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T cells undergo metabolic reprogramming and multiple biological processes to satisfy their
energetic and biosynthetic demands throughout their lifespan. Several of these metabolic
pathways result in the generation of reactive oxygen species (ROS). The imbalance
between ROS generation and scavenging could result in severe damage to the cells and
potential cell death, ultimately leading to T cell-related diseases. Interestingly, ROS play an
essential role in T cell immunity. Here, we introduce the important connectivity between
T cell lifespan and the metabolic reprogramming among distinct T cell subsets. We also
discuss the generation and sources of ROS production within T cell immunity as well as
highlight recent research concerning the effects of ROS on T cell activities.
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INTRODUCTION

The rapid invasion and spreading of foreign pathogens often catch our immune system off guard. As
critical host-mediated immune cells, T cells must be rapidly responded to foreign substances and
efficiently proliferate in a timely manner. To grow, proliferate, and differentiate, T cells undergo
metabolic reprogramming to meet their bioenergetic needs. T cells can engage a variety of distinct
metabolic pathways, including glycolysis, oxidative phosphorylation (OXPHOS), fatty acid
synthesis, etc. Energy production from those pathways unavoidably generates reactive oxygen
species (ROS), which cause damage to the cell. However, there is compelling evidence that ROS acts
as a critical signaling component in T cell immunity. In the following sections, we will highlight the
metabolic reprogramming of distinct T cell subsets, including thymocytes, naive T cells, effector T
cells, differentiated T cells, and memory T cells. We will address the sites and sources of ROS
production in T cells, as well as the emerging concepts surrounding the impact of ROS production
on T cell development, activation, differentiation, and apoptosis.
METABOLIC REPROGRAMMING OF VARIOUS T CELL SUBSETS

T cells originate from bone marrow and mature in the thymus. While maturing in the thymus,
thymocytes encounter steps of selection to ensure the generation of mature T cells with the
following characteristics: “foreign” antigen recognition, self-antigen tolerization, and accurate
org March 2021 | Volume 12 | Article 6526871
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surface marker expression to perform effector functions. It is
estimated that 95–97% of thymocytes are eliminated due to not
meeting these criteria (1). During the early stage of thymic
maturation, the glucose transporters Glut1 and Glut4 are
highly expressed, suggesting an increase in glycolysis (2–4).
The expression of Glut1 and Glut4 is significantly reduced as
thymocytes mature to a later stage (2–4). The mature thymocytes,
called naive T (Tn) cells, leave the thymus, circulate into the
bloodstream, and finally arrive at the secondary lymphoid
tissues, such as the spleen and lymph nodes (LNs). Peripheral
naive T cells remain in quiescence and only accumulate essential
cellular building blocks (6, 7). Tn cells generate theminimal energy
needed to function by metabolizing glucose to pyruvate. The
pyruvate will then enter the tricarboxylic acid cycle (TCA cycle)
and undergo oxidative phosphorylation (OXPHOS) (6, 8).
Alternatively, Tn may also utilize fatty acid synthesis (FAO) to
produce sufficient ATP levels (8).

Tn cells are activated by the binding of the T cell receptors
(TCR) and the antigen peptides on the major histocompatibility
complex (MHC) from antigen-presenting cells (APC) with the
help of costimulatory molecules (9). This ligation further triggers
multiple signaling pathways, and the activated T cells expand and
transform into effector T (Teff) cells with the assistance ofmultiple
cytokines. To meet the demand for rapid proliferation, clonal
expansion, and effector functions, Teff cells shift from mainly
conducting OXPHOS to aerobic glycolysis (7, 10–14). Many
studies have shown that glutaminolysis, pentose phosphate
pathway, lipid synthesis, and OXPHOS are enhanced in Teff cells
as well (10, 12, 13).

CD8+ Teff cells produce large amounts of perforin and
granzyme B to eliminate foreign pathogens, viral-infected cells,
and tumor cells (15). In comparison, CD4+ Teff cells secrete an
array of cytokines and recruit other immune cells. CD4+ Teff cells
differentiate into functionally distinct subsets in different cytokine
environment: Th1, Th2, Th9, Th17, etc. Different subsets of
differentiated Teff show distinct metabolic profiles, shown in
Figure 1. T helper 1 (Th1) cells eliminate intracellular pathogens
by producing IFNg and can activate macrophages (16). Deficiency
of lactate dehydrogenase A (LDHA) has shown reduced IFN-g
levels under T helper 1 (Th1) conditions (13). Another study
mentioned that upon defective Th1 conditions, T cells fail to
upregulate glycolysis and OXPHOS (17). Th1 cells utilize some
OXPHOS andmainly glycolysis by expressing high levels of Glut 1
(14, 18, 19). T helper 2 (Th2) cells protect against extracellular
parasites by secreting cytokine IL-4, IL-5, and IL-13 (20). Studies
have shown that treatmentwithglycolysis inhibitor 2-deoxyglucose
(2-DG) impaired Th2 differentiation (20, 21). These cells utilize the
aerobic glycolytic pathway by expressing themostGlut1 than other
Teff cells tomeet their developmental and functional needs (14, 20).
T helper 9 (Th9) cells secrete IL-9 to eliminate extracellular
parasites. There have been numerous discoveries pertaining to
the metabolic pathways of other Teff cells; however, how Th9 cells
modulate their metabolic pathways remains unclear. A study
conducted by Wang has shown that Th9 cell differentiation is
dependent upon the TAK1-SIRT1-mTOR-HIF1a-glycolysis
pathway (22). T helper 17 (Th17) cells protect against
extracellular bacteria and fungi with an imbalance of Th17
Frontiers in Immunology | www.frontiersin.org 2
leading to autoimmune disease (23). Various studies have shown
that Th17 cells uptake glucose and undergo glutaminolysis (14, 18,
23–25). T follicular B helper T (Tfh) cells are distinguished from
other Teff cells by their unique role in memory B cell development
and plasma cell maturation (26). Tfh cells use both aerobic
glycolysis and OXPHOS but lower levels with respect to Th1 cells
(18). Regulatory T (Treg) cells have immunosuppressive capacities
not seen in other T cell subsets. Unlike other T cell subsets, Treg
exhibited both OXPHOS and FAO to maintain function (18, 24,
25). The surviving population of Teff cells remodels intomemoryT
(Tm) cells which will later respond to future threats the Tm cells
have previously experienced (11). Unlike high glycolytic Teff cells,
Tm cells depend on OXPHOS and FAO to meet their metabolic
needs (6, 7, 11, 12, 14, 27). The distinct metabolic profiling of T cell
subsets may imply their biosynthetic needs and support their
differing functional properties.

T cells rewire their metabolism by processing oxidative and
catalytic activities to meet their demands at various points
throughout their lifespan. Concomitantly, Reactive Oxygen
Species (ROS), generated as a byproduct of the oxidative
metabolism process, is a requisite secondary signaling factor in
T cell immunity.
DOUBLE-EDGED EFFECT OF ROS IN
T CELLS

Reactive Oxygen Species (ROS) are a group of highly reactive,
unstable radicals and non-free radical compounds containing
oxygen. Examples of ROS include superoxide (O−

2 ), hydrogen
peroxide (H2O2), singlet oxygen, ozone, peroxynitrite (ONOO

−),
and hydroxyl radical (·OH), with superoxide and hydrogen
peroxide being the most common under physiological conditions
(28–30). Although superoxide is the original form of ROS, it is
highly unstable, and upon forming, reacts with surrounding
molecules to form hydrogen peroxide, peroxynitrite, and all
other ROS. Under normal conditions, ROS levels are tightly
regulated by various endogenous antioxidant enzymes, including
superoxide dismutase (SODs), catalases (CAT), glutathione
peroxidases, and multiple antioxidant molecules, such as
pyruvate, a-ketoglutarate, and glutathione (GSH) (28, 29). Low
to moderate ROS levels are essential for cell survival and
proliferation (28, 31, 32). When excess ROS overwhelms the
antioxidant systems, oxidative stress occurs, leading to harmful
effects on cellular organisms, such as inducingDNAmutations (28,
31, 33), altering lipidmetabolism (31, 34), and further inducing cell
death (5).AlthoughhighROS levels result inharm to theorganism,
a large body of research finds that ROS acts as one of the essential
secondary messengers playing a role in T cell function (35, 36).
SOURCES OF ROS PRODUCTION IN
T CELLS

Various sources produce ROS in T cells, with the majority of
production coming from mitochondria, NADPH oxidases
March 2021 | Volume 12 | Article 652687
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(NOXs), lipid metabolism, and several other enzymes, such as
cyclooxygenases and others (5, 28, 35, 37–46). In this section, the
two sources that produce ROS in T cells, mitochondria and
NOXs, will be discussed (Figure 2).

Oxidative Phosphorylation—The Primary
Cell Pathway That Produces ROS
in Mitochondria
Oxidative phosphorylation (OXPHOS) is one of the pathways by
which ROS are generated in T cells. OXPHOS is a biological
process that transports electrons, generates proton gradients, and
utilizes oxygen or simple sugars to make adenosine triphosphate
(ATP), the primary energy source of the cell. The multiple
complexes and coenzymes of the electron transport chain (ETC)
are needed to conduct OXPHOS. NADH: ubiquinone
oxidoreductase (Mitochondrial complex I) transfers electrons
from one of the coenzymes, defined as electron carriers, NADH
Frontiers in Immunology | www.frontiersin.org 3
to ubiquinone, which proceeds to pump the protons into the
intermembrane space (47). The other coenzyme, reduced flavin
adenine dinucleotide (FADH2), donates electrons through
succinate dehydrogenase (Mitochondrial complex II). The
electrons are then transported to ubiquinol-cytochrome c
oxidoreductase (Mitochondrial complex III) and cytochrome c
oxidase (Mitochondrial complex IV), where oxygen is reduced to
water. During the process of electron donation, the protons within
thematrix are pumped to themitochondrial intermembrane space
through complexes I, III, and IV (47). The proton gradient in the
intermembrane space drives ATP synthase to produce ATP.
However, OXPHOS is not a perfect mechanism. There is a 0.2–
2% leakage of electrons in mitochondrial complexes I–III,
primarily complexes I and III, resulting in the creation of
superoxide and hydrogen peroxide (31, 47). Specifically, a total
of 11 sites have been proven to generate ROS in the ETC, a finding
which has been reviewed elsewhere (47, 48).
FIGURE 1 | Various T cell subsets development with metabolic reprogramming status. There are five metabolic profile categories: the pentose phosphate pathway,
glutaminolysis, aerobic glycolysis, oxidative phosphorylation (OXPHOS), and fatty acid oxidation (FAO). Different T cell subsets alter their metabolic status at different
developmental stages. Double negative (DN) cells are the initial stage of thymocytes. These cells will mainly use aerobic glycolysis during proliferation. In later stages
of thymocyte development, double-positive (DP) cells and single CD4 or CD8 T cells mature and prepare to migrate through the bloodstream to the secondary
organs. During this stage, the matured thymocytes preferentially utilize OXPHOS and FAO to meet their metabolic needs. Naive T cells in spleens and LNs continue
in quiescence as thymocytes to minimize energy consumption. Once encountering antigens, T cells activate and proliferate to face foreign assailants. In order to
combat foreign pathogens, effector T cells transition their metabolism from OXPHOS to aerobic glycolysis. T cells will progress into the differentiation stage where
there are multiple T-cell subsets, such as T helper 1 (Th1), T helper 2 (Th2), T helper 9 (Th9), T helper 17 (Th17), regulatory T (Treg), and T follicular B helper (Tfh)
cells. Although all T cell subsets utilize aerobic glycolysis, the varying subsets employ different metabolic processes. Th17 can utilize glutaminolysis and both Th1 and
Tfh can conduct OXPHOS in addition to aerobic glycolysis. Memory T cells exhibited both OXPHOS and FAO to maintain their function.
March 2021 | Volume 12 | Article 652687
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Superoxide can be generated in complex I through both
directions of the reaction, meaning electron transfer from
NADH to ubiquinone or reduced ubiquinone to NAD+ (5).
When a complex I inhibitor, such as Rotenone, is introduced, the
ROS production from the reverse electron transfer (RET) from
NADH to ubiquinone is inhibited (40–43). There is supporting
evidence highlighting that ROS production from complex II also
plays an essential role despite the negligible amount produced by
the complex under normal conditions (44, 45). However, the
major ROS product generated from complex II is still under
debate. The results from Siebels and Drose (46) support that
hydrogen peroxide is the major product from complex II-
generated ROS while the results from Grivennikova (44)
identified superoxide as the major product. Complex III
produces the second most amount of ROS where superoxide is
converted into stable hydrogen peroxide by two superoxide
dismutase (SOD) isoforms SOD1 in the intermembrane space
and SOD2 in the matrix (31, 46).
Frontiers in Immunology | www.frontiersin.org 4
The TCA Cycle’s Role in Mitochondrial
T Cell ROS Generation

The tricarboxylic acid (TCA) cycle takes place in the matrix of
mitochondria and is an essential component of aerobic respiration.
The TCA cycle finishes the catabolism of sugar by glycolysis and
convertsmetabolic intermediate acetyl-CoA intomultiple reduced
coenzymes, providing electrons to OXPHOS as well as providing a
pond of essential intermediates for ATP production. Increasing
evidence has surfaced supporting the claim that OXPHOS is
not the sole pathway within the mitochondria that produce ROS
(49–59). In the process of decarboxylation of pyruvate to acetyl-
CoA, the pyruvate dehydrogenase (PDH) complex is able to
produce high levels of ROS. Inhibition of PDH leads to a
decrease in the generation of ROS (54, 55). a-ketoglutarate
dehydrogenase complex (a-KGDH), a TCA cycle enzyme, also
plays a role in ROS creation (56, 57) with its reduced form
generating superoxide and hydrogen peroxide (58, 59). Lastly,
FIGURE 2 | Different sources of ROS impacting T cell activation. There are three ROS generation sources mentioned in this review that impact T cell activation:
NOXs, mitochondrial complexes for OXPHOS, and TCA enzymes. NOXs are a group of enzymes responsible for the transfer of electrons from oxygen to cytoplasmic
superoxide. In this figure, black solid arrows indicate the production of these pathways while purple solid arrows indicate the electrons transfer reactions for
coenzymes within the TCA cycle and mitochondrial complexes. Colored dashed arrows designate the inductions of transcription factors, such as NFAT, AP-1, NFkB,
and further upregulate various cytokines. The orange-colored box denotes protein complexes while the compounds that are produced from the TCA cycle are
shown in blue. The red spiked border indicates ROS generation.
March 2021 | Volume 12 | Article 652687
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succinate-driven RET causes succinate accumulation and further
induces ROS generation, with the inverse catalysis of succinate
dehydrogenase (SDH) (49–53). Inbrief summary, three steps in the
TCA cycle generate ROS, pyruvate to acetyl-CoA, a-ketoglutarate
to succinyl-CoA, and fumarate to succinate.

NOXs as the Main Source of
Cytosolic ROS
Besides the mitochondria, NOXs transport electrons and
produce cytosolic ROS, which is essential for T cell activities
(35). There are seven isoforms of superoxide-generating enzyme
NOXs: NOX1-5, DUOX1, and DUOX2 (60, 61). Deficient mouse
models targeting GP91phox and NOX inhibitory compounds,
shown in Table 1, are used to study T cell NOXs (62, 75, 76). In
addition, it has been ascertained that NOX2 (GP91phox) is the
main isoform in T cells (60, 74). Deficiency of NOX2 in Treg cells
results in an increased number of Treg cells in the heart and
vessels as well as and driving to a more anti-inflammatory
phenotype, with an increased expression of IL-10 and decreased
expression of IL-17 (76).

T Cell Development in the Thymus Is
Affected by ROS
The thymus allows thymocytes to develop, mature, and expand
by providing a distinctive microenvironment. Studying the
thymic microenvironment may allow researchers to develop
drugs targeting parathymic syndromes and thymus-related
Frontiers in Immunology | www.frontiersin.org 5
diseases, including myasthenia gravis (MG), pure red cell
aplasia (PRCA), and hypogammaglobulinemia (77). Little is
known as to how ROS might regulate T cell development
within the thymus. There are some studies applying extracellular
ROS to observe how ROS affects T cell development (60). The
production of CD3 T cells in the thymus could be inhibited by
hyperbaric oxygen in vivo, a treatment for tumors (60). An
increased level of thymocyte survival and enhanced expression of
TNF-a and IL-2 are observed with the treatment of Ganoderma
atrum polysaccharide (PSG-1) by ameliorating ROS generation in
immunosuppressed mice (78). Increasing ROS generation results
in an increasing level of double-negative (DN) cells and declining
levels of CD4 and CD8 single-positive (SP) cells in the thymus
and further induces apoptosis inmanganese superoxide dismutase
2 (SOD2) deficient mice (30). These results indicate that a
moderate amount of ROS generation potentially influences
thymic development.
ROS IMPACTS T CELL ACTIVATION

TCR signaling pathways are affected by ROS, which trigger
several proximal and distal signaling pathways in T cells (31,
79). There are studies showing that TCR stimulation induces the
generation of an enormous amount of ROS, thus resulting in the
activation of transcription factors nuclear factor of activated T
cells (NFAT), activator protein-1 (AP-1), and nuclear factor
kappa light chain enhancer of activated B cells (NF-kB) (80).
TABLE 1 | Inhibitory compounds targeting mtROS and cytosolic ROS (cROS) in the review.

Drugs Detected species Principle and targeted system Reference

DPI
(Diphenyleneiodonium chloride)

Intra-ROS, mtROS Inhibitor of flavoenzymes, includes NOXs (32, 38, 60–66)

VAS2970/VAS2870 cROS Inhibitor of NOXs
(NOX2>NOX1>NOX5>>NOX4)

(32, 39, 60, 61)

MitoQ (Mitoquinone), MitoVitE
MitoTEMPO

mtROS Mitochondria-targeted antioxidant by attaching
a hydrophobic cation

(39, 67)

NAC (N-Acetylcysteine) cROS ROS scavenger, break thiolated proteins and
release free thiols

(66–72)

Catalase Intra-ROS ROS scavenger, hydrogen peroxide is
decomposed to water and oxygen

(64)

Trolox Intra-ROS ROS scavenger, water-soluble analog of
vitamin E

(64)

Apocynin/Diapocynin cROS Inhibits the assembly of NOXs (selectivity
controversies)

(60, 61, 68)

Gp91ds-tat cROS A selective NOXs peptide inhibitor (61, 64)
2-Acetylphenothiazine (ML171) cROS NOX1 specific inhibitor, (NOX>NOX4=NOX5) (61)
Rotenone mtROS Inhibitor of mitochondrial complex I (5, 34, 58, 73)
Antimycin mtROS Inhibitor of mitochondrial complex III (58)
Pyrazolopyridine derivative (GKT136901/GKT831) cROS NOX1>NOX4=NOX5 (61)
Dihydroethidium (DHE) cROS Superoxide indicator (5, 30, 35, 38, 65–67)
GlucoxBiotech compound M13 cROS NOX4>>NOX1 (61)
ML090
(5,12- 83 Dihydroquinoxalino(2,3B)quinoxaline)

cROS NOX5=NOX1=NOX4>NOX2 (61)

GSK
(N-(1-isopropyl-3-(1-methylindolin-6-yl)-1H-pyrrolo[2,3-b]
pyridin-4-yl)-1-methyl-1H-pyrazole-3-sulfonamide)

extracellular ROS &
intracellular ROS

Inhibitor of cytochrome b558–containing
phagocyte oxidase, and targeting NOX

(64)

CPI-613 mtROS PDH inhibitor (55)
Metformin mtROS Inhibitor of mitochondrial complex I (54, 74)
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It is well established that mitochondrial ROS (mtROS) are
associated with T cell activation. Mitochondrial ROS production
enhances NFAT activation, leading to the induction of the
transcription factor MYC (31, 79, 81). The generation of
mtROS from mitochondrial complex I also induces the NFAT
complex, the subunit transcription factor c-Jun in AP-1, and
further increases the expression of IL-2 and IL-4 (73, 81).
However, a conflicting study demonstrated that high levels of
intracellular ROS, triggering the antioxidant glutathione to
respond, leads to the inhibition of NFAT activation and the
reduction of Myc expression (82). In addition, mtROS
production, independent from complex III, has been seen to
induce NF-kB and subsequently release IL-2 and IL-8 (31, 80).

NADPH oxidases (NOX) are essential enzyme complexes in
the rapid generation of ROS upon T cell activation (9, 32, 38, 83–
85). Inhibition of NADPH oxidase by the use of pharmacological
compounds, such as diphenyleneiodonium chloride (DPI),
apocynin1, and other antioxidants and inhibitors (shown in
Table 1) results in a defective production of ROS. It has been
revealed that NOX induces rapid generation of ROS, which then
activates c-Jun N-terminal kinase (JNK) and NF-kB signaling,
prompting an increase of IFN-g and CD39 expression (32).
However, contradictory results have surfaced where upon TCR
activation the production of ROS is NADPH oxidase
independent (31).
T CELL DIFFERENTIATION IMPACTED
BY ROS

Multiple studies use numerous ROS inhibitors (shown in Table
1) or knockout mice to test the impact of mtROS and cytosolic
ROS on T cells. Autoreactive CD4 T cells deficient in NOX-
derived superoxide exhibited high levels of Th1 cytokine
expression (86). When there is a copious amount of
superoxide, Th1 cytokines and proinflammatory chemokines
revert to normal levels via a decreasing IL-12Rb2 expression
and P-STAT4 activation (86). In addition, ROS showed an
inhibitory effect on the levels of IFN-g and T-bet expression as
well as an enhancing effect on IL-4 expression, via ERK1/2
signaling, for in vitro murine Th1 cells (68, 87). Inhibition of
Nox2 using GP91phox (Nox2)-deficient mice prompted an
increase in mtROS generation, elevated Th2 differentiation,
and enhanced Th2 cytokines: IL-4, IL-5, and IL-13 (68, 88, 89).
As for Th9 cells, there is a review that has shown that SIRT1 and
HIF1a modulate both Th9 differentiation and ROS generation.
However, there is no current definitive link demonstrating how
ROS impacts Th9 cells (90).

Th17 cells play a critical role in protecting against
extracellular pathogens. Dysregulated Th17 cells and aberrant
Th1 cells, either alone or together, are associated with
inflammation in autoimmune diseases (87, 91). T cells that will
differentiate into Th17 require moderate levels of ROS from
either mitochondria or nitro-oxidative pathways (67, 92–95).
Resveratrol, a plant phytoalexin, upregulates superoxide
dismutase (SOD) within mitochondria, which modulates
Frontiers in Immunology | www.frontiersin.org 6
oxidative stress and leads to Th17 differentiation (92). A study
conducted by Zhi has shown that MitoQ inhibits immediate
early response geneX-1 (IEX-1) knockout T cells from
differentiating to Th17 cells, but wild-type (WT) T cells show
no effect when exposed to MitoQ (92). This study used a broader
antioxidant, N-Acetylcysteine (NAC), and found that a non-
specific antioxidant blocks both WT and IEX-1 KO T cells from
differentiating into Th17 cells (92). It is suggested that mtROS is
required for Th17 cell generation, especially for IEX-1 knockout
T cells. The importance of mtROS has been illustrated in a recent
paper showing that Th17 cell generation decreases when mtROS
is inhibited by MitoQ (67). High glucose levels induce the
formulation of mtROS, specifically mitochondrial superoxide
production, in T cells, leading to TGF-b activation and Th17
cell differentiation (67). However, there are some dissenting
opinions on how ROS impacts Th17 cell differentiation (87,
91). Treatment with ROS scavenger NAC, leading to a reduced
level of ROS, augment differentiation of T cell to Th17 cells (91).
Another study conducted by Abimannan has found that when
treating the cells with pro-oxidant, PB (5-hydroxy-2-methyl-1, 4-
naphthoquinone) and H2O2, the frequency of Th17 cells had
been reduced in a dose-dependent manner (87). These two
studies have demonstrated that the accumulation of ROS limits
Th17 differentiation. Further investigation on ROS-regulated
Th17 cell differentiation and ROS-mediated inflammatory
response may improve the development of treatments for
inflammatory and autoimmune diseases.

Treg cells play a critical role in cancer immunology, and an
imbalance of Treg cells and Th17 cells leads to autoimmune
disorders. ROS generation results in Treg cell-mediated
immunosuppression and limits anti-tumor T cell response in
the tumor microenvironment (69). Reduced ROS generation
impairs Treg function and differentiation, and it is suggested
that ROS is required for the suppressive function of Treg cells
(69, 96). In an exogenous H2O2 environment, Treg cells are more
resistant to oxidative-induced death compared to Teff cells and
memory T cells (97). ROS generation is found to be greater in
Treg cells in comparison to Teff cells (96). Excessive ROS levels
have been observed in aged Treg cells from >18-month-year-old
mice, whereas young Treg cells exhibit controlled ROS
generation, normal proliferation, and controlled inflammation
(96). Limitation of ROS generation by ROS scavenger NAC has
been shown to promote proliferation and survival in aged Treg
cells (96). Henceforth, the phenotypic connection between ROS
generation and Treg cell differentiation is found. Future research
may help us to unveil how the ROS-mediated mechanism
underlying Treg cells’ differentiation and function.
T CELL DEATH IMPACTED BY ROS

Adequate levels of intracellular ROS, including NOX-derived
ROS and mtROS, emerge to regulate activation-induced T cell
death (AICD) by affecting the Fas ligand (FasL) and ERK-
mediated pathways (Figure 3) (35, 63–65, 70, 74, 98).

Following TCR stimulation, zeta chain-associated protein
kinase 70 (ZAP70) is activated and phosphorylated (74, 99).
March 2021 | Volume 12 | Article 652687
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ZAP70 phosphorylates the adaptor, linker of activated T cells
(LAT) with the coupled recruitment of phospholipase Cg1
(PLCg1) and further generation of inositol 3,4,5-triphosphate
(IP3) and diacylglycerol (DAG) (74, 99). IP3 binds to its
receptor, IP3R1, resulting in a low concentration of calcium
releasing into the ER, and this action induces Duox1, an isoform
of NOX, to produce intracellular hydrogen peroxide (35).
Intracellular H2O2, from NOX2 and NOX4, creates a positive
feedback loop to enhance TCR signaling during T cell activation.
While in later stages, as the cells undergo apoptosis, ginseng
pectins selectively inhibit ERK activation, a part of the galectin-3
(Gal3) triggered pathways (35, 63, 65, 66, 70). An interesting
study by Zhao has shown that walnut polyphenol extract (WPE)
reduces ROS generation, decreasing the expressions of apoptosis-
associated proteins Bax and p53 (98).

Separately, protein kinase cq (PKCq) is activated by DAG and
translocates into the mitochondria, impacting the production of
hydrogen peroxide from mitochondrial complex I (74). These
proximal signaling eventually results in the induction of FasL
Frontiers in Immunology | www.frontiersin.org 7
(CD95) expression, a crucial signal for the induction of
activation-induced cell death (AICD) (74). In addition, AICD,
followed by the activation of FasL, is dependent on superoxide
but not hydrogen peroxide (65).

Programmed death-1(PD-1) has an impact on ROS,
independent of NOX, with a concomitant in the T cell
apoptosis pathway (71). ROS levels have no impact in PD-1
low cells, while lower levels of ROS have been observed in PD-1
high cells when neither PD-1 nor PDL1 expression is blocked
(71). In this study by Tkachev, they also investigated which ROS
sources are affected by PD1 and demonstrated that PD1 regulates
two sources of ROS, mitochondrial H2O2 and ROS upon
FAO (71).

Excess effector T cells that have undergone apoptosis require
removal by macrophages after a period of infection in order to
conserve energy (64). The clearance of overreacted and apoptotic
T cells is essential to purge in order to prevent autoimmune
diseases. ROS generation is detected when dectin-1 on dendritic
cells binds to the annexins on apoptotic cells (64).
FIGURE 3 | ROS regulation of activation-induced T cell death (AICD). This figure indicates multiple signal pathways involved in T cell death, including PD1 (below),
Gal3, NOX2, and FasL-mediated (above) pathways. The orange color denotes protein complexes. Black solid arrows indicate the products and interactions of these
pathways. The early stages denote TCR activation while the later stages indicate apoptosis. The dashed arrow affiliated with the PKCq protein indicates translocation
from the cytosol to the mitochondria. Cytochrome c release from the mitochondria to the cytosol is shown by yellow dots. The dashed line associated with IP3
designates the induction of calcium release (shown in brown dots) and the complexes’ impact on DUOX1 in the endoplasmic reticulum.
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CONCLUDING REMARKS

Metabolic reprogramming of T cells is intertwined with T cell
survival and proliferation. Although there have been numerous
studies in the field, it is still unclear why different T cells’ subsets
modulate distinct metabolic pathways: pentose phosphate
pathway, glutaminolysis, aerobic glycolysis, OXPHOS, and
FAO. Understanding T cell metabolic reprogramming is
critical for future drug and clinical developments concerning
immunological disease. It has been acknowledged for decades
that ROS is generated as a byproduct during oxidative
metabolism. While recent discoveries have demonstrated that
low and moderate levels of ROS generated from mitochondria
and NOXs are imperative in signaling T cell immunity, excess
amounts of ROS result in mutation and cell damage. ROS
production from oxidative phosphorylation had been studied
decades prior, but there is emerging evidence that has shown
multiple steps in the TCA cycle could also generate oxidative
species. Both NOX-derived ROS and mtROS exhibit essential
roles in the regulation of thymic development, T cell activation, T
cell differentiation, and activation-induced T cell death. Such
knowledge may help to reveal the impact of intracellular ROS on
Frontiers in Immunology | www.frontiersin.org 8
T cell immune response. Targeting the redox state in various T
cell subsets by altering ROS could be a potential way to improve
novel therapeutic strategies for treating immunological
disorders. Further investigations are expected to elucidate the
molecular mechanism of how ROS impacts T cell fate,
metabolism, and function, with the inevitable goal being the
illustration of possible novel therapies with the application of
ROS scavengers in treating ROS-related diseases.
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