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Abstract: The palm oil industry produces liquid waste called POME (palm oil mill effluent). POME is
stated as one of the wastes that are difficult to handle because of its large production and ineffective
treatment. It will disturb the ecosystem with a high organic matter content if the waste is disposed
directly into the environment. The authorities have established policies and regulations in the POME
waste quality standard before being discharged into the environment. However, at this time, there
are still many factories in Indonesia that have not been able to meet the standard of POME waste
disposal with the existing treatment technology. Currently, the POME treatment system is still
using a conventional system known as an open pond system. Although this process can reduce
pollutants’ concentration, it will produce much sludge, requiring a large pond area and a long
processing time. To overcome the inability of the conventional system to process POME is believed
to be a challenge. Extensive effort is being invested in developing alternative technologies for the
POME waste treatment to reduce POME waste safely. Several technologies have been studied, such
as anaerobic processes, membrane technology, advanced oxidation processes (AOPs), membrane
technology, adsorption, steam reforming, and coagulation. Among other things, an AOP, namely
photocatalytic technology, has the potential to treat POME waste. This paper provides information
on the feasibility of photocatalytic technology for treating POME waste. Although there are some
challenges in this technology’s large-scale application, this paper proposes several strategies and
directions to overcome these challenges.

Keywords: palm oil mill effluent; treatment technologies; photocatalytic degradation; photocatalyst;
wastewater treatment

1. Introduction

Waste is a material produced from industrial or domestic (household) activities whose
existence is often undesirable because it negatively impacts the environment. There are
three types of waste, including solid waste, liquid waste, and gas waste, which can be
classified into inorganic and organic waste. Based on the economic value, waste can be
classified into waste that has economic value and does not have economic value. Waste that
has economic value is waste that can be further processed to produce added-value products.
Economic growth causes an increase in industrial activities and is a magnet for population
movements increasing industrial and domestic waste. The increase of waste produced
is proportional to an increase in a country’s gross domestic product (GDP). The sectors
contributing the most to Indonesia’s GDP include manufacturing, agriculture, forestry

Materials 2021, 14, 2846. https://doi.org/10.3390/ma14112846 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-2899-0558
https://doi.org/10.3390/ma14112846
https://doi.org/10.3390/ma14112846
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14112846
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14112846?type=check_update&version=2


Materials 2021, 14, 2846 2 of 35

and fishery, wholesale and retail trade, construction, mining, and quarrying. Based on
the Indonesian statistical centers, forestry is the second largest contributor to GDP after
manufacturing [1]. The forestry sector produces waste from three stage processes, including
preharvest, harvest, and post-harvest processes. In Indonesia, one of the promising business
sectors in the forestry fields is the oil palm industry.

As the world’s largest crude palm oil (CPO) producer shown in Figure 1, Indonesia
has the world’s largest palm oil land. Based on the Indonesian plantation statistics in
2018, the total area of palm oil in Indonesia reached 14.67 million hectares with palm oil
production of 42.87 million tons [2]. Based on Figure 2, it is clearly shown that there is an
enhancement trend of the palm oil production in Indonesia, Malaysia, and Thailand, which
commonly utilize as cooking oil and biodiesel.

The palm oil industry produces liquid waste called POME (palm oil mill effluent).
Each ton of CPO production produces approximately 2.5–3.0 m3 of POME [3]. POME is
stated as one of the wastes that are difficult to handle because of its large production and
ineffective existing treatment. It is a waste with the lowest amount of fiber content among
all the wastes of palm oil processes [4]. POME contains a high organic load that causes high
biochemical oxygen demand (BOD, 10,000–44,000 mg/L) and chemical oxygen demand
(COD, 16,000–100,000 mg/L) [5]. With a high organic matter content, the pollutants’
levels will be higher to negatively affect the ecosystem if the waste is discharged directly
into the environment. During the processing of POME, the odor will emerge. Besides
that, POME also has a brownish appearance, where the surrounding environment will be
interrupted by POME disposal. A higher production level has also increased the volume of
untreated POME that has been discharged from the processing mills [6]. The authorities
have established policies and regulations in the POME waste quality standard before being
discharged into the environment.

Nevertheless, many factories in Indonesia have not met the standard of POME waste
disposal with the existing treatment technology. Currently, the POME treatment system
is still using a conventional system known as an open pond system. The system includes
anaerobic ponds, aerobic ponds, and settling ponds. The principle of this system is to use
microorganisms to degrade organic pollutant compounds in POME. This system operates
simply but will produce much sludge, requiring a large pond area and long processing time.
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Figure 2. Comparison of palm oil production in Indonesia, Malaysia, and Thailand from 1975 to 2018.
Adapted from ref. [7].

To overcome the inability of the conventional system to process POME is believed to
be a challenge. Many studies have been conducted to find other alternative technologies
for POME waste treatment to reduce POME waste to a safe level of BOD 100 mg/L [8].
Several technologies have been reported, namely biological treatment, physiochemical
treatment, thermochemical treatment, and integrated treatment [9]. The graph outlining
data on the number of publications from 2010 to 2019 related to POME treatment using
various technologies is presented in Figure 3. Although these alternative technologies have
shown satisfying results in high-quality output waste, all of these processes are not yet
feasible to replace open pond systems because they require high processing costs. As it is
known that palm oil processing requires low costs to be competitive internationally, new
technologies with high operating costs will not be attractive to palm oil mills [10].
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Figure 3. The number of annual publications related to POME treatment technologies in the past ten
years. Indexed by Scopus (TITLE-ABS-KEY (terms); terms: aerobic, anaerobic, fermentation, steam
reforming, membrane, adsorption, Fenton, photocatalytic, ozonation, and coagulation-flocculation
for palm oil mill effluent).
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For instance, physiochemical treatment, namely ultrafiltration membrane separation,
can reduce pollutant elements by up to 90% with water [11]. However, this technology is
not feasible for treating POME waste because the turbidity characteristics of POME cause
membrane fouling. It is necessary to add a specific chemical that will inevitably increase
processing costs to overcome fouling. For biological treatments, the general principle is
similar to an open pond system, in which biological treatments have a long processing
time [12,13]. Physiochemical treatments such as adsorption also still need further study [14],
the absence of scalability studies [15], and also requires high maintenance costs due to the
use of adsorbents on treating POME [10]. POME processing with thermochemical treatment
such as catalytic steam reforming can also be used to process POME and also produced
byproducts in the form of useful syngas [16–18]. As explained above, POME is composed of
organic elements; thus, promising side products can be generated. However, the production
of H2 syngas is still lower than conventional hydrocarbon reforming [16]. In addition,
POME containing a high-water content (>95%) causes high energy requirements [10].

Another alternative technology is the advanced oxidation process (AOP) using het-
erogeneous photocatalytic in semiconductors such as TiO2, ZnO, WO3, SnO2, CdS, SiO2,
ZrO2, ZnO, Nb2O3, Fe2O3, V2O5, Sb2O4, CeO2, etc. [10]. In general, the general principle
of AOP is producing hydroxyl radicals acting as a strong oxidizer that will react with
organic compounds (pollutants) in waste converted into H2O and CO2 and other com-
pounds, which are more biodegradable and harmless products [19]. Photon energy (UV
light/visible light) is used as a driving force to activate semiconductor-based materials that
act as a catalyst to degrade pollutants. This technology is environmentally friendly and
classified as cost-effective in processing various pollutants such as organic and inorganic
wastes [20]. More importantly, this technology can utilize natural sunlight as photon energy,
reducing operational costs [21]. This technology is feasible to replace conventional open
pool systems.

This paper will discuss some of the developments in existing POME processing
technology, particularly photocatalytic technology. This review consists of four main
parts: general information and the standard quality of POME waste, the development of
technologies in POME processing including conventional and alternative technologies,
the general principle of photocatalysis process and the development of photocatalysts
including semiconductor-based and modification of semiconductor-based that are used for
POME degradation, and operational parameters that affect the process and kinetic models
of photocatalytic degradation of POME.

2. Characteristic of POME

Almost all methods in processing oil palm require the use of excess water. [5] Thani
et al. reported that to process 1 ton of fresh fruit bunches (FFB), up to 1.5 m3 of water
is needed, and as much as 50% of it ends up as POME waste. [3] Hasanudin et al. also
reported that each production of 1 ton of CPO produced 2.5–3.0 m3 of POME. In previous
studies conducted by [22], it was reported that 0.5–0.75 tons of POME produced in each
processing of 1 ton of FFB.

The three main sources of POME waste come from the sterilizer condensate stage
(17%), decanter or sludge separator stage (75%), and hydrocyclone waste stage (8%) [23].
POME is a colloidal suspension produced from a mixture of condensate sterilization, sludge
separator, and hydrocyclone wastewater in a ratio of 9:15:1 [24]. POME has a high BOD and
COD, which can cause pollution in the environment. COD is the amount of oxygen needed
to oxidize organic substances present in wastes. The higher the level, it indicates that
these substances are still in abnormal quantities and are dangerous if directly circulated to
the surrounding environment. BOD is the amount of oxygen needed by bacteria to break
down the organic waste. The higher the level, it indicates that the bacteria require much
oxygen to reduce the waste. High COD and BOD levels can cause the death of the water
population due to reduced oxygen levels.
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POME is a brownish thick viscous liquid with a temperature between 80 and 100 ◦C
at its output caused by the sterilization process and is acidic with a pH between 3.4 and
5.2. During palm oil production, there is no addition of chemicals; therefore, POME waste
is a non-toxic waste [25]. However, POME can pollute the environment because it can
reduce the content of dissolved oxygen in the water. POME waste disposal has various
characteristics depending on processing techniques and raw materials’ quality, including
age and fruit type [26]. Table 1 presents a summary of the differences in the characteristics
of POME in Indonesia and Malaysia.

Table 1. Characteristics of POME.

Parameter
Thani et al. [5] Setiadi et al. [27]

Mean Range Mean Range

pH * 4.2 3.4–5.2 4.1 3.3–4.6
Oil and Grease * 6000 150–18,000 - -

BOD * 25,000 10,000–44,000 21,280 8200–35,400
COD * 50,000 16,000–100,000 34,720 15,103–65,100

Total Solids (TS) * 40,500 11,500–79,000 46,185 16,580–94,106
Suspended Solids (SS) * 18,000 5000–54,000 21,170 1330–50,700

Total Volatile Solid (TVS) * 34,000 90,00–72,000 - -
Ammoniacal Nitrogen (AN) * 35 4–80 13 2.5–50

Total Nitrogen * 750 80–1400 41 12–126
Temperature (◦C) 90 80–100 - -

* All parameter units are in mg/L except pH and temperature.

3. Laws and Legislations for POME Discharge

With the rapid development of palm oil production and increasing public awareness
of environmental pollution, the palm oil industry is socially and legally obliged to treat its
waste before being discharged into the environment.

In 1991, to prevent this waste’s negative effects, the Government of Indonesia made
regulations regarding POME disposal standards into the environment. Since the regulation
was passed, the palm oil industry must process their POME waste before releasing it into the
environment. The standard limits on the quality of POME waste in Indonesia are summarized
in Table 2. The latest regulation in 2014 stated that the COD standard is limited to 350 mg/L
at the initial stage at 500 mg/L. Likewise, in the initial stages, the BOD standard is limited to
250 mg/L and then updated in 2014 to a lower concentration of 100 mg/L.

Table 2. Effluent standards for the POME wastewater in Indonesia [8,28,29].

Year 1991 1995 2014

Parameter Highest Level
(mg/L)

The Highest
Pollution Load

(kg/ton)

Highest Level
(mg/L)

The Highest
Pollution Load

(kg/ton)

Highest Level
(mg/L)

The Highest
Pollution Load

(kg/ton)

BOD5 250 1.5 250 1.5 100 0.25
COD 500 3.0 500 3.0 350 0.88
TSS 300 1.8 300 1.8 250 0.63
Oil and fat 30 0.18 30 0.18 25 0.063
Total Nitrogen (as N) 20 0.12 20 0.12 50 0.125
pH 6–9 - 6.0–9.0 6.0–9.0
Highest waste discharge - 6 m3 tons of raw material 2.5 m3 per ton of CPO

4. Conventional Palm Oil Mill Effluent (POME) Treatment Technologies

The content of POME waste consists of biodegradable organic matter. It is required to
establish a POME processing system at each palm oil mill and strictly control the POME
standard limits before discharged into the surrounding environment to avoid POME
waste’s negative effects. It was reported by Rahayu et al. [30] that almost all palm oil
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mills in Indonesia use an open pond system in treating POME waste since the system has
advantages from an economic point of view and the ease of operation.

There are series of ponds with several treatments in the POME waste treatment process.
This system consists of five types of ponds: cooling ponds, fat ponds, anaerobic ponds,
aerobic ponds, and settling ponds (Figure 4). Each plant may give different naming and
pool functions. The cooling pond serves to reduce the POME temperature ranging from
80 to 90 ◦C to reach the optimal temperature in the process of the next pool. As shown in
Table 1, POME waste contains oil and grease, the remaining oil and fat in POME will be
collected in a fat pool. The fat pool consists of a baffle pit or sump that can hold wastewater
for 10 h. The most effective process requires a hydraulic retention time (HRT) of around
1–2 days [5].
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Furthermore, POME will undergo processing in anaerobic and aerobic ponds. Organic
substances in POME can be effectively degraded both in anaerobic and aerobic processes.
Anaerobic can occur without oxygen, while aerobics takes place when there is oxygen
content. According to Perez et al. [31], the most suitable method for POME processing is the
anaerobic process. Usually, the anaerobic pool’s depth ranges from 5 to 7 m to minimize and
prevent oxygen entry through the photosynthesis process. According to Yacob et al. [32],
an anaerobic pool has a typical size (length × width × depth) with a processing capacity
of 7500 m3 POME with a total HRT of 40 days is 60.0 m × 29.6 m × 5.8 m, respectively.
However, the pond’s size depends on the palm oil mill’s production capacity and the land
available for processing ponds [33]. After the anaerobic pool, POME is further processed
in the aerobic pool. Aerobic pools usually have a depth of 1–1.5 m. It is intended that
the transfer of oxygen (O2) can be evenly distributed throughout the pond [10]. The
addition of oxygen is carried out by stirring or diffusion of air. Before being discharged
into the environment, the aerobic pond’s waste is first deposited in a settling pond. In
the sedimentation ponds, the mud will be descended and accumulated at the bottom of
the pond.

Although the open pond system is economical, this system requires a longer retention
time (20–60 days) and a more extensive area [24,34,35]. The open pond system also
produces large amounts of mud that must be disposed of and processed further. This
system also cannot completely decolorize POME waste [36]. Besides, there is methane
gas production in the anaerobic process, released freely into the air. Chan et al. and
Fujihara et al. [13,37] stated that methane release could contribute up to 70% of the total
greenhouse gas emissions in the entire production process at the palm oil mill. Recently,
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technology in biogas can capture methane gas, reduce greenhouse gas emissions, produce
renewable energy, and improve soil quality. However, the system is still too expensive to be
commercialized [38]. Therefore, to overcome these issues, several alternative technologies
have been developed, which will be discussed in the following section.

5. Alternative Palm Oil Mill Effluent (POME) Treatment Technologies

Many researchers have developed other alternative technologies to treat POME waste
to overcome the open pool system’s weakness. These alternative technologies are devel-
oped to treat POME waste to reach quality standards and environmentally safety and
expected to produce renewable energy. The last few years alternative technology has
been widely studied like membrane technology [39], adsorption [40,41], coagulation-
flocculation [42,43], AOP [44,45], and various anaerobic and aerobic degradation [46,47].
Although the research is still on a laboratory scale, the technology has shown more satisfy-
ing results than conventional systems or open ponds. The advantages and disadvantages
of each technology will be explained in detail in the following section.

5.1. Biological Treatment

An open pond system is an economical and simple treatment method that can reduce
the high pollution burden on POME [48]. Perez et al. [31] explained that the most suitable
method for processing POME is a biological treatment, which is the anaerobic process.
However, biological treatment using an open pool system has many weaknesses and can
also cause other sources of pollutants such as methane (CH4) and hydrogen sulfide (H2S).

Many researchers have developed this system to overcome its weaknesses, such as
shortening HRT, minimizing the land used for processing, and taking advantage of new
sources of pollutants generated in the anaerobic process. For instance, the use of pollutants
such as methane gas (CH4) can be further utilized to generate electricity [49]. Additionally,
sludge production in open pond systems can be used as a fertilizer source [50].

In order to improve process performance and reduce HRT, several developments
in biological treatments have been studied, such as up-flow anaerobic sludge blanket
(UASB) (Figure 5) [51], expanded granular sludge bed (EGSB) (Figure 6) [52], sequencing
batch reactors (SBR) (Figure 7) [53], up-flow anaerobic sludge fixed film reactor (UASFF)
(Figure 8) [54], and rotating biological contactor (RBC) [55]. Although this technology can
improve process efficiency and reduce HRT, most of these technologies have not yet been
implemented on a large scale.
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POME also contains high levels of organic acids, carbohydrates, lipids, minerals, and
proteins, which can function as growth nutrients for microorganisms which are suitable
substrates for hydrogen production using two stage sequential dark and photo fermenta-
tion. The yield of hydrogen from the first stage operation (dark-fermentation) was 0.78 mL
H2/mL POME, then increased to 2.86 mL H2/mL POME after photo-fermentation under
light and COD removal also increased from dark-fermentation (57%) until after photo-
fermentation (93%). However, high light intensity decreases the photosynthetic activity of
bacteria, causing a decrease in the yield of hydrogen. The low hydrogen yield is due to
reduced nitrogenase activity, which is the only enzyme responsible for photo-fermentation.

5.2. Thermochemical Treatment

Thermochemical treatment is one technique for converting wet biomass into useful
products such as syngas. Steam reforming is one example of this technology [17,18].
Syngas with hydrogen gas-rich was successfully produced from steam reforming of POME
waste using a Ni-based catalyst [18]. The use of a catalyst can increase COD and BOD
removal. It can also be increased by increasing liquid-hourly-space-velocity (LHSV).
However, the increase in LHSV will cause carbon deposition on the catalyst’s surface,
affecting lower H2 gas production. Energy consumption and clean energy income in steam
reforming technology of POME waste to syngas must still be further analyzed to ensure
such treatment’s feasibility.

In work by Cheng et al. [56], the syngas production rate of LaNiO3-catalyzed steam
reforming from POME is optimized concerning the POME flow rate, catalyst weight, and
particle size. With a net acidity, synthesized LaNiO3 catalyzes POME vapor formation
by breaking down large compounds and making simpler intermediates into syngas. At a
higher POME flow rate (0.05–0.09 mL/min), greater POME partial pressures encourage the
steam formation and water–gas shift, which increases catalytic performance. Beyond the
optimal flow rate (0.09 mL/min), the coke-forming Boudouard reaction worsens catalytic
activity. Catalytic performance was boosted for a longer residence time at a higher catalyst
weight (0.1–0.3 g); nonetheless, the agglomerated catalyst was reduced when catalyst
weight > 0.3 g. Finer LaNiO3 (particle size > 74 µm) with greater surface area to volume
ratio exhibited better performance; however, ultrafine LaNiO3 (particle size < 74 µm)
had poor performance because of occluded pores. Figure 9 illustrates the POME steam
reforming process’s flow diagram, showing that the entire reactor setup is basically a
reformer equipped with a muffle furnace.
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Besides, POME can be converted into biogas as fuel for electricity generation. The
utilization of solid (EFB) and liquid (POME) from the palm oil milling process for power
plants is proposed by Aziz et al. [57]. The proposed system consists of EFB gasification,
POME digestion, and additional ORC (organic Rankine cycle) modules (Figure 10). The
cogeneration system, which produces electricity and heat, produces syngas and biogas
from both modules. Additionally, excess and unused heat from the system is converted
into electricity through additional ORC modules. The total power generated and the power
plant’s efficiency were 8.3 MW and 30.4%, respectively.
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5.3. Physiochemical Treatment

Some physiochemical treatment has been developed for the POME waste treatment.
The physiochemical treatment has a broad scope, consisting of physical treatment and
chemical treatment, including coagulation–flocculation [58], membrane technology [59],
adsorption [15], and integrated technology [60].

The coagulation–flocculation process is generally used as a pretreatment method used
in POME waste treatment to remove suspended solids and residual oil [58]. Inorganic
coagulants such as aluminum sulfate (alum) are widely used in waste treatment. Although
this coagulant has proven to be effective, it is expensive and can produce dangerous sludge
due to increased metal concentrations. As an alternative, natural coagulants are derived
from animals or plants, such as seed gum. Research conducted by Shak et al. [58] combined
the use of alum with seed gum. The results showed decreased total suspended solids and
COD removal, respectively 81.58% and 48.22%. However, the efficiency of the treatment
is not much higher than using alum alone. In the coagulation-flocculation process, it is
only effective in reducing suspended solids, whereas COD is not significantly reduced. In
addition, the resulting sludge is a concern because sludge treatment requires high costs.
Apart from the low COD removal, the coagulation–flocculation technique cannot be used
appropriately for POME processing due to operating and maintenance costs. On a lab
scale, the coagulation–flocculation process was performed using jar test (VELP Scientifica
Flocculator JLT4) in 500-mL beakers filled with 300 mL of palm oil mill effluent for each
test run.

Membrane technology has been widely used in water and wastewater treatment
and has been applied in various industry types. A POME treatment system based on
membrane technology shows a high potential for eliminating the environmental problem,
and also, this alternative treatment system offers water recycling. Membrane separation
technology for treating POME has never been applied on an industrial scale due to POME
characteristics, e.g., membrane processes have some limitations in dealing with the high
suspended solids effluent. The membranes will suffer from fouling and degradation
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during use. Research conducted by Ahmad et al. [59] has two main treatment stages:
pre-treatment and membrane separation. The pretreatment process consists of two stages
of chemical treatment (coagulation, flocculation, and sedimentation) and active carbon
treatment; for the treatment of membrane separation, UF and RO membranes are used to
refine treated water further. A simplified flow diagram of the process is shown in Figure 11.
The pretreatment process is necessary to remove the high content of suspended solids
and oil in POME that would otherwise severely foul the membrane and lead to a shorter
membrane life. The pretreatment process removed organic matter and suspended solids
in POME by 97.9%, with a turbidity of 56% in COD and 71% in BOD. The promising
results from the pretreatment process will reduce the membrane fouling phenomenon and
degradation in flux. The turbidity value was reduced to almost 100% for the membrane
separation treatment, with reduction in COD and BOD to be 98.8% and 99.4% respectively.
In addition to fouling caused by this technology (membrane separation treatment), the use
of this pretreatment will increase operating costs.
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Adsorption has also been widely used to remove suspended solids [61], heavy
metal [62], and residual oil [63] from POME waste. Many materials have been stud-
ied as potential adsorbents for POME treatment, such as chitosan, activated carbon (AC),
natural zeolite, and bentonite. Ahmad et al. [61] conducted research to remove residual oil
in POME around 6000 mg/L using three different adsorbents, namely chitosan, bentonite,
and activated carbon. The jar-test method has been used to identify the best adsorbent
for removing residual oil from POME. Chitosan shows the best removal among other
adsorbents. These adsorbents can successfully remove 99% of residual oil and minimize
the content of suspended solids respectively up to 25 mg/L (chitosan), 35 mg/L (activated
carbon), and 70 mg/L (bentonite) under optimum conditions. As with coagulation and
flocculation, this technique is only as effective at removing suspended solids, heavy metals,
and oil residues.

Besides, AOP have been reported as an alternative treatment technology for POME
waste. This technology is based on the production of high and reactive hydroxyl (OH•)
radicals to reduce organic pollutants [64]. AOP can be categorized as a photochemical
or non-photochemical process that only relies on the processes, such as photochemical
groups produced from direct photolysis by UV light, UV/TiO2, UV/H2O2, photo-Fenton,
and photo-Fenton-like processes. In contrast, non-photochemical groups are produced
by ozonation processes and Fenton [65]. Taha and Ibrahim [66] reported that OH• was
successfully produced via the Fenton process to remove COD in POME waste. It was
reported that the maximum COD reduction was 80% achieved within 2 h instead of 24 h
of silent degradation after the sonification process, and there is no addition of oxidants.
Organic decolorization and degradation in POME were also investigated using the Fenton
process [67]. It was reported that the COD removal of 82% and color degradation of more
than 90% was achieved by using 50 mM H2O2 with 1.0 mM Fe2+ for the POME oxidation
process for 30 min.
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Moreover, Saeed et al. reported that the Fenton oxidation process could degrade
organic and inorganic compounds with a total COD removal of 85% under the acidic
POME at an approximate pH of 3 [68]. Photocatalytic reactions show high efficiency in the
mineralization of organic compounds and disinfection of pathogenic microorganisms in
wastewater [69]. TiO2 is the most popular among the semiconductor catalysts because it
has low toxicity, high chemical stability, high activity, and low cost [70]. Many studies have
been conducted on photocatalytic use of TiO2 to degrade organic pollutants [71,72].

5.4. Integration Treatment

Some treatments combine biological treatments with physical treatments, such as
membrane technology [60]. The schematic diagram of the pilot plant for integration
treatment is shown in Figure 12. This treatment’s initial stage is anaerobic and aerobic
treatment using an EGSB reactor. About 43% of the organic material produced in POME
is converted into biogas, while the efficiency of COD removal in anaerobic and aerobic
reactors is 93% and 22%, respectively. In addition to COD and BOD removal, suspended
solids and residual oil also decrease. In the membrane processing unit, almost all suspended
solids are captured by the membrane. The effluent produced at the end of high-quality
processing is very clear and can be used as boiler feedwater. However, the use of this
treatment requires high costs, bearing in mind there are two stages of care needed. Table 3
summarizes comparisons of the technologies used for POME waste treatment.
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Table 3. Summary of alternative POME treatment methods including COD removal efficiency, advantages, and disadvantages.

Treatment Methods Type of Technology Details COD Removal (%) Advantages Disadvantages Ref.

Biological treatment

Anaerobic

Upflow Anaerobic
Sludge Blanket (UASB) 96

• Produce methane gas
• Low energy demand

and area requirement

• Long startup
phase

[73]

Upflow Anaerobic
Sludge Blanket-Hollow
Centered Packed Bed

(UASB-HCPB)

97.5

• High methane
production

• Useful for treatment of
high suspended solid
wastewater

• Long startup
phase

• Foaming at a
high organic
loading rate
(OLR)

[12]

Upflow Anaerobic
Sludge Fixed Film
Reactor (UASFF)

97

• Produce methane gas
• Higher organic loading

rate (OLR) achievable
compared to
operating UASB

• More stable operation.

• Efficient in
dilute POME

[54]

Aerobic

Sequencing Batch
Reactor (SBR) 96

• High-quality effluent
• Simple single tank

configuration
• Low cost
• Minimal sludge

bulking

• High energy for
aeration

• No production
of methane

[53]

Rotating Biological
Contactors (RBC) 88

• Relatively low
maintenance
requirements

• Lower energy demand

• Cannot handle
high organic
loading rate
(OLR)

• Little flexibility
in operating
conditions

[55]

Fermentation Sequential two-stage 93 • Achieve higher
hydrogen yield

• Cannot handle
the high light
intensity

• Only one
enzyme is
responsible

[74]

Physical treatment

Membrane
technology UF and RO 98.8

• High potential for
removing pollutants

• Offer water recycling

• The membrane
will experience
fouling

• Requires high
maintenance
costs

[59]

Adsorption

Chitosan Oil removal: 99

• Cleaner than
biologically treated
industrial waste,
achieved in shorter
maintenance times

• Require further
treatment

[61,
63]

Activated carbon 70

• Cleaner than the
industrial biologically
treated effluent

• Shorter treatment time
• Reduction of

agricultural
waste disposal

• Cannot
handle high
concentration

[15]

Fenton-oxidation Sono-Fenton 80

• The sonication method
is easy to use

• It does not produce
sludge and
residual gas

• Requires
costs for the
purchase and
operation of the
sonicator unit

• Use an
expensive probe

[66]
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Table 3. Cont.

Treatment Methods Type of Technology Details COD Removal (%) Advantages Disadvantages Ref.

Chemical treatment Coagulation-
flocculation Seed gum 48.2

• Environmentally
friendly

• Low cost

• The high cost of
sludge
treatment

• Only effective
in Total
suspended
solids removal

[58]

Thermo-chemical
treatment Steam reforming Catalytic steam

reforming 99
• Syngas was

successfully generated
• High COD and

BOD removal

• Carbon
deposition on
the catalyst
surface

• High energy
consumption.

[17,
18]

Integration
treatment

Biological
Membrane EGSB-Membrane 93

• High-quality effluents
• It can be used as boiler

feedwater

• Costly
treatment
methods

[60]

6. Photocatalytic Technology for POME Treatment
6.1. Mechanisms and Fundamentals of Photocatalytic Technology

Photocatalytic technology is a combination of photochemical processes and catalysts.
Materials that can be used as photocatalysts have an energy band gap like the oxides form
of most transition metals. The bandgap is the energy between the conduction band and
the valence band that produces a current carrier. The valence band is the energy level
filled with electrons with a low energy state known as the highest occupied molecular
orbital (HOMO). In contrast, the conduction band is an energy level that is not filled
with electrons and is called the lowest unoccupied molecular orbitals (LUMO). Suppose
the photocatalyst is subjected to light source energy equal to or greater than the energy
bandgap. In that case, the light energy can promote electron excitation from the valence
band to the conduction band, producing positive holes in the valence band. As a result
of electrons’ transfer, conductivity is obtained and produces current when the electrode
potential is sufficient [75,76].

Based on the type of catalyst, the photocatalysis process is divided into homogeneous
photocatalysis and heterogeneous photocatalysis [77]. Homogeneous photocatalysis occurs
in the same phase between reactants and photocatalysts (generally in the liquid phase).
Homogeneous photocatalysts commonly used are hydrogen peroxide (H2O2), ozone, or other
oxidants [78]. In contrast, heterogeneous photocatalysis occurs between two phases or more
(generally, catalysts are present as solid phases). The most commonly used photocatalysts are
semiconductors-based transition metals oxides (TiO2, ZnO, WO3, CeO2, ZrO2, etc.) [79–83].

The schematic mechanism of the photocatalysis process can be illustrated in Figure 13.
The heterogeneous photocatalysis process in semiconductor material begins with photoex-
citation due to light hitting the semiconductor material. The light must have energy greater
than or equal to the bandgap energy to transfer electrons from the valence band to the
conduction band and produce a hole (h+) in the valence band called the electron–hole pair
(Equation (1)). The redox process then occurs if there are compounds that are adsorbed on
the surface of the semiconductor. A suitable scavenger will take this electron–hole pair to
prevent the recombination process (Equation (2)). The electron in the conduction band will
react with the electron acceptor, and the positive hole in the valence band will react with the
electron donor. Electron acceptors (usually O2) will be reduced to other compounds during
the electron transfer process, while electron donors will undergo an oxidation process. The
reduction and oxidation process (redox) is utilized to suppress pollutants that contact the
photocatalyst’s surface. Both electrons and holes can produce reactive radicals that can be
used in the process of pollutant degradation. Electrons will interact with air or oxygen
to produce superoxide radicals (•O2

−) (Equation (3)), while holes interact with water
molecules (H2O) to form hydroxyl radicals (OH•) (Equation (4)). Superoxide radicals can
be converted to hydrogen peroxide (Equation (6)) through hydroperoxyl radical forma-



Materials 2021, 14, 2846 15 of 35

tion (Equation (5)). Hydrogen peroxide can then be converted to hydroxyl radical in the
presence of light (UV/Visible) (Equation (7)). These radicals (hydroxyl radical, superoxide
radical, and hydrogen peroxide) will degrade pollutant compounds into small molecules
such as CO2, H2O, and mineral acids (Equation (8)).

Semiconductors + hv→ eCB
− + hVB

+ (1)

Semiconductors (eCB
− + hVB

+)→ Semiconductor + heat (2)

eCB
− + O2 → •O2

− (3)

hVB
+ + H2O→ OH• + H+ (4)

•O2
− + H+ → •OOH (5)

2•OOH→ O2 + H2O2 (6)

H2O2 + hv→ 2OH• (7)

pollutant + (OH•, •O2
−)→ CO2 + H2O (8)
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The overall process that occurs in heterogeneous photocatalysis can be divided into
five stages [69,84]: (i) diffusion of liquid-phase reactants to the surface of the catalyst;
(ii) adsorption of reactants onto the surface of the catalyst activated by photons; (iii) pho-
tocatalyst reaction in the adsorbed phase on the catalyst surface; (iv) desorption of sub-
stances/products from the surface of the catalyst; (v) separation (transfer of mass of
substance/product from the interface area).

6.2. Development of Photocatalytic Process for POME Treatment
6.2.1. Semiconductor Based Photocatalyst
TiO2 Photocatalyst

Titanium dioxide (TiO2) is a natural oxide from the element titanium and is known
as titania. TiO2 has several advantages, including cheap, non-toxic, good photocatalytic
activity, abundant availability, wide bandgap, insoluble in water, high thermal and chemical
stability, and has a large surface area [85–90]. TiO2 has three types of crystalline forms,
namely anatase, rutile, and brookite [90]. Currently, TiO2 has been studied extensively in
physiochemical, toxicological, and biocompatibility studies [91]. In all three forms, the
commonly used forms are anatase and rutile. However, the anatase form has excellent
physical and chemical properties in waste treatment and is thermodynamically more stable
than the rutile phase [92]. For TiO2, rutile and anatase forms have a high bandgap of 3.0 eV
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and 3.2 eV, respectively [93]. Therefore, to activate TiO2, high-energy UV light radiation is
needed with a wavelength of not more than 387.5 nm [94]. Due to the abundance of UV light
in nature, it is necessary to make an effort to make TiO2 efficient as a photocatalyst in waste
treatment. The electron–hole pair on TiO2 tends to be easy to recombine (recombination)
and has a relatively low adsorption capacity [95,96]. Figure 14 shows the general scheme of
reactions that occur when using the semiconductor-based catalyst for POME degradation.
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WO3 Photocatalyst

Tungsten trioxide (WO3) is a yellow chemical compound containing oxygen and
tungsten transition metals. WO3 is often used for everyday purposes as a pigment in
ceramics and paints. WO3 crystal structure varies depending on temperature; at room
temperature will be monoclinic. WO3 has several advantages, including a semiconduc-
tor with a narrow bandgap, has good photocatalyst activity in non-toxic acidic solutions
environmentally friendly, has strong adsorption power, and high thermal and physico-
chemical stability [97–102]. WO3 has a bandgap between 2.7 and 2.8 eV when compared
with TiO2 3.0–3.2 eV. It can absorb UV light until the visible light in a greater solar spectrum
and have a better visible light absorbance photo [103]. Since the absorption spectrum of
WO3 in the range of UV light and visible light, WO3 has the potential of being a visible
photocatalyst [97,100,104]. However, these materials are scarce and thus it is expensive
(varies by country) [105]. Besides, pure WO3 has a small surface area, and the high level of
electron–hole recombination makes WO3 photoactivity low [101,105]. Cheng et al. [106]
evaluate the photocatalytic treatment of POME waste over tungsten oxide photocatalyst
(WO3) with UV irradiation. At optimal catalyst loading (0.5 g/L) produced the highest
photocatalytic degradation (51.15%) and decolorization (96.21%) within 1 h of treatment.
For longevity study of WO3, the optimum reaction time was 16 h, reaching 84.70% photo-
catalytic degradation and 98.28% photocatalytic decolorization.

ZnO Photocatalyst

Zinc oxide (ZnO) is an inorganic compound that is not soluble in water in white
powder and is widely used as an additive in various materials. ZnO has two crystal
structure structures, known as hexagonal wurtzite and cubic zincblende. The commonly
used ZnO is in the form of wurtzite because of its high stability at room temperature [107].

ZnO has a wide bandgap of 3.2 eV that is the same as TiO2; therefore, it is estimated
that its photocatalytic ability is similar to TiO2 [108]. ZnO is an environmentally friendly
material [109]. ZnO also has important properties such as the extreme stability of excitons
(indicated by the large exciton binding energy) and the large bond strength is indicated
by the melting point and cohesive energy) [110]. ZnO is also relatively cheaper than TiO2
because TiO2 is quite wasteful for large-scale water treatment [111]. Another advantage
of TiO2 is that it can absorb the UV spectrum fraction in the solar that is greater, and
the appropriate ZnO threshold is 425 nm [112]. This view is supported by research that
TiO2 can only absorb 3% of UV light from the solar spectrum and has a low photocatalyst
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efficiency [113]. ZnO’s weakness has a wide bandgap like TiO2, but ZnO is a photocorrosion
material. A wide bandgap causes the limitation of absorption of light in the visible
light region. This condition can cause low photocatalytic efficiency and result in rapid
recombination [107]. Study by Ng et al. [114] reported that photocatalytic methods have
been used to restore POME waste with ZnO photocatalysts with UV irradiation. The
degradation process increases consistently with photocatalyst loading until the optimal
point is reached at the 1.0 g/L photocatalyst. Under these conditions, the ZnO system
achieved a degradation of 49.36%. Beyond 1.0 g/L, degradation has slightly decreased
with photocatalyst loading due to the effect of light scattering from excess photocatalysts.
Besides, a long-life study (22 h) showed a degradation of 74.12% for the ZnO system.

There are still many reports from previous photocatalytic works in the open litera-
ture using different photocatalysts summarized in Table 4. Different photocatalysts will
show different results in POME waste due to the nature of both. Although, activators
(UV light/visible light) also play a very important role in photocatalysis. For example,
a material with a wide bandgap can only be activated by UV light. Therefore, the se-
lection of photocatalysts and activators is very important to ensure the effectiveness of
organic degradation.

Table 4. Previous studies of photocatalytic technology for degradation of POME waste.

Photocatalyst Synthesis Method Light Source Degradation Rate Catalyst Loading Ref.

TiO2 nanoparticles
(Degussa P25) n.a. (Commercial) UV B lamp

COD removal: 89% (5 h)
TOD removal: 57% (5 h)
Color reduction: 60% (5 h)

0.1 g/L [115]

Cu/TiO2 (Degussa P25) Impregnation UV lamp
(1000 W) COD removal: 27% (1 h); >40% (7 h) 0.83 g/L

(20 wt % Cu/TiO2) [116]

TiO2 Sol-gel UV Fluorescent tube (20 W)
COD removal: 97% (42 min)
BOD removal: 95% (42 min)
Decolorization: 92% (42 min)

0.01 g/L [117]

TiO2 commercial n.a. (Commercial) UV lamp
(100 W)

COD removal: 52% (4 h)
COD removal: 78% (20 h) 1.0 g/L [118]

TiO2 commercial n.a. (Commercial) UV lamp
(100 W)

COD removal: 55% (4 h)
BOD removal: 44% (4 h) 1.04 g/L [119]

TiO2 n.a. (Commercial) UV lamp
(100 W)

COD removal: 52% (4 h); 80% (22 h) 1.0 g/L [114]
ZnO COD removal: 49% (4 h); 74% (22 h)

TiO2 anatase n.a. (Commercial) Solar light COD removal: 88% (5 h) 0.1 g/L [120]

Pt/TiO2 Impregnation

UV lamp
(100 W) COD removal: 90% (8 h)

1.0 g/L
(0.5 wt % Pt/TiO2) [44]

Xenon lamp
(100 W) COD removal: 11% (8 h)

Ag/TiO2 Impregnation

UV lamp
(100 W) COD removal: 85% (8 h) 1.0 g/L

(0.5 wt % Ag/TiO2)
[121]

Xenon lamp
(100 W) COD removal: 60% (8 h) 1.0 g/L

(0.5 wt % Ag/TiO2)

Ag/TiO2 Impregnation Visible lamp (250 W) COD removal: 27% (8 h) 1.5 g/L
(0.5 wt % Ag/TiO2) [45]

CaFe2O4
Auto-combustion and

coprecipitation Xenon lamp (500 W) COD removal: 56% (8 h) 1.0 g/L [122]

CaFe2O4 Coprecipitation Xenon lamp (500 W) COD removal: 69% (8 h) 0.75 g/L [123]

WO3 commercial n.a. (Commercial) UV lamp
(100 W)

COD removal: 51% (4 h); 85% (16 h)
Decolorization: 96% (4 h); 98% (16 h) 0.5 g/L [106]

ZnO commercial n.a. (Commercial) Mercury lamp (100 W) COD removal: 50% (4 h); 75% (22 h) 1.0 g/L [124]

ZnO-PEG Precipitation UV lamp
(15 W)

COD removal: 94%
Decolorization: 84% 0.5 g/L [125]

ZnO Facile and
surfactant-free reflux Pen-ray UV-C (light intensity

5400 µW/cm2)
COD removal: 96% (2 h) 1.0 g/L [126]

ZnO commercial n.a. (Commercial) COD removal: 69% (2 h)

Nb2O5/ZnO Surfactant-free chemical
solution UV lamp COD removal: 92% (4 h)

Decolorization: 100% (30 min) 3 wt % Nb2O5/ZnO [127]
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6.2.2. Modification and Doping of the Semiconductor Based Photocatalyst

The energy band in semiconductor photocatalyst is an important factor in photocat-
alytic reactions. The range of light energy that photocatalysts can absorb depends on the
energy bandgap. The wider the bandgap of energy it will limit its use in visible light. As
explained in Section 6.1, the basic principle of photocatalysis depends on electron–hole
excitation. The electrons in the valence band can be excited into the conduction band,
and photon energy stimulation is needed. A wider bandgap of energy requires more
photon energy to excite the electron–hole. For example, the anatase type TiO2 band gap
is 3.2 eV [128], which shows that electrons can only be excited by light with more energy,
that is, UV light.

Of the various existing photocatalysts, TiO2 has become a photocatalyst that has
received much attention. Many researchers are making efforts to overcome the weakness
of TiO2 photocatalyst, which has been described in Section 6.2.1. These efforts are mod-
ifying TiO2 photocatalysts to have a narrower energy band, a slow recombination rate,
accelerating interfacial charge transfer. All these efforts aim to get better photocatalytic
activity. One method of photocatalyst modification is through doping. It can control the
semiconductor’s bandgap structure by adding a small number of impurity atoms (dopants).
This section explains methods for modifying TiO2 by doping methods and their effects on
photocatalytic activity.

Doping

In addition to the bandgap parameter, the charge is carried by electrons and holes in
photocatalysts, carrying negative and positive electrical charges. Pairs of electron holes are
created in the photocatalyst’s outer surface region when exposed to light (photon energy).
However, electron–hole pairs also tend to rejoin and recombine. However, a high charge
carrier mobility and a long charge carrier diffusion length are needed to achieve the low
level of electron recombination needed for photocatalytic activity. A charge carrier trap is
needed to reduce the rate of electron–hole recombination. In addition to narrowing the
bandgap energy, doping can act as a charge carrier trap to produce good photocatalytic
activity (Figure 15).
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Figure 15. Simplified pure and doped TiO2 photocatalyst mechanism: doping reduces bandgap,
facilitating photoexcitation and reactive radical production. hv: pure TiO2; hvc: cation-doped TiO2;
hva: anion-doped TiO2.

Cation Dopants

Photocatalysts can be modified with dopant cations, and dopant cations consist of
transition metals, noble metals, and rare earth metals. This modification aims to make
photocatalysts absorb visible light. Transition metals such as Cu [116], Fe and Cu [129],
Co [130], Ni [131], Mn [132], Zn [133], etc., have been widely studied for doping photo-
catalysts. Photocatalyst doping with transition metals can change electronic structures
that cause UV light absorption changes in visible light [134]. This condition increases
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photocatalytic activity—for example, photocatalyst TiO2, which has Ti 3d and O 2p atomic
orbitals. If doped with Fe, which has 3d atomic orbitals, it can shift the CB boundary and
narrow the photocatalyst energy bandgap, as presented in Figure 16. If the bandgap energy
is narrower, it can shift absorption into visible light as the photocatalyst’s doped metal
concentration increases. Increased absorption in visible light may be due to the transfer of
electrons from the metal ion orbitals to the CB photocatalyst. For instances, Ng et al. [116]
reported that 20 wt % Cu/TiO2 exhibited two-folds enhancement of photocatalytic rate con-
stant for POME degradation compared to 2 wt % Cu/TiO2, which was due to larger pore
diameter [116]. In addition, doping TiO2 with 0.5 wt % of Ag (0.5 wt % Ag/TiO2) exhibited
3.5 and 8.6 times higher photocatalytic rate constant for POME degradation under UV and
visible light illumination, respectively. This enhancement can be attributed to the narrower
band gap energy of Ag/TiO2 and thus improved visible light absorption. In addition, Ag
may have also enhanced the charge separation by rapidly-transferring the e− away from
the positive h+ charge on the TiO2 surface, thus minimizing charge recombination [121].
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Metal with redox potential can act as an electron trap to function as an electron
acceptor to hold electron–hole pairs’ recombination. On the other hand, electrons trapped
in metals that have a high reduction potential can cause a reduction of some metals and
consume electrons instead of moving them to the surface [135]. Transition metals with two
or more oxidation states, such as Fe and Ce, with different ionic forms (Fe2+, Fe3+, and
Fe4+ and Ce3+ and Ce4+) can also act electron–hole traps and inhibit the recombination
of electron–hole pairs. However, electron holes’ recombination rate can increase with
increasing metal concentrations because metal ions acting as electron traps and hole traps
will then form various trap sites. Suppose there are many charge traps in the bulk of
catalysts or on the surface surfaces. In that case, the mobility will be low, and possible to
recombine electron–hole pairs before reaching the surface [136].

Anion Dopants

TiO2 can also be doped on O sites with anions such as nitrogen (N) [137], sulphur
(S) [138], carbon (C) [139], and boron (B) [140]. The combination of p orbitals from dopant
anions (N, S, C, and B) with O 2p orbitals increased the valence band (VB) and can
narrow the photocatalyst energy bandgap (Figure 17). Doping using nonmetallic carbon
(C) can also be an electron trap from electrons produced by photoexcitation, reducing
electron–hole pairs’ recombination rate. Carbon (C) has a wide absorption spectrum area
of 400–800 nm to encourage a charge transfer from the inside of the photocatalyst to the
surface. Carbon doped TiO2 showed significant changes from the absorption edge with
calcination temperatures of 200, 300, 400, and 500 ◦C having absorption edges at 390, 400,
410, and 450 nm. The absorption shifted slightly towards the visible region compared to
commercial TiO2 at 385 nm [141]. Kalantari et al. [142] reported that the energy of N doped
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TiO2 band gap of 2.76 eV is lower than TiO2-P25 of 3.1 eV. Nitrogen dopants, which are
incorporated into the TiO2 framework, reduce the energy gap of the TiO2 band, and increase
the absorption of visible light. This phenomenon can be related to either the formation
of N energy levels above the valence band of TiO2 or the mixing of nitrogen and oxygen
states. Ananpattarachai et al. [143] found that N-doped acts to prevent the recombination
of electron–hole pairs produced by photoexcitation, at high temperatures, N-doped TiO2
was prepared by thermal treatment of commercial TiO2 with NH3 gas flow. Jo et al. [138]
reported that the bandgap energy of S-TiO2 is 2.75 eV. The absorption spectrum of S-TiO2
considerably shifted towards the visible region. These shifts were attributed to increased
charge transfer rates between S and TiO2 because it is impregnated and/or replaces S
atoms in the TiO2 lattice, producing impurity levels that can reduce the gap of the TiO2
band. This condition suggests that the prepared S-TiO2 can function effectively under
visible light irradiation. Thus, anion dopants on semiconductor-based photocatalyst can be
further investigated to enhance photocatalytic performance of POME degradation.
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Anion–Anion Dopants

The purpose of codoping TiO2 with different elements to increase the photocatalytic
activity of TiO2 and the more effective use of solar light in the visible light region has
received much attention photocatalytic field. As mentioned in the previous section in
the bandgap narrowing problem, anion dopants are more efficient than cation dopants.
Therefore, reports on TiO2 doped with non-metals and non-metals will be reviewed in
this section. Zhang et al. [144] reported that non-metal and non-metal doped TiO2, the
energy levels of 2p orbitals each contribute to creating new energy states in the TiO2
bandgap synergistically, as observed in codoping with C and N (Figure 18). In the VB
TiO2 state, there is an overlap between C 1s and N 1s facilitated by the level of C-doping
energy connected to the N-doping state [145]. Moreover, Komai et al. [146] also found
high photocatalytic activity due to energy bandgap narrowed on N and S codoped TiO2. It
was reported that visible light’s photocatalytic activity is better by the synergistic effect of
doping C and B. Boron doping effectively narrows the bandgap of TiO2 while doping C
produces carbon coke, which can act as photosensitizers [147]. Thus, anion–anion dopants
on semiconductor-based photocatalyst can be further studied to improve photocatalytic
performance of POME degradation.

Cation–Cation Dopants

It has been widely reported that TiO2 doped with the right elements can show better
photocatalytic activity than pure photocatalysts. There is a synergy between TiO2 doped
metals resulting in effective performance [135]. (Fe, Ni) codoped TiO2 nanoparticles were
successfully prepared by the alcohol-thermal method by Sun et al. [148]. The edge light
absorption of Fe-Ni/TiO2 moves remarkably with a redshift to the visible range. Fe and
Ni doping can produce impurities in the crystal lattice of TiO2, and that band is located in
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the middle of the optical bandgap of TiO2. Electrons in the valence band absorb photons
with longer wavelengths, and firstly transfer to the impurity band (a relatively higher
energy state), then secondly transfer from the impurity band to the conduction band
through absorbing other photons (Figure 19). Therefore, the optical absorption of metal-
doped samples depends on the impurity band in the TiO2 lattice. The Fe and Ni codoping
display a higher optical absorption of visible light than single doping. Due to Fe and
Ni’s codoping, the intensity of the absorption of visible light of TiO2 increases, which is
an important cause of higher photocatalytic activity under visible light irradiation. The
energy bandgap from Fe-Ni/TiO2 is estimated from 2.41 to 2.56 eV, depending on the
Fe/Ni ratio. Talat-Mehrabad et al. [149] reported that TiO2 photocatalysts doped with
Ag-Mg prepared by the photodeposition and impregnation methods had a narrower energy
band than single doped photocatalysts. Besides, the TiO2 Ag-Mg photocatalyst absorption
band also appears to be shifting toward the visible light region. The rate of recombination
of electron–hole pairs is slower than single doped TiO2. Considering the advantages of
cation–cation dopants compared with neat semiconductor based photocatalyst, it will be
worth to further studied the effect of cation–cation dopants on semiconductor based for
photocatalytic POME degradation.
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Cation–Anion Dopants

As discussed in the previous section, anion dopants can narrow the bandgap energy
better than cation dopants, but anion dopants tend to form the center of recombination.
While cation dopants have excellent performance in reducing electron recombination
pairing, metal ions suffer from thermal stability problems. Therefore, codoping cations
and anions on TiO2 are considered to overcome the weaknesses in doping TiO2 with single
metals and non-metals. The electronic structure of TiO2 will change the effect of metal and
non-metal ions by creating new doping levels in the bandgap [135]. The synergistic effect
of doping between metals and non-metals will increase the excitation rate of electrons and
holes and increase the photocatalytic activity of TiO2 in the visible light region.

Quan et al. [150] reported that Mn-doped TiO2 showed significant photocatalytic
activity under irradiation of visible light compared to pure TiO2, and codoping Mn and N
further enhanced this activity into TiO2. The Mn doping could narrow the TiO2 bandgap
extending the absorption range of TiO2 to visible light and inhibits the recombination of
electrons and photogeneration holes, which leads to a better increase in photocatalytic
activity in the visible light region. Additionally, Mn-N-TiO2 shows the absorption of visible
light stronger than Mn-TiO2. The relatively strong absorption at 400–650 nm was attributed
to the codoping of N and Mn elements into the lattice of TiO2. It is generally accepted
that doping N can form a narrow N 2p band isolated above the O 2p TiO2 valence band,
reducing the gap of the TiO2 band and absorbing visible light. As illustrated in Figure 20,
Mn and N ions’ synergistic effect narrows the bandgap of TiO2, which forms a new closed
state, respectively, in the conduction band and valence band.
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Jaiswal et al. [151] reported that TiO2 doped with V and N had better visible light ab-
sorption efficiency than single V and N doped TiO2. This condition is caused by narrowing
the bandgap effect of the simultaneous merging between V and N into TiO2. Besides, it was
reported that La3

+ doping could withstand the recombination rate of electron–hole pairs.
In contrast, doping N could reduce the TiO2 bandgap and increase the efficiency of TiO2
absorption in the visible light region [152]. Gaikwad et al. [153] reported that codoping
TiO2 with Fe and N narrowed the bandgap of TiO2 and showed increased absorption of
visible light and showed increased photocatalytic activity. It was found that M, N codoped
TiO2 specimens have higher photocatalytic capabilities than pure TiO2 and mono-doped
TiO2 under visible light irradiation. Besides, bandgap and carrier mobility in VB, CB,
and impurity levels (ILs) have a synergistic effect on the absorption of visible light and
photocatalytic activity of doped TiO2. The impurity states between VB and CB increase the
absorption of visible light. The concentration of N in the codoped specimen effectively af-
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fects IL states. The amount and mobility of IL carriers together influence the photocatalytic
activity of the catalyst under visible light. Thus, Mn, N codoping specimens showed better
photocatalytic activity [154]. Considering the improvement of photocatalytic performance
for organic degradation (i.e., rhodamine blue) by adding cation–anion dopants on semicon-
ductor, it is highly recommended to further observed the effect of cation–anion dopants on
photocatalytic POME degradation.

Other Semiconductors Dopants

Combining TiO2 photocatalysts into hybrid forms with other semiconductors with nar-
row bandgaps such as CdS, Cu2O, Bi2S3, and SnO2 are other strategies for modifying energy
bands, inhibiting the rate of recombination of electron–hole pairs to increase photocatalytic
activity. The principle of dopants with other semiconductors is that narrow bandgap
semiconductors absorb photon energy from visible light. Photogeneration electrons are
then transferred from the narrow bandgap semiconductor CB to the CB TiO2. Electrons
can only be transferred if the narrow band edge semiconductor CB edge is more negative
than the CB TiO2 edge [135]. Bessekhouad et al. [155] reported that the higher the CB
difference between two semiconductors, the higher the electron transfer driving force. CdS
nanoparticles not only act as sensitizers but also reduce the rate of photogenerated charge
carrier recombination. Besides, the results of photoactivity showed that TiO2 doped by
CdS exhibited better photocatalytic performance [156]. Boumaza et al. [157] also reported
that the azo Orange G dye was successfully degraded in the hetero-system x% Bi2S3/TiO2
under visible light. Loading TiO2 with Bi2S3 greatly enhances photoactivity due to the
transfer of electrons from Bi2S3 to TiO2 by the synergy effect. This increased photo activity
is caused by Bi2S3 dispersion, which effectively increases the reception of visible photons.
SnO2 surface coupling to TiO2 acts as a trap for photogeneration electrons. It thereby
decreases the rate of recombination of electron–hole pairs and further increases the photo-
catalytic activity of TiO2 under irradiation of visible light [158]. Cu2O@TiO2 nanoparticles
showed increased photocatalytic degradation when compared to pure Cu2O nanocubes
and TiO2 nanoparticles. The consequence of photoelectrochemical measurements shows
that the composite heterojunction of p-Cu2O/n-TiO2 can facilitate the transfer of electrons
across the heterojunction interface, advantageous for improving photocatalytic perfor-
mance. The experimental results show that Cu2O nanocubes extensively enhance the TiO2
response, which shows higher activity compared to neat TiO2 [159]. In the case of POME
treatment, Chin et al. [127] reported that 3 wt % Nb2O5/ZnO exhibited 3.7 and 1.4-folds
enhancement of COD removal after 240 min and color removal after 30 min photocatalytic
reaction durations, respectively. Taking into account the advantages of heterojunction
modification strategies, it is very worthy to further study the effect of heterojunction of
two semiconductors on the photocatalytic performance of POME degradation.

6.3. Post-Processing Recovery of Photocatalyst for POME Treatment

Photocatalyst recovery and separation from POME waste is an essential step for
catalyst recycling and releasing the degraded POME waste. The way to immobilize or
separate photocatalyst particles effectively in the photocatalytic process remains a challenge.
In general, in order to solve recovery and separation issues, two potential approaches have
been investigated namely magnetic separation and immobilization on support structures.
Utilization of magnetic separation provides facile and convenient approach for recovering
and separating photocatalyst particles. A number of materials with different elemental
compositions, such as NiFe2O4 [160], CoFe2O4 [161], Co3O4 [162], γ-Fe2O3 [163], and
Fe3O4 [164], have been obtained as the magnetic cores. Among all these magnetic materials,
Fe3O4 is the most widely used due to its low toxicity, biocompatibility, and excellent
magnetic properties [164]. On the other hand, immobilization photocatalyst on various
supports, such as glass, quartz, stainless steel, and fibers have been also studied [165,166].
This approach provides a facile way to solve separation and aggregation issues. However,
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this approach could reduce active surface area and volume ratio, decrease mass transfer rate,
and hindrance in light absorption, thus photochemical reactivity becomes the main issues.

Therefore, few studies concerned on the development of other approaches to recover
and separate photocatalyst materials have been conducted including: (1) alkaline treatment
(NaOH and NH4OH) [167], (2) thermal regeneration [168], (3) exposure to UV in aqueous
media [169], (4) oxidation by H2O2/UV [167], (5) washing with deionized water [170],
(6) refluxing in water at 100 ◦C with oxygen bubbling [171], (6) chemical coagulant (alu-
minum chloride [172], chitosan [173], and ferric chloride [174]), and (7) ceramic membrane
microfiltration [175]. Miranda-Garcia et al. [167] reported that thermal and H2O2/UV are
more efficient recovery strategy compared to alkaline treatment due to TiO2 was partially
removed by alkaline treatment leading to the decrease of photocatalyst’s performance.
Cui et al. [175] reported that ceramic membrane microfiltration could efficiently recover
TiO2 photocatalyst in a slurry reactor by achieving 99.9% recovery rate, realizing a continu-
ous operation for wastewater treatment. This post-processing recovery strategies option
can be further studied with respect to the application of photocatalytic POME degradation
both in lab scale and pilot scale applications.

7. Operational Parameters/Factors Affecting the Photocatalytic Degradation Process

In addition to the previously discussed factors of photocatalysts, effective POME
waste treatment or the photocatalytic system’s efficiency is greatly influenced by several
operating parameters or factors that control the photocatalytic kinetics. This section will
discuss several of these operating parameters that affect the photocatalytic activity and the
performance of TiO2 photocatalysts in POME waste treatment.

7.1. Catalyst Loading

The concentration of TiO2 in the photocatalytic system in POME waste treatment
affects the rate of heterogeneous photocatalytic reactions. The concentration of TiO2 directly
affects the rate of photocatalytic reactions [176]. Initially, the effect of TiO2 concentration
is linear to some extent. However, when the concentration of TiO2 increases above the
saturation limit (different concentration of TiO2 causes turbidity of the solution), there will
be a corresponding radial decrease in the coefficient of light absorption (photon energy)
and subsequently causes a decrease in the surface area exposed to light irradiation and will
reduce the efficiency of the photocatalytic process. Therefore, each photocatalytic process
must be operated below the saturation level of the TiO2 concentration to avoid excess
photocatalysts and ensure efficient absorption of light (photon energy) [69]. Several studies
were conducted to examine TiO2 concentration on process efficiency [176,177]. However,
the effect cannot be found, and a direct connection cannot be made. Additionally, it is
reported that optimal photocatalyst loading for photomineralization and photodisinfection
can vary [69]. Based on the Table 4, it can be seen that the optimum catalyst loading for
photocatalytic POME treatment is in the interval between 0.1 and 1.5 g/L.

7.2. pH

One important parameter in a heterogeneous photocatalytic system is pH. These
parameters determine the nature of the charge on the photocatalyst’s surface, the photocat-
alyst’s aggregate size, the conduction band’s position, and the valence [69]. Many attempts
to research and study the effect of pH on photocatalytic activity, one of which uses the point
of zero charges (PZC) of TiO2. PZC is a pH value where the surface charge component is
equal to zero under given conditions of temperature, applied pressure, and soil solution
composition [159] (PZC = 6–8 depending on TiO2 sample) [178]. Suppose pH < (PZC)TiO2,
the photocatalyst’s surface charge is positive and is gradually given electrons by organic
compounds adsorbed to the TiO2-activated photon to undergo different photocatalytic
reactions. Suppose pH > (PZC)TiO2, the surface of the catalyst will be negatively charged
and reject anions in water [69]. Based on the water equilibrium equation, the following
reaction equation is obtained:
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At pH < PZC: TiOH + H+ 
 TiOH2
+ (9)

At pH > PZC: TiOH + OH−
 TiO− + H2O (10)

7.3. Temperature

Chong et al. and Gaya et al. [69,176] stated that an increase in temperature in the
photocatalytic reaction (>80 ◦C) would cause an increase in the recombination of electron–
hole pairs and inhibit the adsorption of organic compounds on the TiO2 surface leading to
a decrease in photocatalytic activity. This statement is in accordance with the Arrhenius
equation, where Kapp’s clear first-order rate constant must increase linearly with exp
(−1/T). Conversely, at temperatures below 80 ◦C, adsorption is an exothermic event that
occurs spontaneously, and the adsorption of the final reaction product will increase. This
finding is also supported by Malato et al. [179], which in the temperature range of 20–80 ◦C
it has activation energy that is often very small (several kJ/mol) where the activation energy
is zero. However, the activation energy at temperatures below 0 ◦C increases. Furthermore,
desorption of the final product becomes rate-limiting. Therefore, the optimum temperature
generally consists of between 20 and 80 ◦C.

7.4. Size and Structure of the Photocatalyst

Photocatalytic activity is also influenced by the structure and size of the crystals,
especially in the form of nano. For example, TiO2 structurally has three crystalline phases:
anatase, rutile, and brookite. However, among these three types of structures, only anatase
and rutile are quite stable. Different types of structures certainly affect the difference in
density (3.9 g/cc for anatase and 4.2 g/cc for rutile), and of course, this can affect the
surface area and active side of the TiO2. In addition, the crystal structure turns out to result
in differences in the energy level of the electronic band structure (bandgap energy). The
amount of bandgap energy (Eg) between anatase and rutile will differ if Ti and O atoms’
arrangement in TiO2 crystals is different. The anatase structure has an energy gap of 3.2 eV
and rutile has an energy gap of 3.0 eV [93].

Saquib et al. [180] shows that photocatalytic activity also depends on the type of
pollutant model. In the study, it was found that Degussa P-25 TiO2 showed better pho-
tocatalytic activity for degradation of Acid Orange 8 dyes and a large number of organic
compounds than other TiO2 catalysts, namely Hombikat UV100 (100% anatase) and PC500
(100% anatase, 100% inorganic chemicals (Millennium)). This finding can be explained by
the fact that Degussa P25 is a mixture of 25% rutile and 75% anatase. This research result is
supported by Ohno et al. [181] and Muggli et al. [182], that the mixture of anatase (70–75%)
and rutile (30–25%) is more active than pure anatase. On the other hand, the UV 100 Hom-
bikat photocatalyst was better for the degradation of benzidine and 1,2-diphenylhydrazine,
as shown in a recent study reported by Muneer et al. [183].

The size of the photocatalyst crystal also plays an important role in photocatalytic
efficiency. Ma et al. [184] showed that doping inhibited the transformation of the anatase
phase into rutile and inhibited the growth of crystallites. In addition, doping can expand
the absorption area to the visible light region. Crystal size can be calculated using the
Scherrer equation as shown in Equation (11):

L =
K λ

β cos θ
(11)

where λ is the wavelength of X-rays in nanometers (nm), β is the peak width of the diffraction
peak profile at half the maximum height resulting from the size of small crystals in radians,
and K is the constant associated with the shape of the crystal, usually taken as 0.9 [185].

7.5. Dissolved Oxygen (DO)

Dissolved oxygen (DO) has an essential role in the photocatalytic reaction. It is well
known that DO can act as an electron acceptor to eliminate photogeneration recombination
of electron–hole pairs and photocatalysts with better electron and hole separation. This
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condition allows more efficient channeling of charge carriers into useful reduction and
oxidation reactions [186]. Moreover, the existence of oxygen could facilitate the formation
of hydroxyl and superoxide radicals which act as reactive species for POME degradation.

Gerischer et al. [187] reported that suppose molecular oxygen is used as an electron
acceptor to trap and remove electrons from a titanium particle’s surface to minimize free-
electron buildup. The oxygen reaction adsorbed with photogeneration electrons on the
titanium catalyst surface is relatively slow and maybe a step in controlling the rate of
photocatalytic oxidation reactions.

Therefore, increasing the rate of charge transfer from titanium to molecular oxygen will
increase photocatalytic efficiency for photo-oxidation of organic substrates. If the oxygen
absorbed exceeds the electrons’ photogeneration on the surface, the electron transfer rate
to molecular oxygen will be maximized. However, titanium’s type and characteristics are
influenced by electron–hole generation efficiency, recombination, and the charge of transfer
reaction rates [188].

7.6. Light Wavelength

The photochemical effect of light sources with different wavelength emissions will
have considerable consequences on the rate of photocatalytic reactions depending on the
type of photocatalyst used (crystalline phase and anatase–rutile composition). For example,
Degussa P-25 TiO2 has an anatase crystal ratio of 70/80: 20/30, and the wavelength of the
light is less than 380 nm enough for photonic activation [84,189]. The TiO2 rutile crystalline
phase has a smaller energy bandgap of around 3.02 eV than the TiO2 anatase of 3.2 eV [93].
Therefore, rutile TiO2 can be activated with wavelengths of light up to 400 nm, depending
on the bandgap threshold for the type of rutile TiO2 used.

The electromagnetic spectrum can be classified into UV-A, UV-B, and UV-C according
to the wavelength emitted for UV radiation. UV-A has a wavelength range between 315 and
400 nm (3.10–3.94 eV), while UV-B has a wavelength range of 280–315 nm (3.94–4.43 eV),
and UV-C has a wavelength range of 100–280 nm (4.43–12.4 eV) [190].

7.7. Light Intensity

Light intensity is one of several parameters that affect the rate of photocatalytic reac-
tions for organic compounds degradation. Fujishima et al. [191] shows that photocatalytic
reactions are not too dependent on the intensity of light, where some photons have only
enough energy to induce reactions on the surface. To achieve high photocatalytic reaction
rates, especially in wastewater treatment, relatively high light intensities are needed to
adequately cover each active side of TiO2 with the required energy.

Ollis et al. [192] show that the effects of light intensity on photocatalytic efficiency can
be categorized into three groups: (1) at low light intensities (0–20 mW/cm2), the rate of
increase in linear reactions with an increase in light intensity due to the formation of more
dominant electron holes and recombination of electron holes is ignored; (2) at medium
light intensity (about 25 mW/cm2), the rate of reaction depends on the square root of the
light intensity because at this stage, the electron–hole and recombination holes compete;
(3) at high light intensity, the rate of reaction does not depend on the intensity of the light.
With increasing light intensity, the number of activation sites remains the same so that the
reaction rate only reaches a certain level even when the light intensity continues to increase.

This finding is supported by Reutergådh et al. [193] showing that the reaction rate
increases around 2.2 times when the light intensity doubles. Under higher lighting intensity,
the increase of reaction rate is much lower. This condition may result from the fact
that low-intensity reactions involving the formation of dominant electron–hole pairs and
recombination of electron–hole pairs can be ignored. However, on increasing the intensity
of light, the separation of electron pairs competes with recombination, causing a smaller
effect on the reaction rate. For TiO2 photocatalysis, the relationship of light intensity
versus reaction rate is near linear. The intensity of UV light applied in the experiment
(0–20 mW/cm2) corresponds to weak lighting. Based on the Table 4, it can be seen that by
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varying light intensity and wavelength, it affects the degradation rate (i.e., COD and BOD
removal and decolorization) of POME waste.

8. Kinetic of Photocatalytic POME Degradation

It is widely believed that the kinetics of the photocatalytic reaction following the
Langmuir–Hinshelwood (L–H) equation is seen in the following formula:

r = −dC
dt

=
k·K·C

1 + K·C (12)

where k is the reaction rate constant, K is the reactant adsorption constant, and C is the
reactant concentration each time. To calculate the reaction rate in a heterogeneous system,
it takes the value of the reactant adsorption constant (K) on the catalyst’s surface. Since no
experiments were carried out to calculate the K value in this study, the calculations were
carried out with a homogeneous system approach.

The equation for the reaction rate is:

r = −dC
dt

= k·Cn (13)

where k is the reaction rate constant and n is the reaction order. The reaction order and
reaction rate constants are determined by integrating the reaction rate equation into a
linear equation.

The equation can be written as follows:

Zero Order (n = 0) : C0 −C = kt (14)

First Order (n = 1) : ln
(

C0

C

)
= kt (15)

where C0 = initial reactant concentration, C = reactant concentration at time t, and t = time.
By plotting the left term concerning time (t) of the two equations, the reaction order can
be determined, while the value of k is obtained from the slope of the resulting curve.
Ng and Cheng report the kinetics of the photocatalytic degradation of POME over UV-
responsive TiO2 photocatalysts. It was found that the degradation kinetics of POME
followed a 1st order reaction with specific reaction rates (k) ranging from 0.70 × 10−3 to
2.90 × 10−3 min−1. Figure 21 shows the resulting modeling exercise. As a substitute for
excellent linearity, it can be concluded that the decomposition of organic matter in POME
does follow the first-order reaction.
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9. Conclusions and Future Perspective

Palm oil industry waste (POME) has a high COD and BOD, which can cause environ-
mental pollution and the death of life in water due to reduced oxygen levels. POME waste
treatment using conventional technology such as an open pond system currently cannot
completely decolorize POME waste. Besides, methane gas production released freely into
the air can contribute up to 70% of total greenhouse gas emissions [30]. Various alternative
POME treatment technologies have been carried out, although these technologies show
a positive trend in dealing with POME waste. However, their high costs deter the de-
ployment of these technologies for large-scale applications. In this regard, photocatalytic
technologies may be an economically feasible alternative. The application of photocatalytic
technology to convert palm oil industry (POME) waste has shown good potential on a
laboratory scale [49,117,120,121,125–127]. Photocatalytic technology using either UV light
or the sun is increasingly becoming a hot topic in research because it shows high efficiency
in the mineralization of organic compounds and disinfection of pathogenic microorganisms
in wastewater. A review of several studies of photocatalytic technology in POME waste
treatment is summarized in Table 4.

However, the application of photocatalytic technology for POME waste treatment
is limited by several key technical issues that need to be further investigated. The first
consideration is whether the photocatalytic process in POME waste requires pretreatment
or can be directly applied. It has been previously discussed that POME waste output has a
high temperature (80–100 ◦C), while an increase in temperature in a photocatalytic reaction
(>80 ◦C) will cause a decrease in photocatalytic activity. In addition, POME waste contains
suspended solids, so preliminary treatment is needed to remove the solid suspension. This
measure, of course, will require additional costs if applied on a large scale.

Several major technical obstacles ranging from catalyst development to process op-
timization must be overcome to promote photocatalytic technology feasibility in POME
waste treatment soon. These include (i) developing photocatalysts for high photocatalytic
efficiency that can utilize visible light or even a wider solar spectrum; (ii) the develop-
ment of scalable photocatalyst synthesis methods in order to obtain the correct structure
and size of the photocatalyst to increase photocatalytic efficiency; (iii) optimization in
the parameters of photocatalytic operations needs to be investigated more fully based on
the characteristics of POME waste. Currently, various efforts are being made to improve
photocatalysts to work effectively, such as modification of the catalyst by doping to change
the structure of the catalyst and energy bandgap. With photocatalysts powered by visible
light or solar energy, we believe that photocatalysts can bridge the gap between lab-scale
and large-scale production in POME waste’s photocatalytic treatment.

Overall, this review provides readers an overall idea about photocatalytic technology
to reduce POME waste’s organic pollutants. With this systematic review text, the reader’s
needs will be fulfilled properly, especially those new in photocatalytic technology for
POME processing.
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