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Abstract
Polyethylene glycol (PEG) has been shown to restore axonal continuity after peripheral nerve transection 
in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous 
system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed 
after animal sacrifice. 3Brain high-resolution microelectrode arrays (MEA) were used to measure mean 
firing rate (MFR) and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus 
callosum was subsequently transected and repeated measurements were performed. The cut ends of the 
corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated 
measurements were performed. MEA measurements showed that PEG was capable of restoring electro-
physiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, 
midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the av-
erage peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 
0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. 
After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralater-
ally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral 
corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were 
statistically differences in the average MFRs and peak amplitudes between the midline and non-midline 
corpus callosum groups (P < 0.01, P < 0.05). These findings suggest that PEG restores axonal conduction 
between severed central nerves, potentially representing axonal fusion.
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Introduction
Polyethylene glycol (PEG) has been extensively investigat-
ed for its potential role in axonal fusion after peripheral 
nerve injury (Bittner et al., 2012, 2016; Sexton et al., 2012, 
2015; Riley et al., 2015; Bamba et al., 2016). The proposed 
mechanism for axonal fusion is PEG-induced lipid bilayer 
fusion by removing the hydration barrier surrounding the 
axolemma and reducing the activation energy required for 
membrane fusion. Despite the success in peripheral nerve 
injury, there has been little investigation into PEG fusion 
in the central nervous system (Borgens and Shi, 2000; Shi, 
2013).

PEG has traditionally been used to produce hybridomas 
via membrane fusion. PEG has been used to fuse crayfish 
and giant earthworm axons and improvement in axonal 
fusion is found when axonal endings are exposed to a cal-
cium free saline solution (Bittner et al., 1986; Krause and 
Bittner, 1990). In an axonal injury without PEG, axonal 
endings seal after an influx of calcium, preventing axonal 
fusion (Yoo et al., 2003). When severed axonal endings are 

exposed to calcium-free hypotonic saline and an antioxidant 
(i.e., methylene blue or melatonin), vesicle-mediated sealing 
is decreased, keeping membrane leaflets open. PEG is then 
applied to artificially induce closely apposed membranes of 
severed axonal ends to flow into each other and fuse. This 
produces a partial repair of the plasmalemmal membranes 
that are then perfused with calcium containing saline, which 
causes vesicles to accumulate and seal remaining holes at the 
injury site.  

Given the capability of PEG to produce hybridomas and 
fuse peripheral axons, we suspect its nerve fusion capabili-
ties are not specific to peripheral nerves. Though peripheral 
nerve regeneration is slow after injury, the capability to 
regenerate provides peripheral nerve injury with a large ad-
vantage compared to central nerve injury. The capability to 
fuse central nerves could represent a revolutionary treatment 
of central nerve injury. In this study, we will examine the 
capability of PEG to promote axonal fusion after corpus cal-
losum transection. Of note, this study is a preliminary study 
of PEG’s capability to restore axonal conduction after central 
nerve transection. 
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Materials and Methods
Ethics statement
All experimental procedures were approved by and per-
formed in accordance with the standards set forth by the 
Institutional Animal Care and Use Committee (IACUC) at 
Vanderbilt University (Protocol Number M13079).

Animals
Sprague-Dawley rats were housed in groups (n = 3/group) 
and supplied with water and food (Purina Rodent Diet) at 
all times. Animal cages were inspected daily to ensure ani-
mal health and cleanliness of housing by both the Vanderbilt 
Veterinary Staff and research personnel. 

Preparation of artificial cerebral spinal fluid (aCSF)
aCSF was made according to the following specifications: 119 
mM NaCl/26.2 mM NaHCO3/2.5 mM KCl/1 mM NaH2 PO4/ 
1.3 mM MgCl2/10 mM glucose/2.5 mM CaCl2. Solution was 
filter sterilized at 0.22 µm, maintained over ice, and oxygen-
ated by gas infusion of 95% O2/5% CO2 for a minimum of 30 
minutes prior to application to brain slices. Fresh aCSF was 
made daily as experiments required.  

Brain slice preparation
Female Sprague-Dawley rats (n = 3, age of 6 months) were 
anesthetized via inhaled isoflurane (2%). The animals were 
euthanized via intracardiac injection of euthasol (pentobar-
bital solution), and their brains were harvested. Brain slices 
were obtained using hand-held razors to obtain 2 mm-thick 
coronal sections. The brains were maintained in pre-oxy-
genated aCSF over ice and were sectioned coronally. Brain 
sections were then placed in fresh chilled pre-oxygenated 
aCSF for 30 minutes. During this time, aCSF was continu-
ally infused with 95% O2/5% CO2 and maintained over ice. 
Following incubation, the coronal sections were transferred 
to the APS-MEA chip, and pre-injury electrophysiological 
measurements were recorded. Under loupe magnification, 
the corpus callosum was sharply transected. The cut ends of 
the corpus callosum were left in alignment and post-injury 
measurements were obtained. Control measurements were 
taken prior to PEG placement. After post-injury recordings, 
PEG (50% w/v; 3.35 kDa, Sigma Aldrich, St. Louis, MO, 
USA) was applied over the cut ends of the corpus callosum, 
incubated for 1 minute, and subsequently washed away with 
aCSF. Post PEG recordings were taken immediately.

High density active-pixel sensor recordings
We used an active-pixel sensor multi-electrode array system 
(APS-MEA) (3Brain, Wadenswil, Switzerland) to measure 
mean firing rate (MFR) and peak amplitude across the cor-
pus callosum of the ex vivo brain slices. The APS-MEA, ex-
tensively described elsewhere (Imfeld et al., 2008) consists of 
a microelectrode array chip and an amplification system de-
signed to provide simultaneous extracellular recordings from 
4,096 electrodes at a sampling rate of 7.7 kHz. The APS-
MEA also consists of a complementary metal oxide semi-
conductor (CMOS)-based Charged Coupled Devices (CCD) 

monolithic chip modified such that pixels were designed to 
sense electrical voltage variations induced by electrogenic 
tissues. Each square pixel measures 21 × 21 μm2, and the 
array was integrated with an electrode pitch of 42 μm. There 
was a 64 × 64 array configuration of pixels with an active 
area of 7.22 mm2 and a pixel density of 567 pixel/mm2. The 
three on-chip amplification stages provided a global gain of 
60 dB, with a 0.1–5 kHz band-pass filter. This bandwidth was 
adapted to record slow LFP signals as well as fast APs. Ac-
quisition was controlled by the software BrainWave (3Brain 
Gmbh, Wadenswil, Switzerland). MFR and peak amplitude 
were taken at the ipsilateral, midline, and contralateral cor-
pus callosum. All measurements were made in duplicate.

Statistical analysis
Student’s t-tests were employed to specifically compare the 
differences between groups. All P values were two-tailed 
where appropriate, and significance was determined at P < 
0.05. All analyses were performed using IBM SPSS Statistics 
23.0 software (IBM Corporation, Armonk, NY, USA).

Results
Color mapping
Figure 1 demonstrates a color map of the electrophysiolog-
ical signal recorded using APS-MEA. Signal across the cor-
pus callosum was measured in the ex vivo brain slices (Figure 
1B). After complete transection of the corpus callosum, the 
signal was no longer present (Figure 1C). Following applica-
tion of PEG to the injury site, the signal was restored (Figure 
1D). 

Electrophysiology measurements
Prior to injury, MFRs were 0.76, 0.66, and 0.65 spikes/second 
at ipsilateral, midline, and contralateral corpus callosum, re-
spectively. After midline corpus callosum transection, MFRs 
were 0.71, 0.14, and 0.25 spikes/second at the ipsilateral, 
midline, and contralateral corpus callosum, respectively. Fol-
lowing application of PEG, there were spikes in MFR at the 
injury site and contralaterally. MFRs were 0.75, 0.55, and 0.47 
spikes/s at the ipsilateral, midline, and contralateral corpus 
callosum, respectively (Figure 2A). At the injury site (mid-
line), MFRs in PEG-treated brain slices were statistically 
superior to those in the control brain slices (P < 0.01).

Prior to injury, the average peak amplitudes were 69.79, 
58.68, and 49.60 μV at ipsilateral, midline, and contralateral 
corpus callosum, respectively. After midline corpus callosum 
transection, peak amplitudes were 52.11, 8.98, and 16.09 μV 
at ipsilateral, midline, and contralateral corpus callosum, 
respectively. Following application of PEG, there were spikes 
in peak amplitude at the injury site and contralaterally. Peak 
amplitudes were 59.44, 45.33, 40.02 μV at the ipsilateral, 
midline, and contralateral corpus callosum, respectively 
(Figure 2B). At the injury site (midline), the peak ampli-
tudes in PEG-treated brain slices were statistically superior 
to those in the control brain slices (P < 0.05). Distal to the 
injury site (contralateral site), the peak amplitudes in PEG 
treated brain slices were statistically superior to those in the 
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Figure 1 A color map of the electrophysiological signal recorded 
using active-pixel sensor multi-electrode array system in rat brain 
slices.
(A) A rat brain slice on microarray electrode chip. Electrophysiological 
recordings of (B) normal control brain slice, (C) control transected 
brain slice, and (D) polyethylene glycol (PEG)-treated transected brain 
slice. The red coloring in the image reflects electrical activity. There is 
a clear lack of activity at the injury site of the control transected brain 
slice (C). There is electrical activity at the injury site after PEG applica-
tion (D).

Figure 2 Electrophysiology measurements in rat corpus callosum.
(A) MFR of brain slices pre- and post-injury. (B) Peak amplitudes of 
brain slices pre- and post-injury. As demonstrated in (A), PEG-treated 
brain slices had higher MFRs compared to non-PEG treated slices (**P 
< 0.01). As demonstrated in (B), PEG-treated brain slices had higher 
peak amplitude compared to non-PEG treated slices at the injury site 
(*P < 0.05) and contralaterally (*P < 0.05). Student’s t-test was used. 
Data are expressed as the mean ± SD (n = 3 rats/group). All measure-
ments were made in duplicate. MFR: Mean firing rate; PEG: polyeth-
ylene glycol. control brain slices (P < 0.05).

Discussion
PEG fusion represents a potentially revolutionary treatment 
of peripheral nerve injury, and given the inability of the cen-
tral nervous system to regenerate, its applicability to central 
nerves could have an even larger impact. Our study demon-
strated the restoration of conduction across the tramsfected 
corpus callosum after PEG application, and this finding pro-
vides evidence that PEG fusion is applicable to the central 
nervous system.  

Previous studies regarding PEG use for treatment of spinal 
cord injury have suggested that PEG can facilitate mem-
brane repair (Shi, 2013). Nehrt et al. (2010) found that PEG 
enhanced axolemmal resealing in guinea pig spinal cords. 
PEG has a neuroprotective role in central nerve injury and 
is thought to decrease apoptosis, reduce oxidative stress, and 
increase tissue sparing (Luo and Shi, 2007; Kwon et al., 2011; 
Siddiqui et al., 2015). Baptiste et al. (2009) treated central 
nerve injury through systmic and local administration of 
PEG. The mechanism underlying the neuroprotection of 
PEG is unclear as the existing evidence has demonstrated 
that PEG alone has limited neuroprotective potential (Ditor 
et al., 2007; Kwon et al., 2009).  

Glial and extracellular environment in the central nervous 
system is not beneficial for cell growth (Yiu and He, 2006). 
The peripheral nervous system is more amenable to growth 

and regeneration, and thus this may be a more welcoming 
environment for PEG fusion. Previously, our lab focused 
solely on the applicability of PEG fusion to repair of periph-
eral nerve injury. The mechanism underlying PEG axonal 
fusion is not clearly understood. The immune response to 
PEG fusion has not been investigated, but PEG has been 
found to have anti-inflammatory properties (Ackland et al., 
2010). Exploring the surrounding immune response in PEG 
fusion at both the central and peripheral levels is needed to 
better understand this interesting process. 

Restoration of signal across severed nerves after PEG ap-
plication potentially represents axonal fusion by PEG. Bit-
tner et al. (1986) were the first to found that PEG application 
restored action potentials across severed medial giant axons 
in crayfish. Our findings mirror these initial discoveries of 
PEG’s fusogenic properties and potentially represent a novel 
finding in the central nerve injury. However, in-depth stud-
ies are needed. 

It is unlikely that there is an alternative explanation for 
our findings. One potential explanation may be that the 
presence of PEG allows conductivity not otherwise present. 
This could explain the restoration of signal after PEG appli-
cation. However, an argument against this would state that 
the activity on color map of signals is confined to the area of 
interest, as opposed to a diffuse activity reading one would 
expect if PEG solution transmits signals. Additionally, PEG 
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was washed away after its application onto the nerve injury 
site. For those reasons, it is reasonable to accept our find-
ings that the role of PEG in the central nerve injury may 
extend beyond just neuroprotection and includes fusogenic 
properties.

Currently, both central and peripheral nerve injury is dev-
astating due to the lack of rapid effective treatment. PEG fu-
sion could revolutionize both types of injuries as it provides 
a fast reconnection of severed nerves. Our initial evidence 
presented here supports that axonal continuity is restored 
with PEG. However, more investigation is needed to under-
stand PEG fusion in central nerves. If PEG fusion is applica-
ble clinically, it represents a novel therapy of nerve injury. 
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