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ABSTRACT
Background: Recent studies of various human microbiome habitats have revealed thousands of
bacterial species and the existence of large variation in communities ofmicroorganisms in the same
habitats across individual human subjects. Previous efforts to summarize this diversity, notably in
the human gut and vagina, have categorized microbiome profiles by clustering them into com-
munity state types (CSTs). The functional relevance of specific CSTs has not been established.
Objective: We investigate whether CSTs can be used to assess dynamics in the microbiome.
Design: We conduct a re-analysis of five sequencing-based microbiome surveys derived from
vaginal samples with repeated measures.
Results: We observe that detection of a CST transition is largely insensitive to choices in methods
for normalization or clustering. We find that healthy subjects persist in a CST for two to three weeks
or more on average, while those with evidence of dysbiosis tend to changemore often. Changes in
CST can be gradual or occur over less than one day. Upcoming CST changes and switches to high-
risk CSTs can be predictedwith high accuracy in certain scenarios. Finally, we observe that presence
of Gardnerella vaginalis is a strong predictor of an upcoming CST change.
Conclusion: Overall, our results show that the CST concept is useful for studying microbiome
dynamics.
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Introduction

The human microbiome consists of many microorgan-
ism communities that reside in various body habitats.
While the presence of human microbiomes has been
documented for several decades, there has been a recent
surge of research linking the microbiome with human
health and disease. This growth in microbiome-related
knowledge has been facilitated primarily by next-genera-
tion sequencing; specifically, sequencing of 16S riboso-
mal RNA enables quantification of relative abundance of
the different species residing in these environments. As
microbiome profiling has revealed large variation among
individuals and over time, efforts have been made to
categorize or cluster microbiome profiles into a small
number of community state types (CSTs).

Previous studies have used CSTs to summarize the
microbial communities observed in the human
vagina and the human gut. Vagitypes [1] are widely
used as prototypes in the interpretation of vaginal

microbiome data,[1–6] while enterotypes are some-
what more controversial [7] as prototypes for the
gut microbiome.[8,9] Despite their common usage,
it is not well established whether CSTs indeed repre-
sent fundamental biological states and whether they
can provide valuable clinical information.

In this paper we investigate the stability of CSTs
across different datasets and their predictive ability
especially with respect to microbial shifts. We con-
centrate on CSTs since they offer a reduction in data
complexity that has the potential to facilitate subse-
quent analysis and discovery, and they also simplify
the interpretation of high-dimensional data for pos-
sible clinical decision support. Establishing their uti-
lity in diagnostics and discovery has potential benefits
for microbiome research.

A variety of normalization methods have been sug-
gested for microbiome sequence counts data, and there
are many options for clustering procedures for defining
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CSTs. Choices in normalization and clusteringmethods
can lead to artifacts when evaluating specific datasets
with respect to CSTs. Though CSTs have been used in
the literature, they have not been evaluated rigorously,
either statistically or clinically.

CSTs have the potential to be useful clinically, espe-
cially for assessment of bacterial vaginosis (BV), the most
common cause of vaginitis. A single species often dom-
inates the vaginal microbiome, which has implications
for vaginal health. For example, Lactobacillus species are
often a majority among bacteria; they consume glycogen
from the epithelium and produce lactic acid, thereby
lowering the pH of the vagina and preventing coloniza-
tion by pathogens. Among lactobacilli, Lactobacillus iners
is considered among the least protective in part because it
is associated with a higher pH and can co-occur with BV-
associated bacteria.[10,11] Species such as Gardnerella
vaginalis,[12–15] Sneathia amnii,[16,17] BVAB1,[18]
and other non-lactobacilli are associated with dysbiosis.
BV is generally characterized by low levels of
Lactobacillus spp. and/or an increase in Gram-negative
anaerobes. BV is highly recurrent, with recurrence occur-
ring in up to 60% of subjects within one year. Moreover,
up to 84% of women may have a shift in vaginal micro-
biota associated with BV without clinical symptoms.[19]
Given the polymicrobial nature of BV infection, we
investigate if changes in vaginal microbial composition
over time may be used to predict BV infection or recur-
rence by indicating upcoming shifts to high-risk states.
Changes in the microbial community composition may
be precursors to changes in health, and may provide
more etiologic information regarding prognosis.

In this work we provide an in-depth analysis of
CSTs of the vaginal microbiome to assess their pre-
dictive value. Rather than assessing which CST method
is best at reflecting clinical data, we first demonstrate
that detecting major shifts in the microbiome as indi-
cated by CST transitions is largely independent of the
CST definition method. We then evaluate whether
there is a similarity across datasets in patterns that
are suggestive of mechanisms for shifts in microbial
flora, and whether CSTs can be used as a tool to
discover mechanisms involved in such shifts.
Specifically, we analyze the time scales of CST transi-
tions, the expected persistence of a particular CST, the
frequency of transitions between CSTs, the

relationship of CST with changes in Nugent score
and pH, the ability to predict CST transitions, and
the bacteria that may be harbingers of CST transitions.
Our findings demonstrate that vaginal CSTs are pre-
dictive of changes in the future bacterial environment.

Materials and methods

Data sources

We used five datasets that have two or more long-
itudinal vaginal samples per subject for this analysis.
Four of the datasets are derived from amplicon-based
surveys and one is based on whole metagenome shot-
gun sequencing (WMGSS). The studies employed
different protocols and include varying amounts of
clinical data so that a pooled analysis is not possible.

The amplicon-based datasets were generated by
454 pyrosequencing while the WMGSS data was gen-
erated by Illumina sequencing. The datasets will be
referred to as: ravel,[2] gajer,[3] chaban,[20] hmp,[21]
and vahmp,[22] where the names correspond to pre-
fixes in the data structures in the R code. The R code
and output are in Supplemental Files 1–6, and the
data except for the vahmp data are in Supplemental
File 7. Sources and characteristics of the datasets are
contained in Table 1. All studies included non-preg-
nant healthy women of reproductive age; two of the
datasets also included women with diagnoses of BV.
Each dataset includes species-level assignments of
reads based on alignment to a reference database.

The ravel dataset comprises data collected daily
over two menstrual cycles obtained from 25 women
of reproductive age via self-sampling, yielding a total
of 1657 samples. Of the 25 women, 15 were diag-
nosed with symptomatic BV according to the Amsel
criteria [23] and self-reported symptoms, six were
diagnosed with asymptomatic BV, and four received
no diagnosis throughout the course of the study. We
exclude from our analysis data from time points for
which sequence information is not available, includ-
ing 10 samples from eight subjects at times corre-
sponding to diagnoses of symptomatic BV and 21
samples from 13 subjects at times corresponding to
diagnoses of asymptomatic BV. We considered

Table 1. Datasets used in analysis.
ravel [2] gajer [3] chaban [20] hmp [21] vahmp [22]

Sampling frequency Daily Twice-weekly Weekly 1–11 months 1–32 months
Gene 16S 16S cpn60 N/A (WMGSS) 16S
Region V1–V3 V1–V2 N/A V1–V3
No. of subjects 25 32 27 63 141
Samples per subject 59–70 27–33 2–4 2–3 2
Primers 27f, 533r 27f, 338r H279/H280, H1612/H1613 N/A (WMGSS) Custom (see [26])
Median library size 5093 2403 4638 N/A 27,130
No. of samples 1657 937 76 152 282
No. of taxa/OTUs 151 330 73 321 247
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samples to be consecutive for evaluating CST changes
if they were collected one day apart.

The gajer dataset comprises data from 32 women
who self-sampled twice weekly for 16 weeks as part of
a douching cessation study.[24] Women were of
reproductive age, healthy and not pregnant through-
out the study. Each woman reported that she had
used douching products in the two months prior to
the study, and that she had a regular menstrual cycle.
Use of douching products was continued through the
first four weeks, and stopped for the remaining
12 weeks. We considered samples to be consecutive
for evaluating CST changes if there were six days or
less between collections.

The chaban dataset comprises data from clinician-
collected samples from 27 women. Microbial
sequence data are available for two to four samples
per subject collected weekly. Exclusion criteria
included pregnancy, autoimmune conditions, use of
hormonal contraceptives, use of antibiotic or antifun-
gal medications, and irregular menstrual cycles.

The hmp dataset comprises data from two or three
clinician-collected samples from 63 women separated
by 1–11 months. Volunteers were between 18 and
40 years of age, and had passed a screening that
included exclusion criteria for pregnancy, high or
low body mass, oral health, drug use, and history of
cancer. The sequence data were processed using
MetaPhlAn2 [25] to generate relative abundances of
taxa at different levels of resolution. For this study,
we used only species-level proportions.

The vahmp dataset comprises data from two clin-
ician-collected samples from 141 women separated by
1–31 months. Pregnant subjects were excluded. Of
282 samples, 90 (31.9%) were associated with a diag-
nosis of BV by the Amsel criteria at the time of
collection. The remaining samples were not asso-
ciated with any diagnosis.

Data analysis

Unless otherwise noted, analysis was performed and
visualizations created using the R language and envir-
onment for statistical computing,[27] including
packages Biobase,[28] compositions,[29] DESeq2,[30]
edgeR,[31] entropy,[32] expm,[33] ggplot2,[34]
gridExtra,[35] knitr,[36] markovchain,[37] mcc,[38]
msm,[39] phyloseq,[40] pROC,[41] randomForest,
[42] reshape2,[43] rgl,[44] rglwidget,[45] and sig-
clust2.[46]

Results

Identifying community state types

CSTs are usually defined using hierarchical clustering
based on a dissimilarity measure.[3,10,20] For each

dataset, we used pairwise Bray–Curtis (BC) dissim-
ilarities as the input to clustering; the profiles con-
sisted of taxa proportions for each sample. As in
previous studies of the vaginal microbiome where
samples were clustered into five CSTs,[3,10,20] we
used Ward’s method for hierarchical clustering
which creates clusters that result in the smallest
increase in total within-cluster variance, measured
as the sum-of-squared Euclidean distances between
points.[47]

Scree plots for the within-cluster distances
(Supplemental File 2) indicate that the distances
drop noticeably after 4–5 clusters. However, for
none of the datasets does the scree plot have a
sharp bend in the curve denoting a clear indication
of the number of naturally-occurring clusters.

Characteristic taxa of CSTs
Figure 1 summarizes the CST assignments for each of
the datasets; Table 2 summarizes CST assignments
and compares them to the CSTs identified in [3,10].
Roman numerals are used to denote the CSTs defined
in [3,10] and Arabic numerals are used to denote the
CSTs based on our clustering.

Most CSTs are characterized by a single predomi-
nant bacterium. CST 1 contains samples that are
mostly comprised of L. crispatus and few other bac-
teria. This CST, common to all datasets, would tradi-
tionally be considered low risk because of the
protective role of L. crispatus and low diversity.
Samples assigned to CST 3 contain mostly L. iners.

The ravel and vahmp datasets were the only data-
sets with samples from subjects receiving a diagnosis
of BV, and have unique CSTs. For these datasets, the
CST with the most samples is CST 6, characterized by
G. vaginalis. The ravel dataset has a CST associated
with the presence of G. vaginalis and L. iners (CST 9),
and the vahmp dataset has a CST associated with
BVAB1 (CST 7).

Other bacteria that are common in certain CSTs
but not others across the datasets include L. jensenii, L.
gasseri, Atopobium, Bifidobacterium, Fusobacterium,
and S. agalactiae (Group B Streptococcus – GBS).

Many samples are assigned to CSTs that are not
characterized by the lactobacilli that are traditionally
associated with vaginal health (L. crispatus and L.
gasseri). At the same time, relatively few samples are
associated with a diagnosis of BV. Microbiome pro-
files such as these could contain leading indicators of
dysbiosis.

Agreement with previously-defined CSTs
The gajer dataset [3] included CST assignments. We
compared our CST assignments to those in the ori-
ginal study.

Ravel et al. [10] first identified five CSTs that are
distinguishable by whether they are dominated by
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lactobacilli and the Lactobacillus species present. The
CSTs were dominated by L. crispatus in I, L. gasseri in
II, L. iners in III, no Lactobacillus species in IV, and
L. jensenii in V. In a longitudinal study, Gajer et al.
[3] assigned samples from subjects to CSTs charac-
terized by L. crispatus dominance for I, L. gasseri
dominance for II, L. iners dominance for III, presence
of L. crispatus and/or L. iners but no dominance for
IV-A, and very little lactobacilli for IV-B.

Our CST assignments for the gajer data have 92.6%
agreement with the CSTs assigned in the original pub-
lication.[3] The discrepancies are in our assignment of
samples to CSTs originally assigned to CST III, CST IV-
A and CST IV-B (Supplemental File 2).

Agreement across CST definition methods
We investigated how different choices for normal-
ization and clustering for defining CSTs would affect

ravel

(a)

gajer

(b)

chaban

(c)

hm
p

(d)

vahm
p

(e)

CSTs

Figure 1. Community state types. Stacked bar plot of bacteria present in microbiome samples grouped by community state type
(CST) for the (a) ravel,[10] (b) gajer,[3] (c) chaban,[20] (d) hmp,[21] and (e) vahmp [22] datasets. Each sample is represented by a
bar along the x-axis and the proportion of reads assigned to each taxon is indicated by the colors in the bar. Key for major taxa:
L. crispatus (yellow), L. iners (light blue), G. vaginalis (red), A. vaginae (brown), Lachnospiraciae BVAB1 (orange), Bifidobacterium
(light green). Samples are ordered by CST, and the assigned CST number is given on the x-axis of each plot. Table 2 contains a
summary of the CSTs.
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the detection of a change in CST. We considered five
methods: hierarchical clustering using BC dissimila-
rities, hierarchical clustering using Jensen–Shannon
divergences of counts normalized using DESeq2,[30]
hierarchical clustering using Jensen–Shannon diver-
gences of proportions, a method based on the pre-
dominant taxon in each sample, and hierarchical
clustering using the biological coefficient of variation
(BCV) [48] (Supplemental Files 1 and 3). When data
were normalized using DESeq2, a pseudo-count of 1
was added to the number of bacterial reads for each
taxon. The method based on the predominant taxon
assigns a CST to a sample based on the taxon for
which the most reads were observed, provided that it
comprises at least 30% of the sample; otherwise, no
CST is assigned.[1] BCV measures dissimilarity while
accounting for overdispersion.[49]

Table 3 summarizes the agreement among differ-
ent CST assignment methods in identifying CST
changes for the gajer data. The entry in each column
indicates the proportion of transitions agreeing or
disagreeing with the CST transitions reported by
Gajer et al. [3]. The agreement is 78–92% across the
different methods for defining CSTs (obtained by
adding the diagonal elements for each CST method
in Table 3). The method using BC dissimilarities
agreed the most. Identifying the ‘best’ method is not
possible because there is no ground truth for CST

assignment. The analyses discussed in the remainder
of the paper are based on BC dissimilarities.

The time scale and persistence of community
state types

Longitudinal data can provide insight into the fre-
quency of CST transitions, the length of time between
transitions, and the expected amount of time that a
subject remains in a particular CST. Differences in
persistence based on CST have been observed but not
quantified.[3,5,50,51]

CST transitions can occur on short time scales
For the gajer dataset, Figure 2(a) contains a plot of
the BC dissimilarities between microbiome profiles
and the microbiome profile after the next CST
change as a function of the number of days until
the next CST change. Dissimilarities are normalized
by subject by subtracting the mean and dividing by
the standard deviation. The mean and standard
deviation for five-day bins are plotted. If CST transi-
tions occurred gradually, we would expect the aver-
age distance and the standard deviation to decrease as
the day of a change approaches, indicating that sam-
ples make consistent movements towards the profile
assigned to the new CST. In the figure we see that
while there may be a slight trend to decreasing dis-
tance to the new CST over the 10–20 days preceding
a transition, the variance in distance actually
increases as a CST change approaches. Similar results
are seen for the ravel dataset (Supplemental File 4).
These results suggest that CST changes can reflect
either abrupt shifts in microbiome profiles over less
than a week or that they can reflect gradual changes,
but not one or the other exclusively.

Frequency of CST transitions depends on the
current CST
We fit continuous-time Markov chain models to
derive per-day CST transition rates and the expected
time spent in each state before leaving for another
state (persistence) for the daily (ravel), twice-weekly
(gajer), and weekly sampled (chaban) data.

Throughout this section we report point estimates
and 95% confidence intervals. Note that the confi-
dence intervals for transition probabilities are calcu-
lated based on the log of the intensities, and therefore
may not be symmetric about the point estimate.

Persistence refers to the tendency of a subject’s
samples to remain in a CST. For the gajer data, the
probability of remaining in a given state over the
course of a week is 0.38 (0.22,0.50) for CST 4-A and
at least 0.72 (0.61,0.79) for other CSTs (Figure 2(b)).
High probabilities for remaining in the current state
are seen for the chaban dataset, ranging from 0.60
(0.11,0.89) for CST 4-A to an observed absorbing

Table 2. Summary of community state types for data with
species-level taxonomic assignments.

Characteristic
taxa

CST #
in

[3,10]

Our
CST
#

% of samples

ravel
[2]

gajer
[3]

chaban
[20]

hmp
[21]

vahmp
[22]

L. crispatus I 1 8.6 18.1 38.2 48.7 17.0
L. gasseri II 2 5.9 5.9
L. iners III 3 26.9 36.9 26.3 29.6 27.0
Various IV-A 4-A 6.5 10.5 11.0
A. vaginae IV-B 4-B 32.4
L. jensenii V 5 7.1 15.7 6.6
G. vaginalis NA 6 29.6 9.2 32.6
BVAB1 NA 7 12.4
B. breve NA 8 9.2
L. iners and
G. vaginalis NA 9 27.9

Table 3. Agreement of CST transitions for different CST
assignment methods.

CST definition method

Original publication [3]

Transition No transition

Clustering Based on Transition 13.9% 2.6%
Bray–Curtis Dissimilarity No transition 4.9 78.5

Hierarchical Clustering Transition 13.3 2.9
Based on Jensen–
Shannon Divergences

No transition 5.4 78.3

Hierarchical Clustering Transition 13.7 4.2
of DESeq2-normalized
counts

No transition 5.1 77.1

Clustering Based on Transition 15.6 7.3
Predominant Taxon No transition 3.2 74.0

Hierarchical Clustering Transition 7.9 11.1
of BCV Distances No transition 10.9 70.1
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state for CST 8. For the ravel dataset, which included
several women diagnosed with BV, the probabilities
for remaining in a given state over the course of a
week were lower, and ranged between 0.38 (0.31,0.44)
for CST 9 to 0.48 for CSTs 3, 5, and 6 ((0.37,0.55),
(0.25,0.63), (0.37,0.55)).

The expected number of days remaining in the
current CST depends on the CST. For most CSTs,
subjects spend one to three weeks in a given state.
CST 6 for the ravel dataset, characterized by a mix of
L. iners and G. vaginalis, had an expected persistence
of 4.1 ± 0.80 days. Other CSTs in that dataset have
expected sojourn times of approximately one week.
For the healthy cohorts in the gajer and chaban
datasets, the expected sojourn times are more than
two weeks with one exception in each dataset. CST 4-
A in the gajer and chaban datasets, characterized by
high diversity, have expected persistences of
6.8 ± 2.7 days and 13.9 ± 19.4 days, respectively.

Across the three datasets, the probability of transi-
tion to a CST 3 characterized by L. iners was among
the highest transition probabilities. For the ravel data-
set, the highest probabilities of transition were among
CSTs 3, 6, and 9, which are characterized by L. iners
and G. vaginalis. The weekly transition probabilities
are between 0.15 (0.11,0.21) and 0.33 (0.26,0.38) for
these CSTs. For the gajer dataset, the highest transi-
tion probabilities were for transitions to CST 3 (up to
0.21 (0.12,0.36)), characterized by L. iners, and from
CST 3 and CST 4-A to high-risk CST 4-B (0.12
(0.080,0.17) and 0.16 (0.083,0.30)), characterized by
A. vaginae. For the chaban dataset, the highest transi-
tion probabilities were for transitions to CST 3 (up to
0.35 (0.09,0.76)) and from CST 3 to low-risk CST 1
(0.21 (0.067,0.46)), characterized by L. crispatus.
Across the three datasets, the transition probabilities
to CST 3 were lowest for low-risk CSTs 2, 5, and 1

which are characterized by L. gasseri, L. jensenii, and
L. crispatus, respectively (Supplemental File 4).

The ravel dataset includes an indication of days on
which BV medication was taken. Among samples
corresponding to a woman’s first day of treatment,
three women were in CST 3, three were in CST 6, and
seven were in CST 9 before medication began. Eleven
of the samples collected after medication stopped
were in CST 3 (characterized by L. iners), one transi-
tioned to CST 9 (characterized by L. iners and G.
vaginalis), and one transitioned to CST 1 (character-
ized by L. crispatus). We fit a continuous-time
Markov chain for the ravel data with BV medication
as a covariate for transitions from CST 6 to 3 and
from CST 9 to 3. For samples corresponding to
medication days, the probabilities of transitioning to
(lower-risk) CST 3 were higher (0.19 (0.055,0.88)
versus 0.014 (0.0082,0.033) and 0.65 (0.40,0.86) ver-
sus 0.073 (0.054,0.099) for one-day transitions.

Dynamic modeling of community state types,
Nugent scores, and pH

Dynamic models can characterize the actual flow of
influence between various variables and can be used
to forecast outcomes at any given time in the future.
A natural tool for learning dynamic models, and
handling both uncertainty and complexity, is pro-
vided by dynamic Bayesian networks (DBNs).[52]
This framework enables modeling of high-dimen-
sional processes with complex dependencies that are
expressed as an interpretable network topology.
DBNs naturally deal with missing data, using exact
inference for small topologies, and a variety of
approximate methods for large topologies. In our
analysis, we used the structured proportional jump
process (SCUP) [53] modeling framework which

(b)(a)

Figure 2. Persistence of CST states. (a) Plot of mean and standard deviation of five-day bins of z-scores of distances of
microbiome profiles from profiles at the next CST change for the gajer [3] data, as a function of the days until the next CST
change. (b) Markov chain diagram indicating the probability of transitioning between states in one week for the gajer dataset.
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combines ideas from the fields of proportional hazard
models [54] and continuous-time DBNs and allows
for efficient modeling of non-homogeneous multi-
component processes.

Briefly, the SCUP modeling framework defines, for
an outcome i, the probability of transition from state
yi at time t to state �yi at time t þ Δt , where Δt tends to
0, as:

Pr �ytþΔt
i jyti ; ytpaðiÞ; x

� �
� rtyi!�yi

� exp wi
yi!�yi

� x; ytpaðiÞ
n o� �

� Δt;

(1)

where the first factor on the right-hand side is the
non-negative, time-dependent baseline rate; and the
second factor considers the structural context of out-
come i and expresses the effect that the joint state of
its parents (ytpaðiÞ) and the features (x) has on the
transition rate using the weight vector wi

yi!�yi
. An

expectation maximization (EM) procedure is
employed to estimate the model parameters from
point observations and partially observed data; for
more details, see [53]. We estimated each parameter’s
95% confidence interval as ±1.96 times (because
Pð�1:96 < z < 1:96Þ ¼ 0:95 for z,Nð0; 1Þ) the stan-
dard deviation of the estimated parameter, computed
using 250 bootstrap iterations. P-values were com-
puted via Wald tests and FDR-adjusted to account
for multiple hypothesis testing.

We used SCUP (Matlab implementation) for mod-
eling the dynamics of CST risk level, pH and Nugent
score and their dependence on age, ethnicity, BV
medication, and menses. High-risk CSTs are those
associated with high Nugent scores and diagnosis of
BV. The high-risk CSTs are CSTs 6 and 9 in the ravel
data and CST 4-B in the gajer data. The remaining
CSTs were labeled low risk. pH values were discre-
tized to binary states, using a cutoff of 4.5, up to

which vaginal pH is considered normal. Nugent
scores, currently the diagnostic gold standard for
BV,[55,56] are calculated using Gram staining of a
clinical sample. Lower Nugent scores (<4) are the
result of high numbers of Lactobacillus spp. and
high Nugent scores (>6) occur when there are little
or no Lactobacillus spp. present. Diagnosis of BV in
samples with intermediate (4–6) levels of
Lactobacillus spp. requires the presence of clue cells.
[55] To improve numerical stability, we normalized
continuous features to have zero mean and standard
deviation of one. We further expanded categorical
features into a collection of indicators.

For the ravel data, we constructed models using
two static features, age and ethnicity, two dynamic
features whose values can change over time, BV
medication and menses, and two sets of two out-
comes that we wished to forecast, CST risk level
and pH or Nugent score (Figure 3(a)). The gajer
data did not include pH measurements, or informa-
tion on BV medication and menses. Consequently,
the constructed models considered only two features,
age and race/ethnicity, and one set of two outcomes,
CST and Nugent score (Figure 3(b)).

Modeling results for community state type, Nugent
score, and pH
Using the models above, SCUP was employed to
understand the influence of features on outcome
transitions as well as to determine outcome-outcome
dependencies; the inferred effects and effect differ-
ences for each pair of outcome states are shown in
Figure 4. As expected, in both ravel models, BV
medication significantly increased the rate of transi-
tion from high- to low-risk CST (p-values of 0.01 and
1:3� 10�4, for the pH and Nugent score models,
respectively), favoring the high- to low-risk transition
over the opposite one (p-values of 0.005 and 10�4).
Menses (but not BV medication) significantly
affected pH level transitions, decreasing high to low

(a) (b) (c)

Figure 3. Dynamic modeling of the vaginal microbiome. Dynamic models are constructed using the (a) ravel and (b) gajer data.
Each model consisted of static features age and race/ethnicity. For the ravel data, dynamic features BV medication and menses
were included. (a) For the ravel data two sets of two outcomes were modeled, CST and O2, where O2 denotes Nugent score or
pH. (b) For the gajer data, CST and Nugent score were the outcomes. (c) Unlike the other models, which assume bidirectional
influence between the outcome variables, models 2–4 (right) consider unidirectional or no direct influence between the
outcomes (model 4). These models were fit for each combination of static, dynamic, and outcome variables.

MICROBIAL ECOLOGY IN HEALTH AND DISEASE 7



pH rate (p-value = 0.02) and preferring low to high
over high to low pH transition (p-value = 0.02). In
addition, race/ethnicity had a significant effect on the
transition rate from low to medium Nugent score
(p-value = 0.035), but the overall effect on the low $
medium transition was not significantly different

from 0, indicating that race/ethnicity, on its own,
does not drive Nugent score to either level. The
estimated effect of the remaining features, though in
some cases large, had a large sampling variance and
was not statistically significant.

In all models, an outcome had a significant effect
on the transition rates of the other one, typically
stronger than that of the features. Specifically, high

pH significantly increased the low- to high-risk CST
transition rate compared to the high- to low-risk
transition (p-value = 0.02; Figure 4, top row) and
high-risk CST had an even stronger effect on low $
high pH transition (p-value = 0.002). This is perhaps
expected as high-risk CSTs contain less lactic acid-
secreting bacteria. For the ravel data, high-risk CST
increased the transition rates to a higher Nugent
score (p-values of 0.005 and 3:7� 10�4 for low $
medium and medium $ high Nugent score transi-
tions, respectively); and medium and high Nugent
scores drove CST to high-risk level stronger than
the other way around (p-values of 0.062 and
7:8� 10�8, respectively). Similar trends for the

Figure 4. Inferred dynamic effect. Shown are, for each model, the effects that the features and outcome have on the rate of
change of the other outcome’s state (e.g. a negative H- ! L-risk effect decreases the rate of change from high- to low-risk
CST) as well as the associated difference in effects between each pair of outcome states (e.g. a positive L- $ H-risk indicates
an overall effect preferring H- over L-risk CST). Darker (lighter) colors indicate effects greater (less) than 0; 95% confidence
intervals are given in parentheses; and * denotes effect or effect difference significantly different than 0 at a 5% significance
level. L, M, H stand for low, medium and high.
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interdependencies between CST risk level and Nugent
score were observed for the gajer data though, typi-
cally, these were associated with less significant
p-values.

Assessing the most likely models
To further characterize the relationships between out-
comes, we constructed four dynamic models that
cover all possible relationships between each pair of
outcomes (Figure 3) and calculated the out-of-sample
log likelihoods of each subject using a leave-one-out
approach (hence penalizing models for a greater
number of parameters is unnecessary). To test the
hypothesis that the observed difference in sums of
out of sample log likelihoods between models is
greater than 0, we repeatedly selected a random sub-
set of subjects, switched between each subject’s log
likelihoods in the two models and computed the
fraction of iterations in which the observed difference
is lower; we then corrected for multiple hypothesis
testing, using Benjamini-Hochberg’s FDR method.

For all dynamic models, summation of the log like-
lihoods showed that the bidirectional dependency
model, model 1, was most likely, followed by the uni-
directional model 2, then model 3, and finally model 4,
with no direct influence between outcomes (Figure 5).
Notably, for both ravel and gajer Nugent score models,
model 1 obtained significantly greater log likelihoods
than the corresponding model 3 and 4 (p-values of
0.004,1:2� 10�4; and 1:7� 10�4, 9� 10�6, respec-
tively); but its advantage over model 2 was not statisti-
cally significant. These results, and CST trajectories of
subjects (Supplemental File 3), seem to indicate a strong
relationship between CST and Nugent score, where
CST changes are accompanied by changes in Nugent
score, but there may be changes in Nugent score for
which there is no CST change.

Outcome variable trajectories
SCUP modeling enables predicting trajectories of
outcome variables, from the static and dynamic fea-
tures and an initial outcome configuration; two
examples of such trajectories are shown in Figure 6.
Clearly, the two dynamic features have a strong effect
on the predicted trajectories, with BV medication
more strongly affecting CST risk level and menses
having a greater impact on pH levels.

Predicting changes in community state type

In this section we investigate the ability to predict
future CST changes and study the relationships
between specific bacteria and major shifts in micro-
biome composition. We assess the ability to predict
CST changes and CST risk level with fixed-time
modeling methods. This is done using two large
datasets, ravel and gajer, and across varying time
horizons. Second, we evaluate the ability to predict
an upcoming CST change in all five datasets. Finally,
we analyze which bacteria are indicative of upcoming
CST changes.

Predicting an upcoming CST change
A random forest (RF) [57] was used to evaluate the
ability to predict an upcoming CST change based on
current microbiome profile and clinical information.
To address class imbalance, class weights were
employed with each class weighted by the other’s
prevalence. We compared predictions at the sampled
intervals (ravel: daily; gajer: twice-weekly) to a seven-
day prediction horizon. We further assessed predic-
tions made by assigning randomly selected samples to
the test set (practically, using out-of-bag predictions)
to predictions made when samples from an entire
trajectory of a subject were assigned to the test set.
Prediction accuracy was evaluated using area under
the receiver operating characteristic (ROC) curve

ravel data, CST and pH ravel data, CST and Nugent score gajer data, CST and Nugent score
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Figure 5. Comparison of dynamic models to evaluate outcome relationship. For each dynamic model, the per subject out of
sample log likelihoods obtained by the outcome bidirectional dependency model 1 plotted against the corresponding values
computed by models incorporating unidirectional (model 2, blue, and 3, brown) or no relationship (model 4, yellow) between
outcomes (see Figure 3 for definition of models). * denotes cases where the sum of model 1’s log likelihoods is significantly
greater than that of the corresponding model.
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(AUC), where a higher AUC reflects better prediction
accuracy, as well as sensitivity at 80% specificity.

Random forest out-of-bag predictions for individual
samples obtained AUC values of 0.72–0.86 and sensi-
tivity of 44–73% at 80% specificity (Figure 7(a) and 7
(b), left column; and Supplemental File 8). Adding
clinical information had a negligible effect on the pre-
diction accuracy (data not shown). Perhaps surpris-
ingly, CST changes at a seven-day horizon were more
accurately forecasted compared to one or three/four-
day horizon, most notably for the ravel dataset. This

may be partly due to the greater number of such CST
changes available for training in the former case (25%
vs. 14% and 19% vs. 14% for the ravel and it gajer
datasets, respectively).

When trained repeatedly on all but a single sub-
ject, RF models exhibited poorer performance
(Figure 7(b), right column; and Supplemental File
8). This low prediction capability reflects the larger
inter-person variation compared to intra-person var-
iation. Here, again, clinical information did not
improve prediction accuracy; and the accuracy of
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predicting CST changes at a seven-day horizon is
comparable to the shorter horizons.

Predicting CST risk level
As noted above, we identified ravel’s CSTs 6 and 9
and gajer’s CST 4-B as high risk CSTs and trained RF
models on the relative microbial abundances to pre-
dict CST risk level at one, three/four and seven-day
prediction horizons, splitting the data by either sam-
ples or subjects. The inferred models, for all learning
scenarios, obtained high AUCs and sensitivity values
(Figure 7 and Supplemental File 8), with the lowest
performing model being ravel’s seven-day horizon,
obtaining an AUC of 0.85 and sensitivity of 80% at
80% specificity.

Prediction horizon and CST change prediction
accuracy
Table 4 contains the AUC for prediction of an
upcoming CST change for each of the five datasets
using random forests and the sensitivity at 80% spe-
cificity. At a specificity of 80%, the sensitivity is
approximately 50% when the prediction horizon is
less than four days. The prediction performance
degrades as the prediction horizon increases, but the
accuracy remains above 50% for many choices of
specificity across the datasets. The better-than-ran-
dom accuracy for prediction horizons >30 days for
both subjects changing CST and those remaining in
their current CST could be an indication that subjects
have a CST to which they tend to return or remain
despite various environmental perturbations.

Bacteria indicative of upcoming CST changes

Two approaches were used to detect taxa/OTUs that
were present in different levels between samples cor-
responding to CST changes and those corresponding
to remaining in the same CST:

(1) A test of differences in abundance based on
the Benjamini–Hochberg correction [58] with
the following modifications. Prior to the tests,
the taxa/OTUs are given an ordering based on
hierarchical clustering of the proportions
using the Manhattan metric and Ward’s cri-
teria. Taxa/OTUs found in at least five samples
were included. To maximize power to detect

differences in abundances by exploiting corre-
lations in outcomes of related taxa, we
employed a two-stage hidden Markov model
(HMM) as proposed by Sun and Cai [59] to
obtain z-statistics for differences in abundance.
For finite sample sizes, z-statistics can demon-
strate skew, even under the null,[60] and so we
first computed highly accurate p-values for the
relationship between abundance and CST
transitions by performing 1 million permuta-
tions for each feature. One tailed p-values were
then converted to z-statistics using the inverse
quantile normal transformation, and then used
for the HMM group-level FDR procedure as
implemented in R.[61]

(2) The method implemented in Linear
Discriminant Analysis Effect Size (LEfSe).[62]
The software applies a Kruskal–Wallis test, a
non-parametric test, and then linear discrimi-
nant analysis to evaluate effect size.

In each dataset except for the gajer dataset, the
presence of G. vaginalis is strongly associated with
an upcoming CST change. For the ravel and vahmp
datasets, this observation may reflect treatment for
BV in these cohorts. Figure 8 depicts results for the
ravel dataset from LEfSe.

A clear pattern for lactobacilli and CST changes
does not emerge across the datasets. For several
Lactobacillus species, they were associated with CST
transitions in one dataset while being associated with
remaining in the same CST for another. L. iners is
associated with an upcoming CST change only in the
ravel dataset. L. crisipatus is associated with remain-
ing in the current CST in the ravel dataset, but is
strongly associated with an upcoming change in the
gajer dataset. L. gasseri is associated with an upcom-
ing CST change for the ravel but is a predictor for
remaining in the current CST for the gajer, hmp, and
vahmp datasets. The presence of L. jensenii is asso-
ciated with CST changes in the ravel dataset, but is
associated with remaining in the same state in the
hmp and vahmp datasets.

There is also disagreement across datasets for the
roles of the less-prevalent community members.
Atopobium spp. are associated with remaining in a
CST for the ravel and gajer datasets, but is associated
with CST changes in the hmp dataset. Anaerococcus
spp. are associated with CST changes in the ravel and
gajer datasets, but associated with remaining in the
same CST for the vahmp dataset. Mobiluncus spp. are
associated with CST changes in the chaban and
vahmp datasets, but with remaining in the same
CST in the ravel dataset.

Table 4. Area under the ROC curve (AUC) and sensitivity at
80% specificity for predicting CST changes.
Dataset Prediction horizon AUC Sensitivity at 80% specificity

ravel [2] 1 day 0.72 51.9%
gajer [3] 3–4 days 0.75 55.2
chaban [20] 7 days 0.49 26.3
hmp [21] 1–11 months 0.50 25.0
vahmp [22] 1–31 months 0.59 25.8
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Discussion and conclusions

We conducted a secondary analysis of five surveys of
the vaginal microbiome with repeated measurements.
Because of the differences in subject cohorts and
sample processing protocols, a meta-analysis with
pooled data was not feasible. However, several inter-
esting patterns emerged.

Detection of major shifts in the microbiome is
largely independent of the choice of methods for
calculating CSTs. It was not our goal to determine
the best method for defining CSTs by aligning CSTs
with clinical data. The question of which method(s)
for calculating CSTs best matches data is ill-posed, as

the ‘best’ clustering of data may not produce the most
informative dynamic models.

We observed that healthy subjects tend to persist
in a CST for two to three weeks or more while those
in high-risk CSTs tend to change CST more fre-
quently, often in response to medication. Both
SCUP dynamic modeling and Markov chain model-
ing confirmed that administration of BV medication
is associated with transition from high-risk to low-
risk CSTs.

Most CST transitions were to and between CSTs
associated with dysbiosis marked by high diversity
and infection-causing bacteria. The observed short
persistence in states characterized by G. vaginalis in

Figure 8. Bar plot of effect sizes for bacteria with significant differences between subjects with a CST change in the next sample
(TRUE) versus those that will remain in the current CST (FALSE) for the ravel [10] dataset.
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our Markov chain models was validated by the detec-
tion of G. vaginalis as a predictor of CST change in
nearly every dataset. Our analysis of CST transitions
after the administration of BV medication provides
evidence that colonization by L. iners represents a
transition state indicating an upcoming shift to a
high-risk state and/or a state that subjects enter on
a path to recovery from BV.

Microbiome changes can be gradual shifts evolving
over one week or dramatic shifts occurring over less
than one day. We can predict an upcoming shift with
accuracy that is much better than guessing with
repeated samples with a frequency of at least twice-
weekly.

Trajectory modeling indicates that CST changes
precede changes in pH and Nugent score. Only two
of the datasets considered here had sufficient mea-
surements per subject to perform trajectory model-
ing. There is a lack of dense longitudinal
measurements of the vaginal microbiome with
accompanying clinical information. Experiments
would ideally account for factors that can affect bac-
terial growth and/or pH, such as hormone levels,
clothing, antibiotic/antifungal use, diet, douching
practices, and presence of semen. More sophisticated
dynamic modeling would be possible if a measure-
ment of biomass were also added.[63]

In several subjects, CST transitions were associated
with changes in Nugent score, but there were several
changes in Nugent score with no CST transition. A
likely explanation for this relationship is that higher
Nugent scores are possible even when Lactobacillus
spp. are present, but the sample is dominated by a
species not considered when determining the Nugent
score, such as GBS. Since Nugent scores are deter-
mined only by counting amounts of Lactobacillus
spp., Garddnerella/Bacteroides, and other curved
Gram-negative rods (i.e. bacilli), a sample dominated
by bacteria of other morphology (e.g. cocci or vibrio)
will be in CST 4-A. Over time, the Nugent score
would detect changes in bacilli measured by the test,
but would not capture variability or stability of spe-
cies that are not bacilli and might contribute to BV
pathology.

We observed a strong relationship between menses
and vaginal pH. A ‘healthy’ vaginal pH is 3.5–4.5 and
the pH of blood is approximately 7.4, so we would
expect a higher pH during menses. Menses are much
more frequent than diagnoses of BV in most women,
so we hypothesize that changes in bacterial composi-
tion are more likely a cause of dysbiosis and a higher
pH is an effect. This notion agrees with the clinical
practice of evaluating samples for clue cells for sub-
jects with an intermediate pH and/or Nugent score.

Limitations of this analysis include the use of only
tagged sequence data and resolution of taxa to the
species level at most. Recent investigations have

demonstrated clade-specific effects of bacteria on
vaginal health.[13,14] Also, our analysis does not
describe a natural history of bacterial communities,
as subjects in some cohorts underwent various forms
of treatment. For example, the gajer dataset is based
on a douching cessation study, and several of the
subjects in the ravel and vahmp datasets were treated
for BV.

This study demonstrates that CSTs provide a
coherent description of vaginal microbiome
dynamics. Our results indicate that CSTs may be
useful for clinical and scientific settings.
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