 
causal AD risk genes, which are enriched for aging-re-
lated molecular signatures and DAM signatures. Finally, 
we quantified the impact of a putative causal AD risk 
variant on transcription factor (TF) binding using elec-
trophoretic mobility shift assays (EMSAs). These findings 
identify a set of putative causal variants and risk genes 
for AD, providing targets for further research and thera-
peutic development.

Results

MPRA identifies shared and condition-specific 
regulatory elements
To quantify the regulatory activity of AD-associated GWAS 
variants, we designed an MPRA library to test all variants 
with nominal significance (p < 1 × 10-5) within the GWAS 
loci described by Jansen et al30. We filtered out those that 
overlapped restriction enzyme sites used for molecular 
cloning and those longer than 1 bp in length, resulting 
in 3,498 variants (Sup Figure 1a). We synthesized 150-
bp sequences flanking these variants (hereafter referred 
to as AD-associated genetic element), for both risk and 
protective alleles, and cloned them upstream of a mini-
mal promoter driving GFP and a 20 bp barcode (Figure 
1a). We also included CMV and EF1 promoters as positive 
controls and 198 scrambled 150-bp sequences as negative 
controls (Sup Figure 1b). We packaged this MPRA library 
into lentivirus and introduced it into THP-1 monocytes 
that were differentiated into macrophages (Sup Table 1). 
Macrophages were used because their open chromatin 
exhibits the same level of enrichment for AD GWAS vari-
ants as microglia18. To model an AD-related pathogenic 
condition, we tested cells in both resting conditions and 
after stimulation with LPS and IFNγ, which were pre-
viously shown to induce a proinflammatory transcrip-
tional profile similar to that observed in disease-asso-
ciated microglia (DAM)32 (Figure 1a). We isolated RNA 
barcodes from macrophages and DNA barcodes from 
the lentivirus, and quantified the transcriptional activity 
of each AD-associated genetic element by its RNA/DNA 
ratio29 (Sup Table 2). Our library contained a median of 
107 barcodes per variant to mitigate potential barcode 

effects on transcription (Sup Figure 1c). We obtained a 
total of 9 biological replicates for resting macrophages 
and 6 biological replicates for proinflammatory macro-
phages resulting in a median Pearson correlation coeffi-
cient of 0.84 and 0.63 for resting and proinflammatory 
macrophages, respectively (Sup Figure 1d-e).

First, we identified AD-associated genetic elements 
with significantly higher regulatory activity compared 
to scrambled controls. As expected, sequences encoding 
CMV and EF1 promoters exhibited high regulatory activity 
in both conditions (median log2(RNA/DNA) ratio 3.09 for 
resting macrophages and 3.24 for proinflammatory mac-
rophages; Figure 1b, Sup Fig 2a). In addition to these pos-
itive controls, 553 AD-associated genetic elements exhib-
ited higher regulatory activity compared to scrambled 
controls (linear mixed effect model for the MPRA activity, 
FDR < 0.05) which we refer to as “MPRA-active elements'' 
(Figure 1b, Sup Fig 2b, Sup Table 3). MPRA-active ele-
ments were enriched for TF binding motifs compared to 
MPRA-inactive elements (two-sided Wilcoxon rank-sum 
test, p = 1.0 × 10–7; Fig 1c, Sup Fig 2c) and included binding 
motifs for TFs with known roles in macrophage biology 
including ELF1, SP1, and AP-1. 

Since enhancers are often regulated in a condi-
tion-specific manner33–36, we next characterized the 
impact of proinflammatory stimuli on regulatory activity 
of MPRA-active elements by comparing resting to proin-
flammatory macrophages. Of MPRA-active elements, 
212 (38%) showed differential transcriptional activity 
between two conditions (linear mixed effect model for 
interaction effects, FDR < 0.05). Resting condition-specific 
MPRA-active elements were enriched for the erythroblast 
transformation specific (ETS) TF family, including FLI1, 
ETV4, and ETS1. In contrast, proinflammatory condi-
tion-specific MPRA-active elements were enriched for TFs 
involved in proinflammatory activation including NFKB, 
IRF, and AP-1 family (Figure 1d). These data support the 
validity of the MPRA-measured transcriptional activity 
and demonstrate that the regulatory activity of the AD-as-
sociated genetic elements is sensitive to the biological 
context. An example of MPRA-active elements with condi-
tion-specific enhancer activity is at the MS4A6A locus. In 
this locus, we detected an MPRA-active variant rs1151105 
that is only transcriptionally active in proinflammatory 
macrophages, yet there is no difference in the activity of 
alleles in either context (Figure 1e). Notably, rs1151105 
has much higher enhancer activity than the GWAS lead 
variant rs7935829. 

MPRA quantifies the regulatory impact of 
AD-associated gene variants 
Next, we surveyed the allelic activity of AD-associated 
variants by comparing the regulatory activity between 
protective and risk alleles. We identified 181 AD GWAS 
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variants that exhibited significant differences in regula-
tory activity between alleles (limma-based mpralm, FDR < 
0.05), which we refer to as “MPRA-allelic variants29” (Fig-
ure 1f, Sup Fig 2b, Sup Table 4). MPRA-allelic variants 
were also more enriched for TFs than MPRA-non allelic 
variants, albeit to a lesser degree than MPRA-active ele-

ments. These allelic variants would be difficult to predict 
from GWAS data alone as our MPRA-active elements and 
MPRA-allelic variants only included 2 lead GWAS vari-
ants, and were on average 92.4 kb away from the lead 
variants (Sup Fig 2d). Moreover, neither MPRA-active 
elements nor MPRA-allelic variants exhibited differ-
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Fig. 1 | MPRA on AD-associated genetic variants identifies functional regulatory variants. a, Schematic of the experimental design. The MPRA 
library includes 3,576 AD-associated variants upstream of a minimal promoter (Pro), GFP reporter gene, and 20 bp barcode. The library was pack-
aged into lentivirus and introduced into THP-1 monocytes, which were differentiated into macrophages. Barcode expression from risk and protective 
alleles was compared in resting and LPS+INFγ-treated macrophages to define MPRA-active elements and MPRA-allelic variants. b, MPRA activity 
is shown as log2(RNA/DNA) barcode ratio for negative controls (neg), inactive MPRA elements, active MPRA elements, and positive controls (pos) 
for resting (left) and LPS+INFγ-treated (right) macrophages. Two-sided Wilcoxon rank-sum tests were conducted in both conditions between the 
log2(RNA/DNA) ratios for MPRA-active versus MPRA-inactive elements (p < 2.2 x 10–16 resting; p < 2.2 x 10–16 LPS+INFγ). Violin plots represent the overall 
distribution of the data. Box plots represent the median and 25th to 75th quartile (interquartile range, IQR) and whiskers extend to the most extreme 
non-outliers. c, Density plot showing the distribution of –log10 p-values of enrichment of TF motifs in MPRA-active and MPRA-inactive elements 
(Two-sided Wilcoxon rank-sum test, p = 1.0 x 10–7). d, Top 5 TF motifs enriched in MPRA-active elements in resting (left) and LPS+INFγ-treated (right) 
macrophages compared to a background set including all inactive elements. e, Example of context-specific MPRA activity at the MS4A6A locus. 
Manhattan plot showing GWAS –log10 p-values (top left) and MPRA activity for each pair of alleles for each variant (bottom left). GWAS lead variant 
is represented by a triangle and MPRA-active variant is represented by a diamond. Boxplots showing the activity of each allele for the GWAS lead 
variant (top right) and MPRA-active variant (bottom right) in both conditions versus negative control (–), where the boxplots show the median and IQR 
with whiskers extending to the most extreme non-outliers. f, Volcano plot showing allelic-regulatory activity of 3,498 AD-associated variants (top, 
limma-based mpralm, FDR < 0.05). Bar plots showing which MPRA-allelic variants (green) are also MPRA-active elements (teal), or emVars. g, Barplot 
showing the number of MPRA-active and/or MPRA-allelic variants at each locus (top). Legend showing which loci have at least one MPRA-active and/
or MPRA-allelic variant (bottom). Asterisk represents loci which have no testable variants. h, Example of a context-specific emVar at the ZCWPW1 
locus. Manhattan plot showing GWAS p-values (top left) and MPRA activity (bottom left) for each variant. GWAS lead variant is represented by a 
triangle and MPRA active variant is represented by a diamond. Box plots show the activity of each allele for the GWAS lead variant (top right) and 
MPRA emVar (bottom right) in both conditions versus negative control (–). The box plots show the median and IQR with whiskers extending to the 
most extreme non-outliers.
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ences in GWAS p-values or effect size when compared to 
MPRA-inactive elements and MPRA-non allelic variants 
respectively (Sup Fig 2e-h).

Most of the GWAS loci (25 out of 29) had MPRA testable 
variants. Out of the 25 loci investigated, 24 harbored at 
least one MPRA-active element or MPRA-allelic variant. 
Previous studies have stated the importance of identify-
ing “expression-modulating variants,” or emVars25. These 
are variants that are both MPRA-active and MPRA-allelic 
by our definitions, and are more likely to be the true regu-
latory variants. In total, we identified 47 emVars across 12 
GWAS loci. We hypothesize that these emVars are poten-
tial causal variants driving genetic association with AD 
(Figure 1g, Sup Fig 2b, Sup Table 4). 

Given the level of context-specificity detected in 
MPRA-active elements, we performed differential anal-
ysis of MPRA-allelic variants between resting and proin-
flammatory macrophages. Notably, 140 out of 181 (77.3%) 
MPRA-allelic variants displayed statistically significant 
interaction between allelic activity and condition (FDR 
< 0.05, Sup Table 4). A striking example of this is at the 
ZCPW1 locus. The lead variant of this locus, rs1859788, 
was neither active nor allelic in either condition. How-
ever, we identified an MPRA-allelic variant, rs6979218, 
which shows significant allelic activity only in proin-
flammatory, but not in resting, macrophages (Figure 1h). 
Together, our data indicates that both enhancer activity 
of elements as well as differential allelic activity of vari-
ants are influenced by biological contexts.

Macrophage regulatory architecture undergoes 
rewiring in a proinflammatory context
Given the differences in the regulatory activity of AD 
GWAS variants upon proinflammatory stimulation, we 
hypothesized that deciphering the endogenous changes 
in transcriptional regulatory networks will be criti-
cal to understanding the regulatory impact of emVars. 
Therefore, we leveraged our previously published tran-
scriptional regulatory networks across eight-point time 
courses of THP-1 macrophage activation31 (Figure 2a). We 
re-analyzed Hi-C, ATAC-seq, H3K27ac ChIP-seq, and RNA-
seq datasets from resting (0h) and proinflammatory (24h) 
macrophages to identify changes in transcriptional reg-
ulatory networks that correspond to the timepoints used 
in our MPRA experiments. We performed differential 
analysis for each of these genomic datasets. In total, we 
identified 25,470 total chromatin loops with 1.61% (409) 
being differential (FDR < 0.05, log2(fold-change) [LFC] > 
1), 163,150 ATAC-seq peaks with 12.5% (20,391) being  dif-
ferential (FDR < 0.05, LFC > 2), and 101,834 H3K27ac ChIP-
seq peaks with 47.97% (48,850) being differential (FDR 
< 0.05, LFC > 2). Finally, we identified 20,738 genes, and 
20.6% (4,273) of them were differentially expressed (FDR 

< 0.05, LFC > 2; Figure 2a). A subset of genomic loci dis-
play concordant increases in all of these genomic features 
during inflammation, deconvolving context-specific reg-
ulatory mechanisms. For example, at the MARCKS locus, 
increased contact frequency, chromatin accessibility, and 
histone H3K27ac is accompanied by elevated gene expres-
sion (Figure 2b). 

While it has been shown that regulatory elements of 
immune cells are enriched for genetic risk factors for 
AD17,37, the impact of regulatory element rewiring under 
proinflammatory conditions on this enrichment remains 
poorly understood. Therefore, we performed stratified 
linkage disequilibrium score (s-LDSC) regression analysis 
on ATAC-seq and H3K27ac ChIP-seq peaks from resting 
and proinflammatory macrophages. Both resting and 
proinflammatory ATAC-seq (and H3K27ac) peaks were 
enriched for AD-associated variants (p < 0.05, Figure 
2c, Sup Figure 3a). As microglia are the major immune 
cell population in the brain, we compared the gene 
expression profiles of our resting and proinflammatory 
macrophages to the single-nucleus (sn)RNA-seq dataset of 
microglia from postmortem brains with and without AD38. 
Upregulated genes in proinflammatory macrophages 
were highly enriched for microglial clusters associated 
with inflammation (MG2, 8, 10), lipid processing (MG4), 
phagocytosis (MG5), stress (MG6), and antiviral (MG11) 
states (Two-sided Wilcoxon rank-sum test, FDR < 0.05). 
Conversely, upregulated genes in resting macrophages 
were enriched for a microglial cluster (MG12) associated 
with cell cycling (Two-sided Wilcoxon rank-sum test, 
FDR < 0.05, Figure 2d). Together, these results support 
the idea that transcriptional regulatory networks of 
proinflammatory macrophages could offer valuable 
insights into understanding molecular pathology of AD.

To further investigate the mechanisms underlying 
changes in differential chromatin architecture, we per-
formed TF motif enrichment analyses. Regulatory regions 
more accessible in proinflammatory macrophages were 
strongly enriched for AP-1, NFKB, and IRF family mem-
bers (Sup Figure 3b, right). Analysis with our matched 
RNA-seq data revealed that many of the members of these 
TF complexes were also upregulated in proinflamma-
tory macrophages, including members of the AP-1 fam-
ily (FOSL2, JUNB, JUND),  NFKB complex (NFKB1, NFKB2, 
REL), and IRF family (IRF2, IRF7, IRF8; Figure 2e). Regu-
latory regions more accessible in resting macrophages 
were highly enriched for ETS, RUNX, and ELK family 
TF member motifs (Sup Figure 3b, left), which was not 
necessarily accompanied by decreases in the expression 
of the genes in those families (Sup Figure 3c). Impor-
tantly, many of the TF motifs enriched in differentially 
accessible chromatin regions were also enriched in con-
dition-specific MPRA-active elements (Figure 1d, Sup Fig 
3b), suggesting that differential chromatin architecture 
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and differential MPRA activity may be regulated by the 
same mechanisms. 

Using the Activity-By-Contact (ABC) model39 (Figure 
2f, Sup Table 5), we identified 61,934 pairs amongst our 
resting and proinflammatory macrophages connecting 
to 8,192 unique genes. A majority of these pairs were 
shared between both conditions (49,759 enhancer-gene 
pairs, 80.3%), yet we still identified a substantial num-
ber of enhancer-gene pairs that were unique to each 
condition. For resting macrophages, we identified 6,068 

(9.7%) unique enhancer-gene pairs, and for proinflam-
matory macrophages, we identified 6,107 (9.9%) unique 
enhancer-gene pairs (Figure 2g). Differential genes 
at proinflammatory-specific and resting-specific ABC 
anchors showed concordant upregulation and downreg-
ulation of gene expression respectively (Two-sided Wil-
coxon rank-sum test, p < 0.05; Figure 2h). 

We next asked whether the genes uniquely identified 
in resting- and proinflammatory-specific ABC pairs were 
relevant to macrophage immune responses. To address 
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enhancer-gene pairs (ABC score > 0.05) identified in resting and LPS+INFγ-treated macrophages. h, Density plot showing the LFC in ABC score for 
genes highly expressed in resting macrophages (peach), genes highly expressed in LPS+INFγ-treated macrophages (salmon), or expression-matched 
static genes (gray). Asterisks represent significance as calculated by a two-sided Wilcoxon rank-sum test, proinflammatory vs static p = 1.3 x 10–194; 
resting vs static p = 2.2 x 10–116. i, GO terms enriched for DEGs at the anchors of resting- or LPS+INFγ-specific ABC pairs.
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this, we performed gene ontology (GO) enrichment on 
these sets of genes. Genes at proinflammatory-specific 
ABC anchors were enriched for pathways involved in 
cytokine response and immune system regulation, con-
sistent with the enrichment of NFKB and AP-1 motifs at 
accessible chromatin in the activated state (Figure 2i). 
Conversely, genes at resting-specific ABC anchors were 
enriched for pathways related to cell cycle regulation, 
consistent with the cells being in an unperturbed rest-
ing state prior to their transition into a proinflamma-
tory phenotype (Figure 2i). Together, this suggests that 
the regulatory architecture of macrophages is rewired 
when macrophages become proinflammatory, shifting 
from genes involved in homeostasis to those involved in 
the inflammatory response.

MPRA-activity correlates with cell type-specific 
chromatin accessibility and H3K27ac
We next assessed how MPRA-measured transcriptional 
activity compares with endogenous regulatory architec-
ture in resting and proinflammatory macrophages. We 
divided our AD-associated genetic elements into 10 quan-
tiles based on their MPRA-activity (Sup Fig 4a). We then 
determined the chromatin accessibility or H3K27ac dip 
score40 of each AD-associated genetic element to assess 
their endogenous enhancer activity. We found that AD-as-
sociated genetic elements with the strongest MPRA-mea-
sured transcriptional activity (elements in the 10th quan-
tile) showed an increase in both accessibility and dip 
score in both resting and proinflammatory macrophages 
(Two-sided Wilcoxon rank-sum test, p < 0.05, Figure 3a, 
Sup Fig 4b). Furthermore, MPRA-active elements had 
higher dip scores and accessibility than MPRA-inactive 
elements in both conditions (Sup Fig 4c-d). This supports 
the notion that the strongest MPRA-active elements reside 
within accessible chromatin regions that likely function 
as enhancers. We were interested in understanding 
whether this trend was specific to macrophages, or was 
also apparent in other cell types. To address this, we 
obtained ATAC-seq data from the Roadmap Epigenomics 
study41 and extracted ATAC-seq counts for each AD-asso-
ciated genetic element in various cell types. While ele-
ments in the 10th quantile showed enhanced chromatin 
accessibility across all cell types, macrophages exhibited 
the highest level of chromatin accessibility (Figure 3b). 

This suggests that there is some cell type specificity 
that may contribute to the activity of an element tested 
in MPRA. Since Geschwind and colleagues previously per-
formed MPRA on AD GWAS variants in HEK293T cells42, 
we compared our results to this independent dataset. Of 
the 3,494 variants that we assayed in THP-1 macrophages, 
1,155 (33%) were also assayed in HEK293T cells (Sup Fig 
5a). Of those, 73 (6.3%) and 107 (9.3%) were MPRA-allelic 

in THP-1 macrophages and HEK293T cells, respectively 
(Sup Fig 5b). Strikingly, only 7 variants showed allelic 
regulatory activity in both cell types, meaning that the 
majority of variants (90.4% for THP-1 macrophages and 
93.5% for HEK293T cells) showed allelic activity in their 
respective cell types (Sup Fig 5c). Five out of the 7 vari-
ants had identical direction of effects (IDE) between the 
protective and risk alleles, and 2 had opposite directions 
of effect (Sup Fig 5d). In addition to allelic activity of vari-
ants, we compared MPRA-measured transcriptional activ-
ity of AD-associated genetic elements in both cell types. 
The most active AD-associated genetic elements in THP-1 
macrophages were more accessible in THP-1 ATAC-seq 
data compared to the most active variants in the HEK293T 
MPRA (Sup Fig 5e). Together, this highlights the cell type 
specificity of AD-associated variants and the importance 
of conducting MPRA experiments in disease-relevant cell 
types.  

emVars disrupt TF motifs involved in 
homeostasis and inflammation
Next, we explored the potential mechanisms through 
which emVars might be influencing enhancer activity. 
We identified 47 emVars by intersecting MPRA-allelic 
variants with MPRA-active elements (Figure 3c, Sup 
Fig 2c). We reason that emVars are the primary candi-
dates for disrupting enhancer activity in macrophages 
among the variants we have assayed, making them more 
likely to encode causal AD risk variants. Since variant 
regulatory activity is thought to be mediated by TF motif 
alterations29,43,44, we used motifBreakR45 to determine 
how emVars impact TF binding motifs (Sup Table 6). All 
emVars were predicted to significantly impact at least 
one TF motif. ETS and IRF family motifs amongst others 
were enriched in the set of altered motifs (two-sided Fish-
er’s exact test, Figure 3d). ETS and IRF TFs are involved 
in hematopoietic cell maintenance and inflammation 
respectively46–48 consistent with the notion that AD risk 
variants could heighten neuroinflammation. 

A representative example of this is present at the NEC-
TIN2 locus. The emVar rs1871047 is located in a putative 
enhancer within an intron of NECTIN2, and appears 
to become more active in response to LPS+IFNγ treat-
ment. This is consistent with expression of NECTIN2 
itself which is highly upregulated upon stimulation with 
LPS/IFNγ (Figure 3e, top). A closer examination of the 
variant reveals that it is located within an IRF2 binding 
site, where the risk G allele promotes IRF2 binding and 
is associated with increased expression of the reporter 
gene (Figure 3e, bottom). The IRF2 gene itself is upreg-
ulated upon LPS+INFγ treatment and is associated with 
proinflammatory responses (Figure 2e). At this locus, 
IRF2 may bind to the risk G allele and promote expres-
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sion of NECTIN2, an effect that is more pronounced upon 
an inflammatory response. NECTIN2 encodes a lipid-re-
lated protein that is a component of adherens junctions. 
Interestingly, this protein has been shown to mediate 
viral entry into cells49 and has previously shown to be 
associated with AD50.

We next explored H3K27ac signatures of emVars across 
four major brain cell types13. We found that emVars were 

most enriched with H3K27ac signatures in microglia com-
pared to other brain cell types, consistent with microglia 
being the resident macrophages of the brain (Figure 3f). 
As emVars were enriched with microglia regulatory ele-
ments, we intersected them with a well-powered microg-
lia eQTL dataset51. Notably, 68% of emVars showed eQTL 
signatures in microglia, with 84% of them showing IDE 
(Figure 3g). These results suggest that MPRA-validated 
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variant effects mimic the regulatory signatures of microg-
lia. On the contrary, only 37% of emVars identified in 
HEK293T cells42 showed eQTL signatures in microglia, 
with 71% of them showing IDE, further highlighting that 
the transcriptional effects of emVars are cell type-specific. 

Mapping emVars to genes with ABC and eQTLs
To gain deeper insights into how emVars affect the 
transcriptomic landscape in AD, we identified putative 
target genes of our 47 emVars using two gene mapping 
approaches. First, based on our previous finding that 
the ABC model can effectively link emVars to the target 
genes29, we overlapped these variants with our macro-
phage ABC enhancer-gene pairs, resulting in 173 pairs 
that connect 23 emVars to 60 genes (Figure 4a, Sup Table 
7). Second, we intersected emVars with microglia eQTL 

dataset51 (Figure 3g), resulting in 124 variant-eGene pairs 
connecting 32 emVars to 29 eGenes (Figure 4a, Sup Table 
7). Together, we connected 39 of 47 MPRA emVars to 76 
unique target genes (hereafter referred to as MPRA-AD 
risk genes; Figure 4a-b). Each MPRA-AD risk gene was 
connected to an average of 2.3 emVars, while each emVar 
was connected to an average of 4.8 target genes (Figure 
4c). GO and KEGG pathway enrichment revealed that 
MPRA-AD risk genes are involved in the MHC class II 
protein complex, lipoprotein particles, endocytosis, and 
antigen processing (Figure 4d, Sup Fig 6a). emVars var-
ied in their distance to the transcription start site of their 
mapped target genes, with a mean distance of 107 kb (Sup 
Fig 6b). 

We next explored the association of MPRA-AD risk 
genes with AD pathology by comparing these genes to 
various previously published datasets of AD-associated 
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transcriptional landscapes. Given the emerging evi-
dence implicating DAMs in AD pathology, we compared 
MPRA-AD risk genes with genes that are upregulated or 
downregulated in DAMs from the mouse brain52. We found 
significant enrichment of MPRA-AD risk genes among 
those that are upregulated, but not downregulated, in 
DAMs (two-sided Fisher’s exact test, FDR < 0.05, Figure 
4e). We also leveraged 12 human microglial states defined 
from single-cell molecular atlas of the AD brains38 (Figure 
2d). MPRA-AD risk genes were enriched for microglial 
state 3 (MG3), which involves ribosome biogenesis and 
exhibits the strongest DAM signature38 (two-sided Fisher’s 
exact test, FDR < 0.05, Figure 4e). In addition, MPRA-AD 
risk genes were enriched with differentially expressed 
genes in microglia in response to amyloid beta (Aβ) and 
tau24 (two-sided Fisher’s exact test, FDR < 0.05, Figure 
4e). Finally, since AD reflects age-associated impairment, 
we evaluated whether MPRA-AD risk genes exhibit 
aging-dependent molecular signatures53. MPRA-AD risk 
genes were enriched with genes with aging-dependent 
molecular trajectories in mice between the age of 2 and 24 
months (two-sided Fisher’s exact test, FDR < 0.05, Figure 
4e). Importantly, 19 out of 76 MPRA-AD risk genes (25%) 
drove the enrichment of AD-associated gene signatures 
connected to 26 emVars, suggesting that genetic risk fac-
tors for AD may contribute to the molecular pathology 
present in AD brains.

MPRA-AD risk genes included well known AD risk 
genes such as BIN1 and APOE. In addition to identifying 
putative target genes, our approach allowed us to prior-
itize variants and regulatory mechanisms that are likely 
driving the association of BIN1 and APOE with AD. In the 
BIN1 locus, we detected an emVar rs72838287 located in 
a putative macrophage enhancer marked by ATAC-seq 
and H3K27ac peaks (Figure 4f). Microglia eQTLs also 
supported the relationship between rs72838287 and BIN1 
expression. In both MPRA and eQTLs, risk allele G was 
associated with increased expression of GFP and BIN1 
respectively. BIN1 has been previously reported to be 
involved in Tau-mediated neurotoxicity54, proinflamma-
tory responses55, and neuronal activity and communica-
tion56–58. In the APOE locus, we found an emVar rs12721109 
located within a putative macrophage enhancer sup-
ported by ATAC-seq and H3K27ac peaks (Figure 4g). 
Rs12721109 is connected to the promoter of APOE by a 
chromatin loop and a strong ABC connection. The risk 
allele G was associated with increased expression of GFP 
in our MPRA, suggesting that APOE may be upregulated 
in AD. In addition to the well-established role of APOE ε4 
allele in increasing AD risk59,60, our results suggest that 
non-coding variants in the locus may also affect AD sus-
ceptibility by modulating APOE expression. In line with 
this hypothesis, APOE was found to be upregulated in 
response to Aβ and Tau24 and in DAMs52. 

An emVar shows allele-specific disruption of TF 
binding
It is thought that the variant regulatory activity measured 
by MPRA is largely mediated by TF motif disruption29,44. 
To test this, we performed EMSAs on rs9270887, an emVar 
at the HLA locus. This variant showed the largest differ-
ence in allelic activity between risk and protective alleles 
among all emVars identified at the HLA locus (Figure 5a). 
Both the ABC model and eQTLs suggest that the target 
gene of rs9270887 is HLA-DRB1, potentially providing a 
mechanism for the highly complex MHC locus associated 
with AD. The risk allele A was associated with increased 
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GFP expression in both resting and proinflammatory 
macrophages (Figure 5b).

We designed 41 bp fluorescent probes encoding risk 
and protective alleles of rs9270887 and performed EMSAs 
using lysates from both resting and proinflammatory 
macrophages. We observed a shift in the band only for the 
risk allele in both resting and proinflammatory macro-
phages, suggesting that only the risk allele has a potential 
for TF binding (Figure 5c). This result is consistent with 
the MPRA finding where the risk allele, which preferen-
tially binds to TFs in EMSAs, correlates with increased 
gene expression (Figure 5b). Notably, rs9270887 was pre-
viously tested in HEK293T cells but did not display signif-
icant allelic regulatory activity (p = 0.5)42. Therefore, we 
interrogated cell type-specific TF binding to this variant 
by performing EMSAs with HEK293T lysates. We found 
that neither the risk allele nor the protective allele binds 
to TFs in HEK293T lysates (Figure 5c), again supporting 
cell type-specific regulatory activity. This provides a com-
pelling regulatory mechanism explaining how the risk 
allele for rs9270887 displays transcriptional activity in a 
cell type-specific fashion. 

Discussion
GWAS have identified loci associated with AD risk3, but 
interpretation is challenging because each locus contains 
dozens of closely linked risk variants due to LD. Further-
more, most variants are in non-coding regions, suggesting 
they have regulatory function. Therefore, recent stud-
ies attempted to identify causal AD variants and distill 
their functional impacts by intersecting AD GWAS vari-
ants with multi-omic datasets collected from primary 
microglia from AD brains51 as well as human induced 
pluripotent stem cell (hiPSC)-derived microglia61. While 
overlap between risk variants and functional annotations 
(e.g. chromatin accessible region, histone H3K27ac peak, 
etc) provides valuable insights into putative regulatory 
mechanisms, it does not provide direct evidence that a 
variant alters regulatory activity. MPRA has been used 
to directly quantify the regulatory impacts of AD-associ-
ated variants in HEK293T cells42 However, given that AD 
genetic risk factors show immune cell-specific heritability 
enrichment13,18,16,17 and that MPRA demonstrates cell type 
specificity29,62–64, it remains unclear whether the variant 
effects observed in HEK293T cells translate to AD-relevant 
biological contexts.

To address these limitations, we used MPRA to sys-
tematically characterize regulatory function of AD GWAS 
variants in THP-1 macrophages in both resting and proin-
flammatory states. To the best of our knowledge, this is 
the first study to perform MPRA on AD risk variants in a 
cellular model and biological context relevant to AD. We 
identified 47 AD risk variants that were significantly more 

active than negative controls and exhibited allele-specific 
differences in activity (emVars). We then reanalyzed our 
previously published RNA-seq, ATAC-seq, H3K27ac CHIP-
seq, Hi-C, and eQTL data31,51 to identify 76 putative AD risk 
genes. These genes were enriched for genes previously 
implicated in AD. 

Comparison of our results with those obtained from 
HEK293T cells42 highlighted the cell type specific nature 
of MPRA. Only 5 out of 1,155 variants tested in both stud-
ies were found to have shared allelic effects in both cell 
types. Moreover, ~57% of our emVars showed eQTL sig-
natures with IDE in microglia51, compared to ~26% of 
emVars identified in HEK293T cells. These results collec-
tively suggest that regulatory effects of emVars identified 
in THP-1 macrophages mimic regulatory signatures of 
microglia and may provide a more accurate quantifica-
tion of the transcriptional impacts of AD risk variants. 
However, it is important to note that this difference could 
be attributed to different designs used in two studies. 
MPRA libraries in HEK293T cells were introduced episo-
mally, while in our study, MPRA libraries were delivered 
to THP-1 macrophages via lentiviral infection, which 
results in integration and chromatinization within the 
host genome. It has been shown that the MPRA activities 
of chromosomally integrated sequences can differ from 
those of identical sequences assayed in episomes, with 
integrated sequences typically showing a better overlap 
with ENCODE enhancer annotations65. Therefore, further 
investigation is needed to determine whether this differ-
ence is attributable to differences in cell types or delivery 
methods.

Comparing our results to previous genomics-based 
studies allowed us to revise attributions of putative 
causal variants at several loci including the well studied 
AD risk gene BIN1. Previous studies have attributed AD 
risk causality to rs673383913 and rs1302571742, and CRIS-
PR-mediated perturbation of regulatory elements con-
taining them did impact BIN1 expression. However, in 
our MPRA analysis, these risk variants were not identified 
as emVars. The discrepancy in rs6733839 may stem from 
differences between allelic and enhancer activity because 
while the variant’s enhancer activity was tested using 
CRISPR-mediated perturbation, its allelic activity has not 
been previously assessed. The discrepancy for rs13025717 
may be attributed to cell type specificity, as it exhibited 
enhancer activity but not allelic activity in THP-1 macro-
phages. We identified a novel emVar, rs72838287, with a 
regulatory connection with BIN1 in THP-1 macrophages. 
These differences highlight the importance of testing 
enhancer and allelic effects of the variant in a relevant 
biological context. 

In addition to cell type specificity, we examined variant 
regulatory activity under proinflammatory conditions 
to better model neuroinflammation in AD, as variants’ 
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functional consequences can vary with different condi-
tions12–15. Notably, ~38% of MPRA-active elements and 68% 
of MPRA-allelic variants exhibited condition specificity, 
suggesting that variants may have condition-specific reg-
ulatory effects due to both alterations in the activity of 
the regulatory elements and changes in the direction of 
allelic activity.

These findings represent an important advance in 
understanding the genetic basis of AD, as we have identi-
fied at least one emVar in 12 of the 29 GWAS loci analyzed. 
However, it is important to recognize several limitations. 
First, while we interrogated the majority of AD GWAS risk 
variants known at the time, this study did not quantify 
the regulatory impact of all currently available AD risk 
variants. For technical reasons, we excluded variants that 
resulted in insertion or deletion as well as those that were 
not compatible with our cloning experiments. Moreover, 
since the inception of this project a larger AD GWAS study 
has been published that has increased the number of risk 
loci. Second, while many of the variants are thought to 
influence macrophages and microglia function, it is pos-
sible that some variants impact other cell types and/or 
biological states not tested here. Finally, while the vari-
ants and genes identified here have a high likelihood of 
influencing AD risk, proving and understanding their role 
in AD initiation and progression will require rigorous 
functional studies in animals and/or organoid models.

In summary, our work breaks down critical barriers to 
understanding and treating AD by quantifying the regula-
tory impacts of AD risk variants and revealing those that 
alter activity in both resting and proinflammatory mac-
rophages. The next step will be to determine how these 
variants influence AD relevant phenotypes in multicel-
lular/animal models while also characterizing variants 
identified in newer GWAS studies. Together, these steps 
will pave the way for novel therapeutic strategies and 
personalized interventions in AD treatment.

Methods

CELL CULTURE

Macrophage differentiation and activation
The THP-1 human monocyte cell line (ATCC, #ATCC® TIB-
202TM), was cultured in RPMI 1640 media (Sigma-Aldrich 
# R8758) with the addition of 10% FBS (Thermo Fisher 
Scientific, Gibco TM,  #10500064) and 1% penicillin/strep-
tomycin (Sigma-Aldrich, #P4333). In order to differenti-
ate THP-1 monocytes into macrophages, we plated them 
at a density of 1.0 × 106 cells/well in 6-well plates and 
incubated with 25 μM PMA (12-O-tetradecanoylphorbol) 
for 24h. Macrophages were then allowed to rest for 72h 
before LPS/INFγ-treatment. A proinflammatory state 

was induced by treating the cells with 10 ng/mL of LPS 
(Sigma-Aldrich # L2630) and 20 ng/mL INFγ (Peprotech, 
#300-02) during 24h. 

MPRA

Variant selection and creation of oligo library
We have selected variants with nominal significance 
(p < 1×10–5) from 29 AD-associated GWAS loci30. Variants 
containing specific restriction enzyme sites for cloning 
purposes (MluI, SpeI, KpnI, XbaI) were excluded. Each 
variant was positioned at the center of a 150bp segment of 
its genomic context. Since GWAS variants were based on 
hg19, we used hg19 to retrieve the sequence. We included 
tiled CMV and EF1 promoters as positive controls and 198 
randomly scrambled DNA sequences with matching GC 
content to the MPRA library as negative controls. Agilent 
oligoarray chip technology was utilized to synthesize 
150bp sequences encompassing the variants along with 
flanking restriction enzyme sites for cloning, resulting in 
a total sequence size of 200bp.

Engineering of lenti-MPRA backbone
Plasmid pLS-mP (addgene Plasmid #81225) was modified 
to be used for the MPRA experiment. Since the pLS-mP 
plasmid contained SpeI and MluI restriction sites that 
would disrupt the downstream cloning of the MPRA 
library, we first removed these sites by digesting the 
plasmid with SpeI-HF (NEB, cat#R3133S), MluI-HF (NEB, 
#R3198S), and rSAP (NEB, #M0371S),  followed by ligation 
with Remove-spel-mlul oligo (Supplementary Table 1) 
using Quick Ligase (NEB, #M2200S). The modified plasmid 
was transformed into electrocompetent cells (Endura, 
cat#60242), and plated on lysogeny broth (LB) agar plates 
with ampicillin (ThermoFisher Scientific, #J60977.14). 
Several colonies were selected and mini prepped using 
QIAprep Spin Miniprep Kit (Qiagen, #27104). These colo-
nies were digested with SpeI-HF and XbaI (NEB, #R0145S) 
to check for the correct insert of the Remove-spel-mlul-R 
oligo. Colonies with the correct insert were used for 
downstream modification. 

Next, a KpnI restriction enzyme site needed to be 
removed, so it would not disrupt the downstream clon-
ing of the MPRA library. The plasmid was first digested 
with Bsu36I (NEB, #R0524S), KpnI-HF (NEB, #R3142S), and 
rSAP. Remove-KpnI-oligo (Supplementary Table 1) was 
ligated into the digested plasmid using Quick Ligase. The 
plasmid was transformed into electrically competent 
cells and selected using the aforementioned method. The 
KpnI restriction site removal was verified by digestion of 
the plasmid with KpnI-HF and XbaI digestion. Colonies 
with the correct insertion were used for downstream 
modification. 
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Finally, the plasmid’s minimal promoter and eGFP 
were removed and new SpeI and MluI restriction sites 
were added in. The plasmid was digested with EcoRI-HF 
(NEB, #R3101S), XbaI, and rSAP. The correct sized band 
was gel extracted using Zymoclean Gel DNA Recovery 
Kits (Zymo, #D4008). The Add-Spel-Mlul oligo (Supple-
mentary Table 1) was ligated into this site using Quick 
Ligase. The plasmid was transformed into electrically 
competent cells and selected using the aforementioned 
method. We validated the correct insert by digesting with 
BspEI (Kpn2I) (NEB, #R0540S) and MluI, and with sanger 
sequencing of the region. Colonies with the correct insert 
served as the plasmid backbone for the MPRA library gen-
eration.

Inserting variant library into lenti-MPRA 
backbone
The lyophilized 200bp sequences from Agilent were resus-
pended in TE buffer at 2 pM, and PCR primers (MPRA-chi-
primer-F3 and MPRA-chiprimer-R3, sequences available 
in Supplementary Table 1) were used to amplify the 
AD variant library and controls. PCR reactions were 
cleaned using Zymo PCR clean and concentrator-5 (Zymo, 
#D4003). Biotinylated PCR primers (MPRA-bcprimer-F, 
MPRA-bcprimer-R, sequences available in Supplemen-
tary Table 1) were used to add random 20bp barcodes 
to each sequence as well as SpeI and XbaI restriction 
enzyme sites for downstream cloning. The library was 
subsequently digested with SpeI-HF (NEB_#R3133L) 
and MluI-HF (NEB_#R3198S) for 1h at 37°C and bead 
cleaned with Dynabeads MyOne Streptavadin C1 beads 
(Thermo Fisher Scientific_#65001) to recover non-bioti-
nylated library-barcode pairs. We also digested 5ug of 
the modified pLS-mP backbone plasmid with SpeI-HF, 
MluI-HF (NEB_#R3198S), and rSAP for 3h at 37°C, which 
is followed by heat inactivation for 20 minutes at 80°C, 
and gel extraction using Zymo Gel DNA Recovery kit 
(Zymo_#D4008). The digested pLS-mP backbone and 
library-barcode pairs were ligated using T7 DNA ligase 
(NEB_#M0318S) at room temperature for 30 minutes. 
The ligated product was immediately transformed into 
electrocompetent cells and grown at 30°C overnight on 
LB agar plates with ampicillin. Colonies were quantified 
to estimate barcode complexity, and all colonies were 
scraped and grown in LB with ampicillin at 30°C over-
night. The culture was maxi prepped using Qiagen’s Plas-
mid Maxi Kit (Qiagen 12162). To check that the library was 
inserted, we performed (1) colony PCR (primers: P7_Len-
ti_F and P5_Lenti_R, sequences available in Supplemen-
tary Table 1) and (2) restriction enzyme digest using XbaI 
and PstI-HF. This resulted in the AD-MPRA-variant-bar-
code library.        

Barcode mapping
The variant and barcode region of the AD-MPRA-vari-
ant-barcode library was amplified via PCR using the 
NEBNext 2X Q5 Hifi HS Mastermix (NEB, #M0541L) 
and primers containing Illumina P5 and P7 adapters 
(Bcmap_P5_R and Bcmap_P7_F, sequences available in 
Supplementary Table 1). The PCR product was cleaned 
up using the Zymo PCR clean and concentrator-5 kit. The 
resulting library was sequenced using custom sequenc-
ing primers (BCmap_R1Seq_R and BCmap_R2Seq_F, 
sequences available in Supplementary Table 1) with 
the paired-end 250bp Novaseq 6000 SP platform at the 
UNC High-Throughput Sequencing Facility (HTSF). Bar-
codes were assigned to each variant using a custom code 
currently available in a github repository (https://github.
com/kiminsigne-ucla/bc_map) as previously described29. 

Adding in minimal promoter and GFP
We amplified a minimal promoter (minP) and GFP 
(minP-GFP) from the unmodified original pLS-mP plas-
mid (https://www.addgene.org/81225/) via PCR (primers: 
minP-GFP-F and minP-GFP-R, sequences available in Sup-
plementary Table 1) using the NEBNext 2X Q5 Hifi HS 
Mastermix. The amplified minP-GFP fragment was then 
cleaned up using the Zymo PCR clean and concentrator-5 
kit. The minP-GFP fragment and variant-barcode library 
were both digested with KpnI-HF (NEB, #R3142S) and 
rSAP for 3h at 37°C, which was followed by heat inac-
tivation for 10 minutes at 65°C. Both of these products 
were then gel extracted from a 0.8% agarose gel using 
Zymo Gel DNA Recovery kit. The gel extracted products 
were then digested with XbaI (NEB, #R0145S) and rSAP 
for 3h at 37°C, and heat inactivated for 10 minutes at 
65°C. Digested minP-GFP and variant-barcode library 
plasmid were cleaned up using Zymo PCR clean and con-
centrator-5 and ligated together using T7 DNA ligase. The 
ligation mix was, incubated at room temperature for 30 
minutes, then cleaned up using Zymo PCR clean and con-
centrator-5. The ligation mix was transformed into elec-
trocompetent cells, which were then plated on LB agar 
plates with ampicillin, resulting in the AD-MPRA library. 
The AD-MPRA library was grown in LB with ampicillin, 
and maxi prepped using Qiagen Maxi prep kit. The UNC 
Gene Therapy Center packaged the AD-MPRA library into 
lentivirus in two batches. The resulting virus had the titer 
of 4.56×109 viral particles/µL and 2.05×1010 viral particles/
µL respectively.

Lentiviral transduction of THP-1 cells
THP-1 cells were transduced with AD-MPRA libraries five 
days prior to the start of the differentiation into mac-
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rophages. Briefly, THP-1 cells were counted and resus-
pended at a density of 1 million cells per mL in fresh 
media with FBS and 8 μg/mL of polybrene. 110-300 lenti-
viral particles per cell were used for transduction. This 
number was determined based on titration experiments 
that assessed cell viability and transduction efficiency 
for each independent lentivirus batch. Through these 
titration experiments, we selected the number of viral 
particles per cell that achieved the maximum transduc-
tion efficiency without significantly compromising cell 
viability. After the addition of the lentivirus, cells were 
centrifuged for 30 minutes at 800g at 32°C and plated on 
12-well plates. A no-virus control was included to monitor 
general cell health. After 20h, cells were centrifuged for 5 
minutes at 300g, old media with lentivirus was removed, 
and cells were resuspended in fresh media and plated on 
12 well/plates at a density of 4×105 cells/mL. Cells were left 
to recover for 4 days and on day 5, macrophage differenti-
ation was initiated. RNA was extracted from each well 10 
days after transduction. To enhance detectability of trans-
duced cells, we pooled 1.2-1.8 million cells per replicate.

DNA and RNA isolation and processing
RNA was extracted using the RNAeasy mini kit (Qiagen, 
#74104) following manufacturer’s instructions. RNA integ-
rity number (RIN) was measured for all samples using 
Agilent tapestation 4150 system. RNA samples with a RIN 
score ≥ 8.5 were employed. Barcode cDNA was generated 
from the total extracted RNA using SuperScript IV Reverse 
Transcriptase (Invitrogen, #18090050) and a primer that 
targets downstream of the barcodes (Lib_Hand_RT_
Lenti, sequences available in Supplementary Table 1). To 
acquire an initial input of DNA barcodes introduced into 
the cells, RNA was extracted from the cell-free lentivirus 
preparation which contained the AD-MPRA library using 
the NucleoSpin Virus kit (Takara, #740983.10). The viral 
RNA was retro-transcribed using SuperScript IV Reverse 
Transcriptase and the Lib_Hand_RT_Lenti primer. This 
DNA was used to quantify MPRA DNA barcodes for nor-
malization. 

RNA and DNA MPRA library preparation 
cDNA from the cell-free AD-MPRA library (lentivirus) 
and cDNA from each transduced well were amplified 
via PCR using the Q5 High fidelity 2X Master Mix (NEB, 
#M0492S) and Lib_Hand_primer and Lib_Seq_GFP_R_
primers (sequences available in Supplementary Table 1). 
The samples were cleaned up using the DNA clean and 
concentrator-5 kit. Next, a second amplification step was 
performed to add on sequencing adaptors and unique 
Illumina indices (#). For this, the Q5 High fidelity 2X Mas-
ter Mix was used again with the P5_Seq_GFP_Lenti_F and 
P7_Ind_#_Han primers (sequences available in Supple-

mentary Table 1). The resulting libraries were cleaned 
up using 1:1 ratio of Ampure XP beads (Beckman Coulter, 
#A638819) and sequenced by the UNC HTSF using the 
NovaSeq 6000 S1 platform and at New York Genome 
Center using the NovaSeq X 10B platform (1x35bp) with 
custom primers that capture the barcode sequence and 
sequencing index (read 1 primer: Exp_R1_seq_P, index 
primer: Exp_Ind_seq_P).

Electrophoretic Mobility Shift Assay (EMSA)
HEK293T cells were cultured in DMEM containing Glu-
taMAX (Thermo Fisher Scientific, #10566016), 10% FBS 
(Fisher Scientific, #26-140-079), and 1% sodium pyruvate 
(Thermo Fisher Scientific, #11360070). THP-1 cells were 
differentiated into macrophages and stimulated with 
LPS and IFNγ as described above. Nuclear lysates from 
control and stimulated macrophages, and HEK293T cells 
were extracted using the NE-PERTM Nuclear and Cyto-
plasmic Extraction Kit (Thermo Fisher Scientific). 

5’ IRDye 700 labeled duplexed oligonucleotide probes 
(rs9270887_risk and rs9270887_protect, sequences avail-
able in Supplementary Table 1) with centrally posi-
tioned variants were obtained from Integrated DNA 
Technologies. EMSAs were carried out with the Odyssey 
Infrared EMSA kit (LICORbio, #829-07910) according to 
the manufacturer’s instructions. Each binding reaction 
consisted of 10 µg of nuclear extract combined with 2 µl 
of 10X binding buffer, 1 µl of 1 ug/µl poly(dl-dC), 2 µl of 25 
mM DTT/2.5% Tween 20, 1 µl of 1% NP-40, 1 µl of 50 nM 
IRDye 700-labeled probe and water to a total volume of 
20 µl. The reactions were incubated at room temperature 
protected from light for 1h. To confirm specificity of the 
band resulting from protein-probe complex, unlabeled 
duplex DNA (45X) was added for competition reactions. 
Prior to loading the samples, 5% TBE gel (Bio-Rad) was 
pre-run in the 0.5X TBE running buffer for 45 minutes. 
Following electrophoresis, DNA-protein complexes were 
detected using the Azure 600 imaging system.

Data Analysis

MPRA DATA ANALYSIS

MPRA data processing
Using the barcode-variant definitions from barcode map-
ping, RNA barcodes from each replicate in each condi-
tion were mapped to their corresponding variants and 
were counted. Since one DNA sample was used for all 
replicates in each condition, barcodes were connected 
to their corresponding variants for the DNA as well. 
Variants were found to have mapped to a median of 107 
barcodes. A count matrix was constructed containing 
the RNA barcode counts across all samples with the DNA 
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barcode counts. Barcodes that were defined as outliers 
were removed, and variants with fewer than 5 barcodes 
mapped were removed as well. For each variant, the RNA 
and DNA barcode counts were aggregated. We conducted 
reproducibility analysis between each of the 9 resting 
biological replicates and 6 proinflammatory biological 
replicates. 

Identification of active elements
The aggregated RNA and DNA counts were used to calcu-
late a RNA/DNA ratio to quantify MPRA element activity. 
The scrambled negative controls were further aggregated 
to result in one single negative control RNA/DNA ratio per 
each of the 9 resting biological replicates and each of the 
6 resting biological replicates for a total of 15 biological 
replicates. A fixed linear mixed-effect model (lmer func-
tion from the lme4 R package, version 1.1.35.1) was used 
to determine which AD-associated genetic elements had 
significantly higher activity than negative controls. The 
following design was used: activity ~ var*condition + (1 | 
pairs). In this design, “var” is whether that element is an 
MPRA-tested element or a negative control, “condition” is 
the biological context (resting or LPS+INFγ), and “pairs” 
is the replicate being tested (this is to account for differ-
ences in sequencing depth across replicates). 

To identify MPRA-active elements, we selected the 
allele with the smallest p-value for the “var” coefficient 
and applied a Benjamini-Hodgeberg p-value correction. 
MPRA-active elements were defined as those with an FDR 
< 0.05 and a beta > 0 (meaning that the element is more 
active than the negative controls). 

To define MPRA-active elements specific to one con-
text, we first selected MPRA-active elements and applied 
a Benjamini-Hodgeberg correction to the p-value from 
the interaction of var*condition in the above model. Rest-
ing-specific elements had an FDR < 0.05 and an interac-
tion beta < 0; LPS+INFγ-specific elements had an FDR < 
0.05 and an interaction beta > 0. 

Identification of allelic regulatory variants 
Using the aggregated RNA and DNA counts from above, 
we used the mpralm function from the mpra66 (version 
1.20.0) R package to calculate differential allelic regu-
latory activity. The following parameters were used: 
mpra_lm_object <- mpralm(object = mpra_set, design = 
design_matrix, aggregate = "none", normalize = T, block 
= samples, model_type = "corr_groups"). The mpra_set 
object is an mpra object that was generated with the 
MPRAset function, which uses DNA and RNA barcode 
counts per allele as the input. To maximize power, the 
biological replicates for both conditions were combined 
together, resulting in 15 biological replicates with the 
condition effect regressed out in our design_matrix. The 

resulting logFC was adjusted to account for GWAS effect 
size (called “corrected_logFC” in supplemental tables), 
resulting in variants with a logFC > 0 being associated 
with AD risk, and variants with a logFC < 0 being asso-
ciated with AD protection. MPRA-allelic variants were 
defined as those that have a FDR< 0.05 for the difference 
in activity between the risk allele and protective allele. 

To identify variants with an interaction between con-
dition and allele, we subsetted the mpralm result object 
for the interaction term coefficient and subsetted for all 
181 MPRA-allelic variants. We applied a Benjamini-Hodge-
berg correction and designated variants with FDR < 0.05 
as significant. 

Expression-modulating variant (emVar) identi-
fication 
We defined expression-modulating variants (emVar) as 
all MPRA variants that were MPRA-active for at least 
one allele in at least one condition and identified as an 
MPRA-allelic variant. 

TF motif enrichment analysis
TF motif enrichment was performed on the 150 bp 
sequences surrounding resting- or proinflammatory-spe-
cific MPRA elements using the findMotifsGenome.pl func-
tion from HOMER (version 4.11). Sequences that did not 
change in activity between contexts were used as back-
ground peaks for both sets. The default parameters were 
used with “-size given”. 

GENOMIC DATA ANALYSIS

Hi-C Data processing and differential loop calling
Hi-C data was processed using a modified version of the 
Juicer pipeline10 (version 1.5.6) and aligned to the hg19 
genome build. Hi-C maps were generated at 5, 10, 25, 
50, 100, 200, 250, 500, 1000, and 2500 kb resolution for 3 
biological replicates and 2 conditions for each replicate. 
Replicate 1 had 1 technical replicate, replicate 2 had 2 
technical replicates, and replicate 3 had 2 technical rep-
licates. This resulted in 10 unique samples total. Each of 
the 5 hic files from each condition were combined into 
one Hi-C map per condition. Finally, all of the 10 samples 
were combined to create one “Mega” map as described 
in Reed et al 202231. 

Loops were called from the merged condition and 
Mega Hi-C map with SIP67 (version 1.6.2) with settings 
“-g 2 -5 2000 -fdr 0.05” at 5 kb resolution with KR nor-
malization factors. A count matrix was generated by 
extracting unnormalized counts at each loop pixel for 
biological replicates with mariner68 (version 1.2.1). This 
count matrix was used to identify differential loops with 
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DESeq269 (version 1.38.3) as previously described8. Loops 
with a median of 5 counts or less were removed before 
using a design of “~rep + condition” to form a likelihood 
ratio test (LRT). Log2 fold-changes for each loop were 
computed with apeglm70 (version 1.20.0), comparing the 
proinflammatory to the resting condition. Significantly 
differential loops are those that have a FDR < 0.05 and 
log2 fold-change > 1. 

ATAC-seq data processing and peak calling
Adapter sequences were removed using Trim Galore!71 
(version 0.4.3). Alignment to the hg19 genome was then 
performed using BWA mem72 (version 0.7.17) and files 
were sorted and filtered for mitochondrial reads using 
Samtools73 (version 1.9). Duplicate reads were removed 
with PicardTools74 (version 2.10.3). The biological repli-
cates for each condition were merged and indexed with 
Samtools, and the merged bam files were used to call 
peaks with the following MACS2 setting: “ -f BAM -q 0.01 
-g hs --nomodel --shift 100 --extsize 200 --keep-dup all -B 
--SPMR” (version 2.1.2). A final peak list was generated by 
compiling all unique peak calls across both conditions 
(163,151 total peaks). The counts at each of these peaks 
for all biological replicates were extracted with bedtools75 
multicov (version 2.30.0). Bigwig signals were generated 
from the merged conditions with deeptools76 (version 
3.5.4). 

ChIP-seq data processing and peak calling
Adapter sequences were removedusing Trim Galore!71 
(version 0.403). Alignment to the hg19 genome was 
performed with BWA mem72 (version 0.7.17). Filtering 
and removal of mitochondrial reads was performed 
with Samtools73 (version 1.9) and duplicates were then 
removed with PicardTools74 (version 2.10.3). Biological 
replicates for each condition were merged and indexed 
with Samtools and the resulting bam files were used to 
call peaks with the following MACS2 setting: “-f BAM -q 
0.01 -g hs --nomodel --shift 0 --extsize 200 --keep-dup all 
-B --SPMR” (version 2.1.2). A comprehensive peak list was 
generated by compiling unique peaks across both con-
ditions (101,845 total peaks). Counts for each peak were 
extracted from individual replicates for each condition 
with bedtools75 multicov (version 2.30.0). Bigwig files 
were generated for signal visualization from the merged 
conditions with deeptools76 (version 3.5.4). 
Differential ATAC-seq and ChIP-seq peak analysis

All differential peak analysis was performed with 
DESeq269 (1.38.3). The resulting peak count matrix from 
ATAC-seq and ChIP-seq processing was read in with the 
function DESeqDataSetFromMatrix with a design of “~rep 
+ condition” and a reduced design of “rep” for a likeli-
hood ratio test (LRT). A log2 fold-change between each 

condition was calculated with apeglm70 (1.20.0), and peaks 
were classified as significant if they had an FDR < 0.05 and 
an absolute log2 fold-change > 2.

TF motif enrichment
TF motif enrichment was performed on upregulated and 
downregulated ATAC peaks with the findMotifsGenome.
pl function from HOMER (version 4.11). Peaks that were 
not significantly changing in accessibility between con-
ditions were used as background peaks for both sets. The 
default parameters were used with “-size given”. 

RNA-seq data processing and differential gene 
expression analysis 
The quality of each fastq file was assessed with FastQC77,78 
and MultiQC77,78 (FastQC version 0.11.5, MultiQC version 
1.5). Adapters were then trimmed using Trim Galore!71 
(version 0.4.3). Reads were quantified for hg19 with 
salmon79 (version 1.4.0) and alignment was performed 
with HISAT280 (version 2.1.0). The resulting bam files were 
indexed with samtools73 (version 1.9). Samtools was used 
to merge the samples for each biological replicate, con-
verted into bigwigs with deeptools76 (version 3.5.4) for 
visualization, and summarized as a txi with txImport81 
(R version 4.2.2, tximport version 1.26.1). Differential 
gene expression analysis was performed with DESeq269 
(1.38.3). The txi file was imported into R using DESeqData-
SetFromTXimport with a design of “~rep + condition” and 
a reduced design of “rep” to form an LRT as described 
earlier for differential peak analysis. Shrunken log2 fold-
changes were calculated using apeglm70 (version 1.20.0) 
for each gene comparing the proinflammatory condition 
to the resting condition. Genes were called significantly 
differential if they had an FDR < 0.05 and an absolute log2 
fold-change > 2. 

Heritability Enrichment Analysis
Heritability enrichment analysis was performed using 
stratified LD score regression (S-LDSC) analysis82,83 (ver-
sion 1.0.0) for the following sets of peaks: resting ATAC, 
proinflammatory ATAC, resting H3K27ac, proinflam-
matory H3K27ac. LD scores were calculated from 1000 
genomes European phase 3 bim file using the summary 
statistics from Jansen et al30.

TF motif enrichment and correlation with gene 
expression
Three motifs enriched in resting-specific or proinflamma-
tory-specific macrophage ATAC peaks as described earlier 
were selected. Of the motifs selected, the top three most 
highly expressed genes in that category were selected to 
visualize. 
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Activity-By-Contact (ABC) model and differen-
tial ABC pair analysis 
An adapted version of the ABC pipeline from Fulco et al 
201939 was used to identify enhancer-gene pairs. Briefly, 
one set of candidate enhancers was generated from the 
combination of resting and proinflammatory macrophage 
ATAC-seq data, and the top 150,000 strongest peaks were 
selected. Candidate peaks were resized to 500 bp in size 
from the summit, hg19 blacklisted were removed, and 
overlapping peaks were merged. Enhancer activity from 
H3K27ac ChIP and ATAC in resting and proinflammatory 
macrophages was extracted from each of the candidate 
regulatory elements and were normalized per replicate 
with variance stabilizing normalization. For each gene, 
ABC scores were calculated for all candidate elements 
in each condition using resting and proinflammatory 
macrophage Hi-C data in a 5 Mb window using mariner68. 
Enhancer-promoter pairs with an ABC score > 0.02 were 
called significant interactions. All ABC pairs were labeled 
with a specific enhancer-gene ID, and since the same 
enhancer list and gene list were used in each condition, 
this identifier was used to determine which ABC pairs 
were specifically valid in one context versus the other. 

Gene Ontology (GO) enrichment analysis for 
ABC-anchored genes
Genes at the anchors of resting and activated-specific ABC 
pairs were subsetted for those that contained a differen-
tial gene and had a more strict ABC score > 0.05. These 
sets of genes (497 at proinflammatory ABC pairs and 561 
at resting ABC pairs) were used as the input for gpro-
filer284 (version 0.2.2) with all genes at ABC pairs as the 
background set (8,129 genes). 

Comparison to Epigenomic Roadmap ATAC-seq 
data
ATAC-seq bigwigs from 53 cell types were downloaded 
from the Epigenomic Roadmap41 project. Each of the 
AD-associated genetic elements were categorized into 
10 quantiles based on their MPRA activity levels (RNA/
DNA). For each element in each cell type, ATAC signal was 
extracted from the 150 bp region using the plotgardener85 
readBigwig function (version 1.9.2). ATAC counts were 
first normalized across cell types and by cell type to con-
trol for differences in sequencing depth between cell 
types. Then quartile normalization was performed within 
each cell type. 

TF motif disruption and enrichment analysis 
The motifbreakR45 (version 2.12.345) R package was used 
to determine what TF motifs our emVars may be disrupt-

ing. The motifbreakR function was used on each variant 
exactly as performed in McAfee et al29. The enrichment of 
all disrupted motifs was calculated with a Fisher’s exact 
test for the number of emVars vs the number of non-al-
lelic and inactive variants that disrupt a given motif.  

Comparison to public HEK MPRA experiments 
The HEK293T MPRA data from Cooper et al42 was down-
loaded to compare with our THP-1 MPRA data. Benjami-
ni-Hochberg corrections were applied to the 1,155 vari-
ants that were tested in both MPRA experiments, and 
variants with a new FDR of < 0.05 were called significant. 

The variants from the HEK293T MPRA were grouped 
into 10 quantiles based on their activity (RNA/DNA) 
exactly as described above for our THP-1 MPRA. ATAC-
seq counts were extracted from resting macrophage big-
wigs for all variants using the plotgardener85 function 
readBigwig (version 1.9.2), and variants that were in the 
most active quantile in each experiment were compared 
to each other. 

To compare emVars across studies, we identified 
emVars in the HEK293T MPRA by intersecting their 
MPRA-allelic variants and MPRA-active elements. The 
rsIDs for both MPRA were then overlapped with the 
microglia eQTL data51. IDE was determined by compar-
ing the sign of eQTL beta to MPRA log2 fold-change after 
matching effect and non-effect alleles.

Comparison to cell type-specific H3K27ac data 
in the human brain
We analyzed H3K27 signatures of emVars in four major 
brain cell types from Nott et al13. For each emVar, we 
calculated the average H3K27ac signal from the 500 bp 
region flanking each variant from each cell type. The 
resulting H3K27ac signatures were visualized using the 
pheatmap package, clustering emVars by their similari-
ties in cell type-specific H3K27ac signatures.  

eQTL Integration with ABC to assign target genes
The microglia eQTL data from Kosoy et al51 was down-
loaded and overlapped with our variant rsIDs to connect 
to target genes (eGenes). Subsequently we subsetted for 
all significant variant-eGene pairs. This was done in par-
allel with overlapping the enhancer anchor of all ABC 
pairs across both conditions with all tested variants. We 
then subsetted emVars to identify their ABC-guided tar-
get genes. Using both methods, we linked 39 emVars to 
76 target genes associated with AD risk (MPRA-AD risk 
genes). These 76 genes were used as an input for gpro-
filer284 (version 0.2.2) in R to determine GO terms and 
KEGG pathways that are enriched. 
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Disease Associated Microglia Gene Signature 
Enrichment
RNA log2 fold-change from differential RNA-seq analysis 
between proinflammatory and resting macrophages was 
compared to genes either upregulated or downregulated 
in the disease associated microglia (DAM) gene signature 
from Hasselman et al52. The log2 fold-change between 
proinflammatory and resting macrophages intersecting 
with 416 genes upregulated in the DAM signature or 366 
genes downregulated in the DAM signature was shown. 

Comparison to single cell and single nuclear 
microglia RNA-seq data
Various datasets from Sun et al38 were downloaded and 
compared against MPRA-AD risk genes. Specifically, the 
microglial state markers for each of the 12 single-cell clus-
ters were used for enrichment analysis versus genes that 
were expressed in our macrophages as background in a 
Fisher’s exact test. We also compared our MPRA-AD risk 
genes against DEGs describing the response of microglia 
to Aβ and Tau downloaded from Gazestani et al24. Sim-
ilarly, we downloaded age-related DEGs from mouse 
microglia from Li et al 202353 to compare against our 
MPRA-AD risk genes. We performed Fisher’s exact tests 
between MPRA-AD risk genes and each DEG set using all 
macrophage-expressed genes as background. 

Visualization  
All locus plots using genomic signals were plotted with 
plotgardener85 (version 1.9.2). All other plots were made 
with ggplot2 (version 3.5.2). 

Data Availability
The THP-1 macrophage MPRA data is available under 
GEO: Series GSE273887. THP-1 macrophage Hi-C, ATAC-
seq, H3K27ac ChIP-seq, and RNA-seq data are available 
under GEO: Superseries GSE201376. 

Code Availability
All code used to perform the analyses in this study are 
available at https://github.com/thewonlab/AD_MPRA
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