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Abstract: Inhaled particulate air pollution exerts pulmonary inflammation and cardiovascular toxicity
through secondary systemic effects due to oxidative stress and inflammation. Catalpol, an iridiod
glucoside, extracted from the roots of Rehmannia glutinosa Libosch, has been reported to possess
anti-inflammatory and antioxidant properties. Yet, the potential ameliorative effects of catalpol on
particulate air pollution—induced cardiovascular toxicity, has not been studied so far. Hence, we
evaluated the possible mitigating mechanism of catalpol (5 mg/kg) which was administered to
mice by intraperitoneal injection one hour before the intratracheal (i.t.) administration of a relevant
type of pollutant particle, viz. diesel exhaust particles (DEPs, 30 µg/mouse). Twenty-four hours
after the lung deposition of DEPs, several cardiovascular endpoints were evaluated. DEPs caused a
significant shortening of the thrombotic occlusion time in pial microvessels in vivo, induced platelet
aggregation in vitro, and reduced the prothrombin time and the activated partial thromboplastin time.
All these actions were effectively mitigated by catalpol pretreatment. Likewise, catalpol inhibited
the increase of the plasma concentration of C-reactive proteins, fibrinogen, plasminogen activator
inhibitor-1 and P- and E-selectins, induced by DEPs. Moreover, in heart tissue, catalpol inhibited the
increase of markers of oxidative (lipid peroxidation and superoxide dismutase) and nitrosative (nitric
oxide) stress, and inflammation (tumor necrosis factor α, interleukin (IL)-6 and IL-1β) triggered
by lung exposure to DEPs. Exposure to DEPs also caused heart DNA damage and increased the
levels of cytochrome C and cleaved caspase, and these effects were significantly diminished by the
catalpol pretreatment. Moreover, catalpol significantly reduced the DEPs-induced increase of the
nuclear factor κB (NFκB) in the heart. In conclusion, catalpol significantly ameliorated DEPs–induced
procoagulant events and heart oxidative and nitrosative stress, inflammation, DNA damage and
apoptosis, at least partly, through the inhibition of NFκB activation.

Keywords: catalpol; diesel exhaust particles; coagulation; heart inflammation; oxidative stress;
apoptosis; DNA damage

1. Introduction

It is well established that ambient particulate air pollution is associated with a signifi-
cant increase in mortality and morbidity. Outdoor air pollution, resulting from particulate
matter with an aerodynamic diameter of <2.5 µm (PM2.5) has been categorized as the fifth
most important risk factor for all causes of mortality [1]. PM2.5 is responsible for 7.6%
of total global deaths and 4.2% of global disability-adjusted life-years [1]. Exposure to
air pollution is associated with a reduction of life expectancy from 1 to 2 years in highly
polluted areas [1,2].
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Cardiovascular diseases constitute approximately 57% of the deaths from air pol-
lution [1,2]. Epidemiological, clinical and experimental investigations have identified
substantial associations between exposure to particulate air pollution and myocardial
infarction, stroke, increase in heart rate variability and blood pressure, vascular dysfunc-
tion and the augmented vulnerability of the heart to ischaemic damage and elevated
susceptibility for thrombosis [3–5].

While substantial improvements in air quality have been achieved in some developed
countries, many developing countries still report high levels of particulate air pollution [1].
An indication of a safe level of air pollution has not yet been established. In fact, PM2.5 levels
below those set by the current air quality limit value by the European Union (<25 µg/m3)
are still associated with substantial adverse cardiovascular effects [6,7]. Thus, it is essential
to apply supplementary measures that decrease the cardiovascular toxicity inherent in
exposure to air pollution, including the intake of safe dietary natural phytochemicals with
established anti-inflammatory and antioxidative properties.

In urban locations, diesel exhaust emissions represent a substantial source of partic-
ulate air pollution [3,8]. Acute pulmonary exposure to diesel exhaust particles (DEPs) in
experimental animals and controlled exposure studies to diesel exhaust involving human
subjects have reported endothelial dysfunction, alterations in heart rate variability, throm-
bogenicity and impairment fibrinolysis through mechanisms involving oxidative stress
and inflammation [3,5,9].

Catalpol, an iridiod glucoside extracted from the roots of Rehmannia glutinosa Libosch,
has been utilized in traditional Korean and Chinese medicine to treat numerous disor-
ders, including diabetes mellitus, neuronal disorders, and inflammation [10]. Addition-
ally, various experimental studies have demonstrated that catalpol displays anti-diabetic,
nephroprotective, cardioprotective, antioxidant and anti-inflammatory actions [10–12].
Therefore, since the mechanisms underlying the adverse cardiovascular effects of DEPs
involve oxidative stress and inflammation, we thought it of interest to assess the possible
salutary effects of catalpol on DEPs-induced cardiovascular toxicity. As far as we know,
this is the first report investigating such an interaction. Our study aims to evaluate the
potential protective effects of catalpol on DEPs-induced cardiovascular complication, by
assessing various relevant endpoints including thrombosis in vivo and in vitro and cardiac
oxidative stress, inflammation, DNA damage, apoptosis and the expression of nuclear
factor-κB (NF-κB).

2. Materials and Methods
2.1. Diesel Exhaust Particles (DEPs) and Catalpol

The DEPs were procured from the National Institute of Standards and Technology
(NIST, Gaithersburg, MD, USA), and were suspended in sterile saline (NaCl 0.9%) with
Tween 80 (0.01%). To reduce particle aggregation, DEPs suspensions were sonicated for
20 min, vigorously vortexed prior to suspension, and diluted before intratracheal (i.t.)
administration. Control animals were administered with saline containing Tween 80
(0.01%). The DEPs used in this work were previously examined by transmission electron
microscopy, which revealed the presence of small aggregates (<100 nm) of carbonaceous
particles. The majority of the aggregates were less than 1 µm in diameter [13]. The analysis
of the same DEPs from the same source revealed a geometric mean aerodynamic diameter
of 215 nm [14].

Catalpol (purity ≥ 98%) was procured using Sigma Chemical (St. Louis, MO, USA).

2.2. Mice Treatments

This project was approved by the Institutional Review Board of the United Arab
Emirates University (protocol code ERA_2019_5876, approved on 9 April 2019), and the
experiments were ethically carried out in accordance with the approved protocols.

Both male and female BALB/C mice (6 to 8 weeks; College of Medicine and Health
Sciences animal house, UAEU) were kept in temperature-controlled (22 ± 1 ◦C) rooms with
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a 12 h light cycle and 12 h dark cycle (lights on at 6 00 a.m.). They had unrestricted access
to laboratory chow and tap water ad libitum.

Mice were exposed to DEPs by intratracheal (i.t.) instillation [15–19]. To this end,
all mice were deeply anesthetized using 5% isoflurane (Surgivet® model 100 vaporizer).
Using a 24 G catheter, they were i.t. instilled with either saline or the DEPs suspension
(30 µg/animal) [19,20]. Each administration consisted of a volume of 100 µL, followed by a
bolus of 0.3 mL air. Catalpol was administered by intraperitoneal injection (5 mg/kg), one
hour prior to i.t. administration, to either DEPs or saline. The dose of catalpol used in the
present work has been selected from previous studies that demonstrated its effectiveness,
including in reducing oxidative stress and exerting cardioprotective effects against an
ischemia/reperfusion insult in rats [11], increasing brain angiogenesis and ameliorating
the edema of the brain capillary endothelial cells, following permanent middle cerebral
artery occlusion in rats [21], ameliorating atherosclerotic lesions in hypercholesterolemic
rabbits [22] and improving behavioral impairment and cerebral blood flow in rats after
cerebral ischemia [23]. The animals were separated at random into four groups and were
treated as follows:

• Group 1: Normal saline administered i.p. 1 h prior the i.t. administration of saline;
• Group 2: Normal saline administered i.p. 1 h prior i.t. administration of DEPs

(30 µg/mouse);
• Group 3: Catalpol (5 mg/kg) administered i.p. 1 h prior the i.t. administration

of saline;
• Group 4: Catalpol (5 mg/kg) administered i.p. 1 h prior i.t. administration of DEPs

(30 µg/mouse).

Twenty-four hours after the pulmonary exposure to either saline or DEPs, various
cardiovascular parameters were evaluated.

Twenty-four hours following the pulmonary exposure to DEPs or the vehicle, various
cardiovascular parameters were measured.

2.3. Assessment of Thrombosis in Pial Arterioles and Venules In Vivo

An in vivo evaluation of thrombogenesis in pial arterioles and venules was measured
following the i.t. instillation of DEPs or saline with or without catalpol pretreatment,
according to a previously reported technique [18,24].

2.4. Evaluation of Platelet Aggregation in Whole Blood In Vitro

The platelet aggregation in the whole blood was carried out as reported earlier [18,24].
Following anesthesia, blood from mice, that had been i.t. instilled with DEPs or saline
and with or without catalpol administration, was collected from the inferior vena cava
and placed in citrate (3.2%), and 100-µL samples were added to the well of a Merlin
coagulometer MC 1 VET (Merlin, Lemgo, Germany). The blood samples were incubated for
3 min at 37.2 ◦C with 1 µM of adenosine diphosphate (ADP), and then stirred for another
3 min. After this, 25-µL samples were removed and fixed on ice in 225 mL cellFix. After
fixation, using a VET ABX Micros with mouse card (ABX, Montpellier, France), the single
platelets were counted. The level of platelet aggregation, evaluated as a reduction in the
single platelets counted in the presence of ADP, was quantified in whole blood collected
from mice exposed to either DEPs or saline with or without catalpol treatment.

2.5. Prothrombin Time (PT) and Activated Partial Thromboplastin Time (aPTT) Assessment in
Plasma In Vitro

Twenty-four hours after i.t. instillation with DEPs or saline, with or without catalpol
treatment, animals were anesthetized, and blood was collected from the inferior vena cava
and placed in a citrate solution (3.2%) (ratio of blood to anticoagulant: 9:1). The PT was
measured on freshly collected platelet-poor plasma with human relipidated recombinant
thromboplastin (Recombiplastin; Instrumentation Laboratory, Orangeburg, NY, United
States) with a coagulometer (MC 1 VET, Merlin, Lemgo, Germany) [18,24]. Using the latter



Biomedicines 2022, 10, 99 4 of 13

coagulometer, the aPTT was assessed with the automated aPTT reagent, purchased from
bioMerieux (Durham, NC, USA) [18,24].

2.6. Measurement of C-Reactive Protein, Fibrinogen, Plasminogen Activator Inhibitor-1, and P-
and E-Selectins Concentrations in Plasma

Twenty-four hours after i.t. instillation with DEPs or saline with or without catalpol
treatment, the mice were anesthetized using an i.p. injection of sodium pentobarbital
(45 mg/kg), after which blood was collected from the inferior vena cava in 4% EDTA
and spun at 4 ◦C for 15 min at 900 g. The plasma samples obtained were kept at −80 ◦C
as they awaited analysis. The plasma concentrations of CRP (GenWay Biotech, Inc., San
Diego, CA, USA), fibrinogen (Molecular Innovation, Southfield, MI, USA), PAI-1 (Molecular
Innovation, Southfield, MI, USA), and P- and E-selectins (R&D systems, Minneapolis, MN,
USA), were measured with ELISA kits.

2.7. Measurement of the Levels of Lipid Peroxidation (LPO), Superoxide Dismutase (SOD), Nitric
Oxide (NO), Tumor Necrosis Factor α (TNFα), Interleukin 1β (IL1β) and IL-6 in Heart
Tissue Homogenates

Heart homogenates preparation for the measurement of markers of oxidative stress
and inflammation were prepared as described before [18]. NADPH-dependent membrane
lipid peroxidation was measured as a thiobarbituric acid reactive substance, using malon-
dehydehyde as standard (Sigma-Aldrich Fine Chemicals, St Louis, MO, United States). The
activity of SOD was quantified as per the vendor’s protocols (Cayman Chemicals, Ann
Arbor, MI, United States). The measurement of nitric oxide (NO) was performed with a
total NO assay kit (R&D systems, Minneapolis, MN, United States), which was used to
quantify the more stable NO metabolites, NO2

− and NO3
− [25].

The concentrations of TNFα, IL1β and IL-6 were measured using commercially avail-
able kits (Duo Set, R&D systems, Minneapolis, MN, USA).

2.8. Measurement of Cytochrome C, Cleaved Caspase, Phosphorylated NF-κB and Phosphorylated
IκBα in Heart Homogenates

The measurement of cytochrome C (R&D Systems, Minneapolis, MN, USA), cleaved
caspase C (R&D Systems, Minneapolis, MN, USA) and phosphorylated NF-κB (Cell Sig-
nalling Technology, Danvers, MA, USA) in heart homogenates, obtained from mice i.t.
instilled with DEPs or saline with or without catalpol treatment, were obtained using
commercially available ELISA kits. Moreover, protein expressions for phosphorylated
NF-κB and phosphorylated NF-κB inhibitor α (IκBα) were further measured using the
Western blotting technique, as previously reported [20,26,27].

2.9. DNA Damage

The hearts from mice i.t. instilled with DEPs or saline with or without catalpol
treatment were collected immediately after sacrifice and processed for the assessment
of DNA damage by COMET assay as reported earlier [28,29]. The assessment of DNA
migration, which includes the nucleus diameter and migrated DNA, was evaluated by
means of the image analysis Axiovision 3.1 software (Carl Zeiss, Toronto, ON, Canada) as
described before [30,31].

2.10. Statistical Analysis

A statistical analysis was performed using GraphPad Prism (version 7; GraphPad
Software Inc, San Diego, CA, USA). The results are expressed as the mean± SEM. Compar-
isons among the four studied groups were performed with a one-way analysis of variance
followed by Holm-Sidak’s multiple comparisons test. P values of < 0.05 were considered to
be significantly different.
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3. Results
3.1. Thrombosis in Pial Microvessels

Figure 1 shows that, compared with the control group, pulmonary exposure to DEPs
caused a significant shortening in the thrombotic occlusion time in pial arterioles (p < 0.0001)
and venules (p < 0.0001). The latter effects were prevented to a significant degree by
pretreatment with catalpol (p < 0.0001). In pial arterioles, there was a slight but significant
difference between the catalpol+saline and catalpol+DEPs groups (p < 0.01). However,
in pial venules there was no difference in the thrombotic occlusion time between these
two groups.
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Figure 1. Thrombotic occlusion time in pial arterioles (A) and venules (B), 24 h after intratracheal
instillation of saline or diesel exhaust particles (DEPs; 30 µg/mouse) with or without catalpol
(5 mg/kg) pretreatment. Data are mean ± SEM (n = 7–10). Statistical analysis by one-way analysis of
variance followed by Holm-Sidak’s multiple comparisons test.

3.2. Platelet Aggregation in Whole Blood, PT and aPTT In Vitro

As illustrated in Figure 2A, compared with the control group, the addition of ADP
(1 µM) to the whole blood collected from mice, i.t. instilled with DEPs, caused platelet ag-
gregation in vitro (p < 0.0001). This effect was significantly ameliorated by the pretreatment
with catalpol (p < 0.0001). There was a significant difference in the platelet aggregation
between catalpol+saline and catalpol+DEPs groups (p < 0.01).

Biomedicines 2022, 9, x FOR PEER REVIEW 6 of 14 
 

 

Figure 2. In vitro platelet aggregation in whole blood incubated with ADP (1µM) (A). The blood was collected from mice 

24 h after intratracheal instillation of saline or diesel exhaust particles (DEPs; 30 μg/mouse) with or without catalpol (5 

mg/kg) pretreatment. Platelet aggregation was evaluated by quantifying the fall in single platelets, counted due to aggre-

gation induced by DEPs. The degree of platelet aggregation was expressed as the percentage obtained in untreated whole 

blood from untreated mice. The activated partial thromboplastin time (aPTT, B) and prothrombin time (PT, C) assessed 

on plasma samples obtained 24 h after intratracheal instillation of saline or diesel exhaust particles (DEPs; 30 μg/mouse) 

with or without catalpol (5 mg/kg) pretreatment. Data are mean ± SEM (n = 6). Statistical analysis by one-way analysis of 

variance followed by Holm-Sidak’s multiple comparisons test. 

3.3. CRP, Fibrinogen, PAI-1, and P- and E-Selectins Concentrations in Plasma 

Figure 3 illustrates the plasma concentrations of CRP, fibrinogen, and PAI-1 after i.t. 

administration of DEPs or saline with or without catalpol pretreatment. The pulmonary 

exposure to DEPs induced a significant increase in the concentrations of CRP, fibrinogen 

and PAI-1 (p < 0.0001). Pretreatment with catalpol significantly reversed these effects (p < 

0.0001).  

 

Figure 3. C-reactive protein (A), fibrinogen (B) and plasminogen activator inhibitor-1 (PAI-1; (C)) concentrations in 

plasma, 24 h after intratracheal instillation of saline or diesel exhaust particles (DEPs; 30 μg/mouse) with or without catal-

pol (5 mg/kg) pretreatment. Data are mean ± SEM (n = 8). Statistical analysis by one-way analysis of variance followed by 

Holm-Sidak’s multiple comparisons test. 

Figure 4 shows that the i.t. administration of DEPs caused a significant increase in 

the plasma concentration of P- and E-selectin (p < 0.01–0.05). The pretreatment with catal-

pol almost completely prevented these effects (p < 0.001–0.01). 

Figure 2. In vitro platelet aggregation in whole blood incubated with ADP (1µM) (A). The blood was
collected from mice 24 h after intratracheal instillation of saline or diesel exhaust particles (DEPs;
30 µg/mouse) with or without catalpol (5 mg/kg) pretreatment. Platelet aggregation was evaluated
by quantifying the fall in single platelets, counted due to aggregation induced by DEPs. The degree
of platelet aggregation was expressed as the percentage obtained in untreated whole blood from
untreated mice. The activated partial thromboplastin time (aPTT, (B)) and prothrombin time (PT,
(C)) assessed on plasma samples obtained 24 h after intratracheal instillation of saline or diesel
exhaust particles (DEPs; 30 µg/mouse) with or without catalpol (5 mg/kg) pretreatment. Data are
mean ± SEM (n = 6). Statistical analysis by one-way analysis of variance followed by Holm-Sidak’s
multiple comparisons test.
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Likewise, the PT (Figure 2B) and aPTT (Figure 2C) were significantly shortened in
the plasma of mice exposed to DEPs (p < 0.0001). These effects were significantly reduced
following the pretreatment with catalpol. The PT recorded in the catalpol+DEPs group was
slightly, but significantly, shorter than that measured in the catalpol+saline (p < 0.05).

3.3. CRP, Fibrinogen, PAI-1, and P- and E-Selectins Concentrations in Plasma

Figure 3 illustrates the plasma concentrations of CRP, fibrinogen, and PAI-1 after i.t.
administration of DEPs or saline with or without catalpol pretreatment. The pulmonary
exposure to DEPs induced a significant increase in the concentrations of CRP, fibrinogen
and PAI-1 (p < 0.0001). Pretreatment with catalpol significantly reversed these effects
(p < 0.0001).

Biomedicines 2022, 9, x FOR PEER REVIEW 6 of 14 
 

 

Figure 2. In vitro platelet aggregation in whole blood incubated with ADP (1µM) (A). The blood was collected from mice 

24 h after intratracheal instillation of saline or diesel exhaust particles (DEPs; 30 μg/mouse) with or without catalpol (5 

mg/kg) pretreatment. Platelet aggregation was evaluated by quantifying the fall in single platelets, counted due to aggre-

gation induced by DEPs. The degree of platelet aggregation was expressed as the percentage obtained in untreated whole 

blood from untreated mice. The activated partial thromboplastin time (aPTT, B) and prothrombin time (PT, C) assessed 

on plasma samples obtained 24 h after intratracheal instillation of saline or diesel exhaust particles (DEPs; 30 μg/mouse) 

with or without catalpol (5 mg/kg) pretreatment. Data are mean ± SEM (n = 6). Statistical analysis by one-way analysis of 

variance followed by Holm-Sidak’s multiple comparisons test. 

3.3. CRP, Fibrinogen, PAI-1, and P- and E-Selectins Concentrations in Plasma 

Figure 3 illustrates the plasma concentrations of CRP, fibrinogen, and PAI-1 after i.t. 

administration of DEPs or saline with or without catalpol pretreatment. The pulmonary 

exposure to DEPs induced a significant increase in the concentrations of CRP, fibrinogen 

and PAI-1 (p < 0.0001). Pretreatment with catalpol significantly reversed these effects (p < 

0.0001).  

 

Figure 3. C-reactive protein (A), fibrinogen (B) and plasminogen activator inhibitor-1 (PAI-1; (C)) concentrations in 

plasma, 24 h after intratracheal instillation of saline or diesel exhaust particles (DEPs; 30 μg/mouse) with or without catal-

pol (5 mg/kg) pretreatment. Data are mean ± SEM (n = 8). Statistical analysis by one-way analysis of variance followed by 

Holm-Sidak’s multiple comparisons test. 

Figure 4 shows that the i.t. administration of DEPs caused a significant increase in 

the plasma concentration of P- and E-selectin (p < 0.01–0.05). The pretreatment with catal-

pol almost completely prevented these effects (p < 0.001–0.01). 

Figure 3. C-reactive protein (A), fibrinogen (B) and plasminogen activator inhibitor-1 (PAI-1; (C))
concentrations in plasma, 24 h after intratracheal instillation of saline or diesel exhaust particles
(DEPs; 30 µg/mouse) with or without catalpol (5 mg/kg) pretreatment. Data are mean ± SEM
(n = 8). Statistical analysis by one-way analysis of variance followed by Holm-Sidak’s multiple
comparisons test.

Figure 4 shows that the i.t. administration of DEPs caused a significant increase in the
plasma concentration of P- and E-selectin (p < 0.01–0.05). The pretreatment with catalpol
almost completely prevented these effects (p < 0.001–0.01).
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pretreatment. Data are mean ± SEM (n = 7–8). Statistical analysis by one-way analysis of variance
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3.4. TNFα, IL-1β and IL-6 in Heart Homogenates

Figure 5 shows that, compared with the control group, pulmonary exposure to DEPs
caused a significant increase in the concentrations of TNFα, IL-1β and IL-6 in heart ho-
mogenates (p < 0.0001). The latter effects were significantly attenuated by pretreatment
with catalpol (p < 0.001–0.01). Compared with the catalpol+saline group, the concentration
of IL-6 in heart homogenates of the catalpol+DEPs group was slightly but significantly
higher (p < 0.05).
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Figure 5. Tumor necrosis factor-α (A), interleukin (IL)-1β (B) and IL-6 (C) concentrations in heart
homogenates of mice, 24 h after intratracheal instillation of saline or diesel exhaust particles (DEPs;
30 µg/mouse) with or without catalpol (5 mg/kg) pretreatment. Data are mean ± SEM (n = 8). Statis-
tical analysis by one-way analysis of variance followed by Holm-Sidak’s multiple comparisons test.

3.5. LPO, SOD and NO in Heart Homogenates

Compared with the control group, the i.t. instillation of DEPs induced a significant
increase in the levels of LPO (p < 0.01), SOD (p < 0.0001) and NO (p < 0.01) in the heart
homogenates (Figure 6). Interestingly, the levels of LPO observed in the catalpol+saline
group was statistically lower than that observed in saline group (p < 0.0001). The pretreat-
ment with catalpol significantly decreased (p < 0.0001–0.01) an increase in these markers of
oxidative and nitrosative stress.
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Figure 6. Lipid peroxidation (A), superoxide dismutase (SOD) (B) and total nitric oxide (NO)
(C) levels in heart homogenates of mice, 24 h after intratracheal instillation of saline or diesel
exhaust particles (DEPs; 30 µg/mouse) with or without catalpol (5 mg/kg) pretreatment. Data are
mean ± SEM (n = 7–8). Statistical analysis by one-way analysis of variance followed by Holm-Sidak’s
multiple comparisons test.
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3.6. DNA Damage in Heart

Compared with the saline group, DEPs exposure induced DNA damage, as evaluated
by the comet assay (p < 0.0001) (Figure 7). This effect was prevented by the pretreatment
with catalpol (p < 0.0001).
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Figure 7. DNA migration (mm) in the heart tissue quantified by Comet assay, 24 h after intratracheal
instillation of saline or diesel exhaust particles (DEPs; 30 µg/mouse) with or without catalpol
(5 mg/kg) pretreatment. Data are mean ± SEM (n = 5). Statistical analysis by one-way analysis of
variance followed by Holm-Sidak’s multiple comparisons test.

3.7. Cytochrome C and Cleaved Caspase-3 in Heart Homogenates

Figure 8 illustrates that exposure to DEPs induced a significant increase in the levels
of cytochrome C (p < 0.01) and cleaved caspase-3 (p < 0.05), and that pretreatment with
catalpol prevented these actions (p < 0.001–0.05).

Biomedicines 2022, 9, x FOR PEER REVIEW 9 of 14 
 

 

Figure 8. Cytochrome C (A) and Cleaved caspase-3 (B) levels in heart homogenates, 24 h after in-

tratracheal instillation of saline or diesel exhaust particles (DEPs; 30 μg/mouse) with or without 

catalpol (5 mg/kg) pretreatment. Data are mean ± SEM (n = 6–8). Statistical analysis by one-way 

analysis of variance followed by Holm-Sidak’s multiple comparisons test. 

3.8. Phopho-NF-κB and Phopho-IκBα in Heart Homogenate 

DEPs exposure induced a significant elevation in the heart homogenate expression 

of the total level of phospho-NF-κB, assessed by either ELISA or Wester blotting, and of 

the phospho-IκBα, assessed by Wester blotting, compared with their respective control 

groups (saline) (Figure 9). These effects were reversed by pretreatment with catalpol (p < 

0.01). 

 

Figure 9. Total levels of phosphorylated nuclear factor-κB (phospho-NF-κB) assessed by either ELISA (A) or Western 

blotting (B), and total levels of phospho-NF-κB inhibitor α (IκBα) assessed by Western blotting (C) in heart homogenates, 

24 h after intratracheal instillation of saline or diesel exhaust particles (DEPs; 30 μg/mouse) with or without catalpol (5 

mg/kg) pretreatment. Data are mean ± SEM (n = 8). Statistical analysis by one-way analysis of variance, followed by Holm-

Sidak’s multiple comparisons test. 

4. Discussion 

In the present study, we demonstrated that catalpol has a salutary impact on DEPs-

induced procoagulant effects, heart oxidative and nitrosative stress, inflammation, DNA 

damage and apoptosis, which occurs, at least partly, through the inhibition of NFκB acti-

vation. 

The inhalation of particulate air pollution does not only affect the lungs, but it can 

affect other distant organs including the heart by various mechanisms. These include (1) 

Figure 8. Cytochrome C (A) and Cleaved caspase-3 (B) levels in heart homogenates, 24 h after
intratracheal instillation of saline or diesel exhaust particles (DEPs; 30 µg/mouse) with or without
catalpol (5 mg/kg) pretreatment. Data are mean ± SEM (n = 6–8). Statistical analysis by one-way
analysis of variance followed by Holm-Sidak’s multiple comparisons test.

3.8. Phopho-NF-κB and Phopho-IκBα in Heart Homogenate

DEPs exposure induced a significant elevation in the heart homogenate expression of
the total level of phospho-NF-κB, assessed by either ELISA or Wester blotting, and of the
phospho-IκBα, assessed by Wester blotting, compared with their respective control groups
(saline) (Figure 9). These effects were reversed by pretreatment with catalpol (p < 0.01).
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Figure 9. Total levels of phosphorylated nuclear factor-κB (phospho-NF-κB) assessed by either
ELISA (A) or Western blotting (B), and total levels of phospho-NF-κB inhibitor α (IκBα) assessed
by Western blotting (C) in heart homogenates, 24 h after intratracheal instillation of saline or diesel
exhaust particles (DEPs; 30 µg/mouse) with or without catalpol (5 mg/kg) pretreatment. Data are
mean ± SEM (n = 8). Statistical analysis by one-way analysis of variance, followed by Holm-Sidak’s
multiple comparisons test.

4. Discussion

In the present study, we demonstrated that catalpol has a salutary impact on DEPs-
induced procoagulant effects, heart oxidative and nitrosative stress, inflammation, DNA
damage and apoptosis, which occurs, at least partly, through the inhibition of NFκB activation.

The inhalation of particulate air pollution does not only affect the lungs, but it can
affect other distant organs including the heart by various mechanisms. These include (1) the
passage of biological mediators from the lung into systemic circulation; (2) the translocation
of nanoparticles across the alveolar capillary barrier to the blood; and (3) the activation of
alveoli sensory receptors, which activates neural afferents that can modify the activity of
the autonomic nervous system [3,8].

In urban areas, DEPs act as one of the main contributors to particulate air pollution.
Accordingly, DEPs have been utilized as a relevant type of pollutant particle, to study the
cardiovascular complications associated with particulate air pollution exposure [3]. The
dose of DEPs that we utilized in the current work (1 mg/kg or 30 µg/mouse) is similar
to those employed previously by us and other authors to study the effects of pulmonary
exposure to particulate air pollution [18,32,33]. Pulmonary exposure to DEPs was achieved
by i.t. instillation, as it offers more accurate dosing, since mice are nose breathers that filter
most of their inhaled particles [15,16,34].

Clinical and experimental studies have demonstrated that the inhalation of particulate
air pollution increases thrombogenicity both in vivo and in vitro [18,35–37]. Our findings
showed that exposure to DEPs caused a significant reduction in the thrombotic occlusion
time of pial arterioles and venules in vivo, platelet aggregation in vitro and shortened
the PT and aPTT, confirming the hypercoagulability action of DEPs. All these effects
were significantly reduced following catalpol pretreatment. Catalpol has been reported
to attenuate atherosclerotic lesions in a rabbit atherosclerotic model [22]. A recent study
has reported that iridoids, such as catalpol, aucubin, and 7-hydroxytomentoside, extracted
from the leaves of Paulownia Clone, in Vitro 112, exhibit in vitro antiplatelet activity [38].

Elevated serum levels of acute-phase proteins such as CRP and fibrinogen, which
indicate chronic subclinical inflammation, have been associated with cardiovascular dis-
ease [39]. Moreover, an increase in PAI-1 concentrations of plasma has been associated
with inflammation and atherosclerosis and has also been recognized as a risk factor for
ischemic cardiovascular events [40]. Our data shows that exposure to DEPs caused a
significant increase in the plasma concentrations of CRP, fibrinogen and PAI-1, and that
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catalpol pretreatment prevented these effects, confirming its anti-inflammatory properties.
It has been reported that the repeated exposure of mice to DEPs induced an elevation in
the plasma concentrations of CRP, fibrinogen and PAI-1, and that treatment with curcumin,
the yellow pigment isolated from turmeric, mitigated these effects [41]. The selectins form
a family of Ca2+-dependent carbohydrate binding proteins, which mediate the first step
of white blood cell recruitment in the course of inflammation [42]. Human studies have
reported that exposure to particulate air pollution elevates concentrations of soluble P-and
E-selectins [43,44]. Here, we showed that plasma concentrations of both P-and E-selectins
were significantly augmented by DEPs and that catalpol significantly prevented these
effects. The latter finding suggest that catalpol inhibited the increase of endothelial cell and
platelet activations, which are caused by DEPs.

Besides causing systemic inflammation and thrombotic events, it is well established
that inhaled particulate air pollutants can adversely affect various organs, particularly the
heart. For this reason, we wanted to assess the cardiac impact of DEPs and the potential
protective effects of catalpol. Oxidative stress develops as a result of the disproportionate
production of reactive oxygen species and the presence of antioxidants or radical scav-
engers [45]. The excess level of reactive oxygen species assists in oxidizing biomolecules,
altering proteins and genes that prompt signalling cascades responsible for the initiation
and progression of inflammation [45]. It is well established that catalpol possesses anti-
inflammatory and antioxidant properties [10]. However, the possible protective effect of
catalpol on particulate air-pollution induced cardiac inflammation and oxidative stress has
not been reported on so far. Our findings show that catalpol pretreatment prevented the
DEPs-induced increase in cardiac proinflammatory cytokines (TNFα, IL1β and IL-6) and
markers of oxidative (LPO and SOD) and nitrosative (NO) stress. It has been shown that
catalpol exerts cardioprotective action against ischemia/reperfusion injury by decreasing
peroxynitrite formation [11].

It is well established that exposure to particulate air pollution can cause DNA oxidation
damage which can be triggered by either oxidative stress and/or inflammation [46]. In the
current study, using comet assay, we show that i.t. instillation of DEPs induced cardiac
DNA damage, and that the pretreatment with catalpol significantly prevented this action.
Oxidative DNA damage induced by nanoparticles is capable of prompting mitochondrial
injury and apoptosis [47,48]. It is well established that apoptosis can be induced via
two pathways [49]. The first is an extrinsic receptor mediated apoptosis in which TNFα
triggers apoptosis and the recruitment of caspase family proteins, comprising caspase-8
and caspase-3 [49]. The second intrinsic mitochondrial pathway is induced by the release
of cytochrome C from mitochondria, leading to the activation of caspase, caspase-3 [49].
In the present study, we found that pulmonary exposure to DEPs induced a significant
increase in the concentration of TNFα in the heart tissue and apoptosis characterized by a
significant increase in cytochrome C and cleaved caspase-3. Remarkably, we showed that
catalpol pretreatment completely prevented the DEPs-induced elevation in cytochrome C
and cleaved caspase-3. Our data corroborate previous in vitro reports that showed that
catalpol attenuates cardiomyocyte apoptosis in diabetic cardiomyopathy [10,50,51]. It has
been demonstrated that gum Arabic, a prebiotic with anti-oxidant and anti-inflammatory
properties, attenuated caspase-3 activation in the heart tissue, triggered by the inhalation
of tobacco smoke [52].

In order to further investigate the mechanisms behind the protective effects of catalpol,
we evaluated the NF-κB expression in the heart. NF-κB is well-recognized to be involved
in the pathophysiology of various inflammatory diseases, particularly those affecting the
cardiovascular system such as myocardial infarction and atherosclerosis, as it plays a key
role in activating the transcription of inflammatory cytokines, causing inflammation and
oxidative stress [53]. The degradation of IκBα induces the nuclear translocation of NF-κB,
in which the synthesis of pro-inflammatory cytokines occurs [27]. Our data showed that
catalpol treatment prevented the synthesis of pro-inflammatory cytokines (TNFα, IL-1β
and IL-6) and NF-κB in the heart. The latter effect can be attributed to the anti-inflammatory
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activity of catalpol in the heart tissue. Our results are in agreement with a recent in vitro
work that reported that catalpol treatment alleviates high glucose-induced apoptosis in
mouse cardiomyocytes by inhibiting oxidative stress and suppressing NF-κB activation [50].

The limitations of the present work include the fact that we have assessed the protec-
tive effect of only one selected dose of catalpol [11,21–23] on the acute cardiovascular effects
of pulmonary exposure to DEPs. Additional studies are required to assess the impact of
various doses of catalpol following subchronic and chronic lung exposure to DEPs, and to
include inflammatory cell invasion quantification in the heart and lung by histology. More-
over, in addition to the biochemical techniques used in this study, it would be interesting to
confirm our findings using immunohistological studies and to verify the protective effect
of catalpol in animal models with pre-existing cardiovascular or respiratory diseases (e.g.,
hypertension, chronic obstructive pulmonary disease) exposed to DEPs.

5. Conclusions

Taken as a whole, our findings demonstrate that catalpol pretreatment prevented car-
diovascular toxicity, induced by acute exposure to DEPs, including procoagulant effects and
heart oxidative and nitrosative stress, inflammation, DNA damage and apoptosis through
mechanisms involving the inhibition of NFκB activation. Pending further pharmacological
and toxicological studies, catalpol may potentially be useful as a cardioprotective agent
against the adverse effects of inhaled air pollution.
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