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Abstract
The aim of this review is to give an update on current progress in the synthesis, properties and applications of thiophene-based

conjugated systems bearing tetrathiafulvalene (TTF) units. We focus mostly on the synthesis of poly- and oligothiophenes with

TTF moieties fused to the thiophene units of the conjugated backbone either directly or via a dithiin ring. The electrochemical

behaviour of these materials and structure–property relationships are discussed. The study is directed towards the development of a

new type of organic semiconductors based on these hybrid materials for application in organic field effect transistors and solar cells.
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Introduction
Sulfur-rich π-functional systems are important building blocks

in materials chemistry. Among them, tetrathiafulvalene (TTF)

electron donor and polythiophene (PT) conjugated systems are

highly popular classes of organic compounds which have shown

fascinating conducting and electronic properties. The advan-

tages of PT-based materials are their synthetic versatility, excel-

lent film-forming properties and potential to increase the dimen-

sionality of charge carrier transport [1] by involving π–π

stacking interactions. Varying the substituents of the conju-

gated backbone allows control over the polymer’s effective

conjugation length and electronic properties, whilst also influ-

encing the extent of inter-chain interactions. Two of the most

studied polythiophene materials for organic electronics are

regioregular poly(3-hexylthiophene) (P3HT) [2,3] and poly(3,4-

ethylenedioxythiophene) (PEDOT) [4], which is highly conduc-

tive in its doped state. P3HT has become a benchmark polymer

semiconductor for both bulk hetero-junction solar cells

(BHJSCs) [5] and organic field effect transistors (OFETs) [6,7],

whereas the PEDOT:poly(styrene sulfonate) salt (PEDOT:PSS)

was originally investigated for antistatic applications but is now

commercially available for its use as a hole-injecting/collecting

material for organic light emitting diodes (OLEDs) and

BHJSCs. So far, various electroactive units have been anchored

aside the polythiophene backbone, including ferrocene [8], por-
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Scheme 1: The synthesis of PT based conjugated systems with the TTF unit incorporated within the polymer backbone.

phyrin [9], 2-carboxyanthraquinone [10], 1,3-dithiole-2-

ylidenefluorene [11,12], dithiinoquinoxaline [13,14] and

fullerene C60 [15,16]. The incorporation of acceptor units into a

conjugated network is a standard way to narrow the HOMO/

LUMO band gap and examples of such units include dioxo-

pyrrolopyrrole (DPP) [17-19], benzodifuranone [20] and boron-

dipyrromethene (BODIPY) [21,22].

As a different class of electroactive materials, TTF derivatives

are well-known as reversible redox systems with low potentials

of oxidation to cation radical and dication species. The high

level of stability observed for the oxidised TTF π-electron

system arises from the aromatic nature of the oxidised 1,3-

dithiolium rings and this has triggered tremendous efforts

directed toward the synthesis of compounds with TTF donor

units and subsequent investigation of their properties. Since the

first discovery of the semiconducting properties of TTF and its

cation radical [23], and the metallic behaviour of the TTF-

TCNQ charge transfer complex [24], great attention was

focused on the preparation of TTF mixed valance state ma-

terials, which showed superconducting properties [25]. Fusing

the TTF unit with dithiin rings in bis(ethylenedithio)tetrathiaful-

valene (BEDT-TTF) led to the extension of 1D π–π stacking

intermolecular interactions in a donor sheet of a mixed valance

state system to 2D with a significant contribution from S···S

non-covalent interactions [26]. This gave a record transition

temperature among TTF mixed valence ambient pressure super-

conductors in the salt κ-(BEDT-TTF)2Cu[N(CN)2]Br [27]. In

an attempt to create macromolecular compounds with multi-

electron redox activity and to further increase the dimension-

ality of their intermolecular interactions in the solid phase, the

TTF units were incorporated into dendritic structures [28-32].

The extraordinary propensity of TTF and its doped species to

aggregate was the reason for using this unit in the design of

gelators [33,34].

Combining the exceptional donor strength of TTF and excel-

lent film-forming properties of a conjugated polymer (CP)

opens up the possibility to create promising materials with

interesting redox behaviour. So far the TTF unit has been used

for redox modification of various CP systems [35] including

incorporation within the conjugated backbone [36,37], as a

pendant unit [38-40] and direct fusion to the π-conjugated

system of the polymer [41,42]. Incorporation of a TTF unit into

a PT architecture allows the creation of interesting hybrid redox

systems with a wide range of electro-activities. The goal of this

review is to provide an update on the synthesis of TTF-PT

hybrid conjugated systems, their properties and their applica-

tion to organic electronics. Both electrodeposition and chem-

ical polymerisation will be considered as methods of producing

the PT conjugated backbone. In some cases poly(ethynylene/

vinylene) homologues will be considered for comparison. Addi-

tionally, monodispersed tetrathiafulvalene-oligothiophene

(TTF-OT) conjugated systems will be discussed as their

well-defined structures provide a stronger insight into

structure–property relationships.

Review
PT conjugated systems with TTF units within
the polymer backbone or as pendant units
The most straightforward way to modify PT conjugated systems

is to incorporate the TTF unit into the polymer backbone or

attach it as a pendant unit, as only minor modifications to the

synthesis of the TTF/thiophene monomer are required. Both

chemical [43] and electrochemical polymerisation [44] have

been used to incorporate a TTF moiety within the polythio-

phene backbone. Yamamoto coupling of diiodo monomers 1a

and 1b provided polymer 1c, albeit with a modest molecular

weight (Mw = 5800 Da) compared to that of the polymer 1d,

which was obtained by Sonogashira coupling of 1b with 1e and

exhibited a partial solubility in THF with Mw = 610000 Da

(THF soluble fraction) [43] (Scheme 1).

Polymer properties in the solid state are hugely important for

organic electronics applications, with the electronic properties

of materials being greatly affected by film morphology. The
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Scheme 2: PT with pendant TTF units, prepared by electropolymerisation.

electropolymerisation technique creates a simple test for the

viability of a certain structural motif in the PT chain and is

considered both as a potential route for the synthesis of a new

functional CP and also as a method for the modification of an

electrode surface [45]. The electrodeposition of a polymer has a

number of advantages over any chemical protocol: 1) it is cheap

and can be performed on a very small scale; 2) it requires no

reagent or catalyst and is very clean; 3) due to the interfacial

nature of a polymer growth the spectro-electrochemical investi-

gation of the polymer film is straightforward; 4) it provides

control over the morphology through the choice of solvent,

electrolyte and/or the method of electrodeposition. TTF has

been incorporated into a CP backbone by electropolymerisation

of its bis(EDOT) derivative to afford polymer 2 [44]

(Scheme 1). All the polymers (1c,d and 2) exhibited electro-

activity of the TTF units. Due to a break in conjugation of the

polymers in their neutral state there is no electrochemical signa-

ture of the PT backbone. As such, the aforementioned systems

cannot be considered as true TTF-PT systems.

The first example of the electrochemical preparation of PT with

a pendant TTF-carboxylic unit (3) was reported by the Bryce

group [46] (Scheme 2). The mixture of CH2Cl2 with PhNO2, to

supress the electrochemical activity of TTF during electropoly-

merisation, was used as a solvent. Another example of a TTF-

PT hybrid polymer (4), now with an ester linkage between the

tetrathio-TTF derivative and the PEDOT polymer backbone,

has also been reported [47]. The TTF-functionalised EDOT

monomer unit allowed the authors to manage the electropoly-

merisation in an acetonitrile:CH2Cl2 mixture using both poten-

tiodynamic and potentiostatic electrodeposition. Nevertheless,

the labile ester bond and its potential cleavage remain an issue

due to formation of acid upon electropolymerisation.

Roncali and co-workers used more reliable ether bonds to

anchor a TTF moiety to a thiophene monomer via a long ali-

phatic spacer group, avoiding the effect of steric interactions

between pendant TTF units and increasing the conjugation

length of the PT backbone (Scheme 2). They successfully elec-

tropolymerised TTF-modified thiophene monomer 5a to

polymer 6a from a nitrobenzene monomer solution [48]. Cyclic

voltammetry of the polymer thin film revealed the splitting of

the first oxidation wave during the cathodic run, which the

authors attributed to a stepwise reduction from the aggregated

radical cation to an intermediate mixed valence state, then

further reduction to the neutral species. To decrease the differ-

ence in the oxidation potential of TTF and that of the thiophene

backbone of the monomer, the TTF-modified bithiophene com-

pounds 5b–d were used as monomers for electropolymerisation

to 6b–d [49]. The appearance of an additional, well-defined

oxidation wave in the CV, as the first oxidation wave was split

in both anodic and cathodic runs, was evident for all polymers,

but clearest for 6c. This was assigned to the formation of a

mixed valence state and aggregated cation radical [50]. The

relative increase in the peak current during oxidation to the

dication, compared to that of cation radical formation, was

explained by an additional contribution to charge transport from

the doped PT backbone [49]. The oxidation of the latter did not

contribute significantly to the CV of the polymer films due to

the much stronger electrochemical response of the TTF.

However, from a separate experiment in which the authors

electropolymerised monomer 5c (2 × 10−2 M) in the presence of

a double excess of a non-modified bithiophene monomer

7 [49], the contribution from the PT backbone oxidation in

the CV of the final copolymer was clear. However, it was unre-

solved from the wave of TTF2+ formation during the anodic run

(Figure 1).
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Scheme 3: PT with pendant TTF units prepared by electropolymerisation and post-modification of polymerised PT through iodoalkyl functionality.

Figure 1: Cyclic voltammograms of copolymers electrodeposited from
nitrobenzene solutions of TTF modified monomer 6c and nonsubsti-
tuted bithiophenes 7. Left: 2 × 10−2 M of 6c; middle: 2 × 10−2 M of 6c +
1 × 10−2 M of 7; right: 2 × 10−2 M of 6c + 4 × 10−2 M of 7; ref. SCE,
0.1 M (TBA)PF6 in acetonitrile as an electrolyte. Reproduced with
permission from [49]. Copyright 1998 Wiley-VCH.

An alternative way of preparing PT hybrid materials with TTF

pendant groups was to modify the pre-polymerised PT

containing an appropriate functionality with a TTF derivative.

The Roncali group reported electropolymerisation of EDOT

monomers 8a,b bearing a ω-iodo-functionalised aliphatic chain

to polymers 9a,b, which was followed by the heterogeneous

reaction of the polymeric film with TTF thiolates 10a [51] and

10c [52] to produce the polymers 11a–d (Scheme 3). The poly-

mers 11a,c were also prepared by electropolymerisation of the

corresponding TTF functionalised monomers 12a,c [52]. The

electrochemical response from the polymeric film of 11c,

prepared by functionalising prepolymerised PEDOT 9a with

thiolatoTTF 10c, and that prepared by direct electropolymerisa-

tion of 12c turned out to be very similar, confirming that the

heterogeneous derivatisation of 9a with 10c was rapid and

quantitative with no significant effect on the integrity of the

polymer. The crown ether TTF modified polymers 11c,d were

tested for electrochemical recognition of Ba2+ ions. At [Ba2+]

saturation concentration of 4 mM the shifts of the first

CV peak for 11c and 11d films were +60 and +30 mV with a

TTF electrode coverage of 1.4 × 10−9 and 9 × 10−9 mol/cm2,

respectively.

A recent example of the chemical preparation of PT with

pendant TTF-units has been reported [53] (Scheme 4) where

direct arylation polymerisation of quaterthiophene 13a and

3-(acetoxymethyl)thiophene (13b), followed by acidic hydrol-

ysis of the ester groups in polymer 13c, provided the polymer

13d with hydroxy groups for further modification by

ω-bromooctyloxymethylTTF 13f . The CV of the final PT-TTF

compound 13e showed mainly the characteristics of the PT

backbone; due to the low content of the TTF unit in the polymer

13e, the two oxidation waves related to formation of TTF cation

radical and dication were not apparent in the CV of the film, but

were discernible in solution state. Pure 13e, and 13e with a

small amount of the parent poly(3,3'''-didodecyl-2,2':5',2'':5'',2'''-

quaterthiophene) (PQT12) (5 or 10 wt %), did not exhibit any

OFET activity due to hole trapping by the TTF unit. This hole

trapping was explained to be the reason for a negative Seebeck

coefficient of the non-doped polymer 13e and was used for

sensing trinitrotoluene (TNT) using the drain-source current-

increase response to TTF-TNT complexation in an OFET fabri-

cated from 13e with 5% of PQT12.

Conjugated OT systems with fused TTF units
Synthesis of the monomer units
Incorporation of a TTF unit into a PT architecture via fusion to

the polymer backbone allows the realisation of highly diverse

electroactive conjugated systems with different contributions to

the properties from each of the components. In contrast to poly-

mers where TTF is attached as a pendant unit or incorporated
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Scheme 4: Synthesis of PT with pendant TTF by post-modification of the polymer prepared by direct arylation.

within a PT backbone, the construction of the TTF unit in this

case is normally performed through coupling of the corres-

ponding dithiol units, with one or both of them already fused to

the monomer thiophene backbone precursor. The retrosynthetic

scheme for these monomers with direct fusion of the TTF unit

to a thiophene 14a–c is shown in Scheme 5, with the key

building block thieno[3,4-d][1,3]dithiole-2-one 15a–c.

Scheme 5: Retrosynthetic scheme for the synthesis of the monomer
building block which is required for the preparation of PT with TTF
directly fused to the polymer backbone. Bis(bromomethyl) derivative
21 and diketone 22 are starting compounds for synthetic pathways A
and B, respectively.

Where there is no substitution at the α-position of the thiophene

monomer, e.g., 14a, triethylphosphite mediated heterocoupling

of 15a with 4,5-bis(hexylthio)-1,3-dithiole-2-thione (16)

proceeds in low yield (20–30%) [54]. However, the same proce-

dure for the synthesis of dibromo derivative 14b turned out to

be more effective, with the monomer 14b being isolated in 70%

yield [55]. The starting compound required for this, 4,6-dibro-

mothieno[3,4-d][1,3]dithiole-2-one (15b), can be efficiently

obtained by brominating compound 15a, which in turn is

synthesised by mercury(II) acetate assisted transchalcogenation

reaction from the corresponding thione 17. Unsubstituted

thieno[3,4-d][1,3]dithiole-2-thione (17) can be constructed by

building up either of its two rings, involving cyclisation of a

suitable precursor already containing one existing heterocycle.

The construction of the 1,3-dithiole-2-thione unit of 17 can be

completed using 3,4-dibromothiophene (18) as a starting ma-

terial [56], or by oxidation of dihydroderivative 19 obtained

from 4,6-dihydrothieno[3,4-d][1,2,3]thiadiazole (20) [57,58].

However, the most reliable method for the synthesis of 4,6-

dihydrothieno[3,4-d][1,3]dithiole-2-thione (19) is cyclisation of

4,5-bis(bromomethyl)-1,3-dithiole-2-thione (21) [59] (synthetic

pathway A).

For 4,6-diaryl substituted thienodithiole-2-ones, e.g., 4,6-

di(thiophen-2-yl)thieno[3,4-d][1,3]dithiol-2-one (15c),

construction of the thiophene directly onto the dithiole ring

seems to be the only strategy, which can be readily achieved by

reductive cyclisation of diketone 22 [60] (synthetic pathway B).

Compound 22 is normally synthesised by transchalcogenation

from the corresponding 1,3-dithiole-2-thione derivative. One

method for the synthesis of 1,3-dithiole-2-thione with electron-

acceptor substituents [61] is the reaction of readily accessible

ethylene trithiocarbonate (23) [62] with electron-deficient

acetylene compounds (Scheme 6). By reacting 23 with 24a this

method provides diester 25a in good yield [63]. Compound 25a

can be reduced to diol 25d [64] and further converted by either

the Appel method [59] or by reaction with PBr3 [65] into

dibromomethyl compound 21, which is required for synthetic

pathway A.
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Scheme 6: Synthesis of bisfunctionalised derivatives of vinylene
trithiocarbonate 21 and 25c required for synthetic pathways A and B,
respectively.

Even though the reaction of 23 with acetylene compound 24b

(containing only one electron-withdrawing group) is efficient,

affording 25b with a 60% yield [66], attempts to invoke cyclo-

addition of 23 and 24c in a similar manner led to a poor yield of

25c (8%) [60]. An efficient method for the synthesis of 25c – a

compound required for synthetic pathway B – was found to be

repeated sequential lithiation of vinylene trithiocarbonate (26)

[67] followed by subsequent trapping of the lithium organic

species with thiophenecarboxaldehyde 27 [60]. The diol 25e,

formed as a product of this reaction, is unstable and undergoes

various rearrangments [68,69] in acidic conditions. Hence, it is

preferably oxidised directly to the more stable diketone 25c

without delay.

The retrosynthetic scheme for the monomer units 28a,b with

thieno-dithiino-dithiole type fusion is shown in Scheme 7.

Similar to the aforementioned synthetic pathway B, the strategy

for the synthesis of 29 involves construction of the thiophene

ring by cyclisation of diketone 30 (synthetic pathway C).

The diketone 31 is constructed through the cycloaddition reac-

tion of diacylethene 33 with oligomer 32, readily available by

oxidation of bis(tetraethylammonium) bis(2-thioxo-1,3-dithiole-

4,5-dithiolato)zincate with iodine [70]. This versatile strategy

can be applied where R1 and R2 are either aromatic or aliphatic

[71]. The application of the strategy has been utilised for both

symmetric 28a [60] and asymmetric 28b systems [72].

Polymers with fused TTF units
The electronic characterisation for monomer units 14a–c and

28a is shown in Table 1.

Scheme 7: Retrosynthetic scheme for the synthesis of the building
block which is required for the preparation of PT with TTF fused to a
polymer backbone via a dithiin ring (synthetic pathway C).

Table 1: Electrochemical and UV–vis absorption data for the mono-
mer compounds 14a–c, and 28a in CH2Cl2 solution. The oxidation
potentials are shown vs Ag/AgCl reference.

Compound E1/2
1ox, V E1/2

2ox, V Ep
3ox, V λmax, nm

14a 0.74 1.10 2.18 324
14b 0.95 1.31 – 337
14c 0.64 1.02 1.55 373
28a 0.64 0.99 1.52 344

Electropolymerisation of monomer compounds 14a, 14c and

28a [73] was attempted. Due to the high oxidation potential (see

Table 1) of the thiophene unit in the fused system 14a (2.18 V

vs Ag/AgCl), electropolymerisation for this compound was

unsuccessful (Scheme 8). Surprisingly, the other two mono-

mers, both with a similar, low Ep
3ox – attributed to oxidation of

the terthiophene unit (14c (1.55 V vs Ag/AgCl) and 28a (1.52 V

vs Ag/AgCl)) – showed different behaviour upon repetitive

voltammetric cycling over the range of 0.0–1.6 V vs Ag/AgCl.

Although upon electrodeposition of 14c onto the surface of a

working electrode a red film appeared, it was non-polymeric in

nature. On the contrary, the electropolymerisation of 28a under

the same conditions exhibited a reproducible polymer growth of

34.

The CV of polymer 34 exhibited the characteristic electrochem-

ical signature of the TTF-unit – two reversible oxidation waves
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Table 2: Characterisation of the polymers 34, 35, 37, and 39.

Polymer Mn, Da PDI Condition E1/2
1ox, V E1/2

2ox, V Epc
1red, V λmax, nm (Eg

opt, eV)
CH2Cl2 Film

34 – – Film 0.77 1.09 −1.21 – 494 (1.69)
35 3437 1.32 CH2Cl2 0.81 1.10 −1.15 466(1.86) 487 (1.75)
37 4886 2.40 CH2Cl2 0.69 1.07 −1.65 456 496 (1.82)
39 3158 1.19 CH2Cl2 0.89 1.31 – 578 –

Film 0.91a 1.35a −0.96 – 598 (1.45)
aDue to the irreversible nature of the oxidation waves, the anodic peak values Epa

ox are shown.

Scheme 8: The monomers 14a, 14c and electropolymerisation of 28a.

to a cation radical and a dication, with a linear dependence of

peak currents upon scan rates. Similar to PT systems with a

pendant TTF unit [49], the peak current of the second wave was

noticeably higher than that of the first (Figure 2). There are

three possible reasons for such behaviour that can be consid-

ered: 1) the interaction between the TTF units would cause the

partial splitting of the first oxidation wave with poorly resolved

components – attributed to oxidation of the neutral TTF into a

mixed valence state and further to an aggregated cation radical;

2) contrary to formation of the cation radical, the oxidation to

the dication is not limited by charge transport through the film

as the conductivity of the latter is ensured by both charged TTF

species and the polaron charge carrier route; 3) the oxidation

potential of the polymer backbone is likely to be in the same

region as the potential for TTF2+ formation, although the contri-

bution to the current from the normally irreversible oxidation of

the PT backbone would be small due to the high TTF content in

the polymer.

Figure 2: Cyclic voltammograms of a thin film of 34 at various scan
rates (25 mV, 50 × n mV/s, n = 1–10). Adapted with permission from
[73].Copyright 2000 The Royal Society of Chemistry.

The as grown polymer exhibited two broad absorption peaks at

459 and 833 nm, indicating that the polymer film exists in a

doped state. The aforementioned peaks can be assigned to the

cation radical of the TTF unit and are very similar to the absorp-

tion features of tetraalkylthiotetrathiafulvalene cation radical

[31,32]. The doped film exhibited excellent stability and its

absorption characteristics did not change despite treatment with

hydrazine. However, de-doping was achieved with repetitive

scanning of the polymer film over the range of −0.3–0 V vs

Ag/AgCl for 2 hours [73]. After de-doping, the polymer 34

exhibited an absorption band with a maximum at ca. 490 nm

and extending to ca. 736 nm, with an optical band gap of

1.69 eV (Table 2). For a simple π-conjugated polymer the

difference between the oxidation and reduction onsets consti-

tute the electrochemical band gap [74,75]. For polymer 34, if

the first oxidation wave was taken into consideration, the elec-

trochemical band gap was found to be 1.39 eV. However, if the

second oxidation wave was considered the band gap was calcu-

lated to be 1.81 eV, a value slightly higher than the aforemen-
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Scheme 9: Chemical polymerisation of 14b into polymers 35, 37 and 39.

tioned optical band gap of the polymer (1.69 eV). This is to be

expected considering that upon oxidation of the PT backbone

the electron must be removed from a polymer already

containing oxidised TTF moieties. The agreement between the

optical and electrochemical band gaps in this case infers that the

oxidation of the PT backbone in the polymer 34 occurs at the

potential close to the second oxidation wave of the TTF unit. A

more detailed spectroelectrochemical study [76] of the polymer

34 film deposited on ITO glass revealed an electrochemical

signature of both oxidised TTF species (TTF+•, TTF2+) [31,32]

and polarons (vide infra).

To investigate the properties of PT-TTF systems with the TTF

moiety directly fused to a thiophene backbone, chemical poly-

merisation of suitably functionalised monomers was carried out

(Scheme 9). For all chemically synthesised polymers a Soxhlet

extraction (with methanol, acetone and CH2Cl2) has been used

as a method of purification and to narrow their polydispersity.

Using Yamamoto coupling compound 14b was polymerised.

Use of DMF alone as solvent led to a polymer that was

sparingly soluble in CH2Cl2 [77]. However, a mixture of

DMF:toluene (1:1) as a medium for Yamamoto polymerisation

afforded polymer 35 as a dark purple solid in 95% yield [55].

Polymer 35 is the analogue of the polymer which could have

been obtained had the monomer 14a been suitable for elec-

tropolymerisation, while Stille coupling of dibromo monomer

14b with 5,5'-bis(trimethylstannyl)-2,2'-bithiophene (36) [78]

was used to circumvent problems with the electropolymerisa-

tion of terthiophene 14c, and to chemically synthesise the analo-

gous polymer 37 [76]. By reacting monomer 14b and 1,2-

bis(tributylstannyl)ethylene (38) [79], polymer 39 was synthe-

sised using the Stille coupling protocol [76].

The number average molecular weight (Mn) revealed by GPC

analysis (Table 2) corresponds to about 7 thienoTTF monomer

units per polymer chain for 35 and 37, and about 6 units for 39.

MALDI–TOF MS characterisation was only successful for

polymer 39 and showed a series of peaks with a mass differ-

ence of 516 Da, corresponding to the mass of the 2-(4,5-

bis(hexylthio)-1,3-dithiol-2-ylidene)thieno[3,4-d][1,3]dithiol-

4,6-diyl-alt-vinylene repeating unit. The mass spectra confirmed

that the polymer was end-capped with a thienoTTF unit, with

the terminal bromo substituents still intact. The highest mass

peak of 5290 Da registered by MALDI–MS corresponds to

10 thienoTTF units, which is significantly higher than the afore-

mentioned Mn measured by GPC.

Table 2 displays the electrochemical and UV–vis absorption

characteristics of the polymers. The peaks corresponding to the

absorption maximum occurred in the range 450–500 nm for

polymers 34, 35 and 37, with the optical band gap being in the

range of 1.7–1.9 eV. When comparing the spectra in CH2Cl2

solutions to those of the solid film, the red shift in absorption is

due to the emergence of π–π interactions in the solid state.

Compared to the aforementioned polymers, poly(thienylene-

vinylene) (PTV) 39 exhibited a red-shifted absorption with

maxima occurring at 578 and 598 nm in CH2Cl2 and as a thin

film, respectively.
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Figure 3: Spectroelectrochemistry of polymers 37 (a) and 34 (b) as thin films deposited on the working electrode. Adapted with permission from [76].
Copyright 2006 The American Chemical Society.

The CVs in CH2Cl2 solution of 35 and 37 (Table 2) revealed

two quasi-reversible oxidation waves that are shifted to lower

potentials compared to the corresponding reversible oxidation

waves of monomer 14b (+0.91 and +1.31 V, see Table 1).

Monomer 14b has a weaker donating ability due to the strong

electron-withdrawing inductive effect of the terminal bromo

substituents, while the PTV polymer 39 exhibited almost iden-

tical oxidation potentials to monomer 14b. On the other hand,

both oxidation waves of the TTF unit in polymers 35, 37, and

39 shifted to significantly higher potentials in comparison to

those of the non-brominated monomer compound 14a (+0.46

and +0.83 V, see Table 1) [54]. This can be explained by: 1) the

electron-withdrawing effect of the polymer backbone and 2) the

electrostatic interaction between the oxidised TTF units within

the polymer backbone. The degree to which these polymer oxi-

dation potentials shift is in the order 37 < 35 < 39, which

roughly follows the expected charge density of the doped

polymer backbone. The chronocoulometry experiment during

bulk electrolysis of 35 and 39 revealed that approximately two

electrons were released per monomer unit; this is much more

than one would expect from a simple PT that normally donates

one electron per 3–10 thiophene units [80]. To the best of our

knowledge, 35 is the most dopable polythiophene in the litera-

ture, with respect to the level of oxidation that is achieved per

repeating unit, the excellent electrochemical reversibility

observed, and the modest potential window in which the highly

doped state is attained. Even for a stable doped system, for

example a PEDOT sample heavily doped with polystyrenesul-

fonic (PSSH) or p-toluenesulfonic (TosH) acid, the doping level

is 3–5 units per one positive charge [81,82]. So, the presence of

TTF units fused to each thiophene of the PT backbone creates a

polymer with a greatly enhanced p-doping ability. The direct

fusion in this case of two electroactive units (TTF and PT)

inhibits any electrochemical activity from the polymer back-

bone and the electrochemistry of the material is dominated by

the TTF unit.

The inhibition of the polymer backbone’s electrochemical

activity was confirmed by spectroelectrochemistry of 39, which

indicated no change of the π–π* transition upon applying poten-

tials up to +2.0 V. The CV of 39 shows an irreversible first oxi-

dation wave, and the band gap calculated from the first oxi-

dation onset agreed well with the optical band gap. The former

indicates the possibility of significant interchain interactions

between the TTF unit and the polymer backbone.

Upon oxidation, the film of polymer 37 exhibited a broad ill-

defined band extending from 700 nm into the near infrared

range. The intensity of the π–π* transition in this case dimin-

ished upon oxidation, but this band still remained the most

intense feature of the spectrum across the entire potential range

(Figure 3a). The spectoelectrochemistry of polymer 34 revealed

more drastic changes in the spectra upon oxidation of the film,

where the resolved absorption signature of a cation radical,

dication and polaron can be observed (Figure 3b). As the

applied potential is increased, two peaks appear: one at 460 nm

that overlaps with the backbone π–π* transition, and a second

centred at 800 nm. Those peaks were observed in the spectrum

of the doped polymer film (Figure 3b) and could be assigned to

the absorption of the cation radical of the TTF unit. With further

increase in the applied potential the TTF cation radical UV–vis

signature diminishes and a strong absorption band at 700 nm,
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Table 3: Performance of BHJSCs fabricated from the thiophene-TTF hybrid systems.

Compound Acceptor Solvent Pinc, mW cm−2 Jsc, mA cm−2 Voc, V FF PCE, %

39 PC61BM CB 80 0.68 0.52 0.30 0.13
48 none o-DCB 100 1.8 0.61 0.28 0.31
48 PC71BM CHCl3 100 4.9 0.66 0.31 1.0
48 PC71BM o-DCB 100 8.0 0.71 0.32 1.8
54 (n = 1) PC71BM CHCl3 100 7.44 0.70 0.33 1.7
54 (n = 1) PC71BM o-DCB 100 9.81 0.78 0.33 2.5

Scheme 10: Photoinduced charge transfer from the TTF of polymer 39 to PC61BM.

along with a broad absorption in the NIR region, appear. The

former can be assigned to the absorption of the dication of the

TTF unit and both bands to a polaron formation. Therefore, for

34 the spectroelectrochemistry unequivocally confirms the elec-

trochemical activity of the polymer backbone, which is

involved in the formation of polarons at potentials close to the

second oxidation potential of the TTF unit.

The polymer 39, which has the lowest band gap, was tested as a

donor material for BHJSCs with PC61BM as the acceptor. The

OPV performance is shown in Table 3. The estimation of

HOMO and LUMO levels by electrochemical analysis gave

values of −5.24 and −3.78 eV, respectively, indicating a small

offset between the LUMO of 39 and PC61BM (ca. −3.8 eV)

[83,84]. This is the main reason for the small short circuit

current density (Jsc) and low efficiency of the cell. Due to the

possible presence of efficient interchain interactions between

the TTF units and the PTV backbone (vide supra) in the film of

polymer 39, another important factor that should be considered

is photoinduced charge transfer. Photoexcitation of 39 can lead

to an increase in the donor ability of the TTF unit due to a

greater contribution of the quinoidal structure to the excited

polymer backbone, and foster electron transfer from the TTF

moiety to PC61BM (Scheme 10). However, further hole transfer

from the TTF unit to the PTV backbone may still limit dissocia-

tion of the (TTF+•)(PC61BM−•) bound pair.

The surprising inertness of 14c towards electropolymerisation

can be circumvented by replacing the thiophene units in the

monomer terthiophene backbone with more electron-rich

moieties, such as pyrrole and EDOT. Bisthienylpyrrolo-TTF

monomer compounds 40 and 41, which were synthesised by

Stille coupling of diiodopyrrolo-TTF 42 with trimethylstannyl

derivatives of EDOT 43 and hexylthiophene 44, were effi-

ciently electropolymerised (Scheme 11) into polymers 45 and

46, respectively [85]. Note that these latter two polymers are

analogues of polymer 37. Polymer 47, synthesised by Stille

polymerisation of 42 and 38, is an analogue of the polymer 39.

A direct comparison between the obtained polymers with

pyrroloTTF and thienoTTF units showed that the incorporation

of an electron-rich pyrrole unit into the conjugated backbone

leads to materials with a wider band gap as they are less stable
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Scheme 11: Electropolymerisation of 40 and 41 into polymers 45 and 46, respectively, and Stille polymerisation of 42 into polymer 47.

Scheme 12: The synthesis of polymer 48.

to n-doping. The pyrrole unit lowers the oxidation potentials of

the TTF moieties but the electrochemical dominance of the TTF

is lost in the pyrrolo-TTF polymers.

Another analogue of polymer 37 includes the 2,5-bis(2-octyl-

dodecyl)-1,4-dioxopyrrolo[3,4-c]pyrrole (DPP) unit incorpo-

rated within the PT backbone [86]. The polymer 48 was

prepared by Suzuki coupling polymerisation of diboronic ester

49 and dibromothieno-TTF 50 (Scheme 12). The latter was

synthesised following the aforementioned synthetic pathway A.

The incorporation of the DPP π-acceptor into the conjugated

backbone led to a polymer with a narrow optical band gap

(Eg
opt = 1.32 eV in CH2Cl2 solution), with the expected lower

value of Eg
opt = 1.26 eV in the film due to π–π stacking interac-

tions. The value of the HOMO/LUMO levels (−5.13/−3.49 eV)

in the film were noticeably different from those in solution

(−4.95/−3.55 eV), which suggested significant donor–acceptor

interactions in the solid phase between the DPP and TTF units.

OFET device fabrication employing polymer 48 exhibited

p-type semiconductor behaviour, with the best performance

from devices using the bottom contact top gate configuration

[87]. The hole mobility values calculated in the saturated region

were found to be 3.8 × 10−2 and 5.3 × 10−2 cm2 V−1 s−1 for

OFETs fabricated via spincoating the semiconductor from solu-

tion in chlorobenzene and chloroform, respectively. The strong
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Figure 4: Tapping mode AFM height images of polymer 48 film spin-coated from chlorobenzene (left) and chloroform (right) solutions on ODTS
treated SiO2 substrate. Reproduced with permission from [87]. Copyright 2015 The American Chemical Society.

propensity of 48 to aggregation led to the tightly packed grain

morphology of the film cast from chlorobenzene with small

sized crystalline domains (Figure 4). On the contrary, using

chloroform the high solvation energy of the TTF unit and the

carbonyl groups of the DPP moieties made the rate of nucle-

ation lower compared to the rate of grain growth, so the size of

the crystalline domain in the film was higher in this case. These

larger crystalline domains in films spin-coated from chloroform

were beneficial for field effect mobility.

None of the OFETs showed any n-type mobility. The extended

character of the HOMO residing on the dithienyl-thieno-TTF

unit  and the localised nature of the LUMO led to

donor–acceptor interactions in the solid phase, making it impos-

sible for efficient overlap between LUMOs, which would

normally be required for an efficient n-type semiconductor.

BHJSCs were fabricated from 48 as the electron donor and

PC71BM as the electron acceptor using ortho-diclorobenzene

(o-DCB) and chloroform as solvents (Table 3). The devices

prepared with o-DCB showed up to a two-fold increase in

power conversion efficiency (PCE) compared to those obtained

by spincoating the blend from chloroform, which is due to a

more homogeneous blend morphology leading to improved

charge carrier transport and increased Jsc. Since the use of

o-DCB as the solvent for spincoating provided better perfor-

mance for BHJSCs than chloroform, it was used for the fabrica-

tion of a single material organic solar cell (SMOSC) (Table 3).

The SMOSC performance is modest compared to that of similar

devices fabricated using donor–acceptor block copolymers [88-

90]. Nevertheless, the value of the PCE (0.31%) is higher than

one would expect from a SMOSC fabricated from polymer 48

as a semiconductor, since it has no obvious donor–acceptor

phase separation and is lacking efficient electron mobility.

TTF-oligothiophene systems with well-defined
structures
The monodisperse analogue of polymer 34, bearing two TTF

units and capped with dodecyl chains at the terminal positions,

was synthesised using chemical coupling protocols, or alter-

natively via electrochemical oxidation of terthiophene 28b

(Scheme 13) [72]. The latter was synthesised by the aforemen-

tioned synthetic pathway C.

The electrochemical method for the preparation of sexithio-

phene 51 was achieved by potentiostatic oxidative electrodimer-

ization of 28b in a mixture of 2:1 CH2Cl2/hexane, with 0.1 M

tetrabutylammonium hexafluorophosphate as the supporting

electrolyte. On a larger scale, chemical oxidation by FeCl3 in

nitrobenzene was used which after purification, afforded 51 in a

24% yield. Lithiation of compound 28b with LDA and succes-

sive trapping of the aryllithium compound with perfluorohexyl

iodide afforded iodoterthiophene 52 in a 74% yield. Compound

52 was used to explore other possibilities for synthesising

sexithiophene 51, including Ullmann and Yamamoto coupling,

which provided 51 in 43 and 10% yield, respectively. Sexithio-

phene 51 exhibited a strong propensity to aggregate even in

chloroform solution, hence an interpretable 1H NMR spectrum

was only obtained in a mixture of CDCl3 with CS2.

In CH2Cl2 solution, the chemically synthesised product showed

a π–π* transition peak at 443 nm, with a HOMO–LUMO gap of

2.32 eV, a value very similar to that of the parent sexithiophene

53 [91]. For the electrochemically prepared film of 51, there
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Scheme 13: The synthesis of TTF-sexithiophene system 51 and the structure of the parent sexithiophene 53.

were two broad bands with maxima centred at 449 and 735 nm,

confirming the doped state of the film and the presence of a

cation radical centred on the TTF unit. After de-doping, a single

broad band remained with its maximum red-shifted compared to

that of the solution state spectrum of the chemically synthe-

sised sexithiophene 51; this is evidence of a strong π–π stacking

interaction upon aggregation in the solid state. The electro-

chemistry of compound 51 is similar for both solution and solid

state samples, with the main feature being the overlap between

the second oxidation peak of the TTF and the oxidation of the

sexithiophene backbone.

A series of hybrid electroactive compounds 54 (n = 0–2) with

two oligothiophenes directly fused to one TTF unit was recently

reported [92,93]. Here, triethylphosphite mediated homo-

coupling of the corresponding oligothiophenes 55 (n = 0–2)

containing a central thieno[3,4-d][1,3]dithiole-2-one unit

proceeded smoothly, with yields of 77% for n = 0, 82% for

n = 1 and 39% for n = 2 (Scheme 14).

The oligothiophene half-unit precursors, 55 (n = 0–2), were

synthesised following synthetic pathway B. The electrochem-

ical and optical properties of 54 (n = 0–2) are shown in Table 4.

The optical properties of 54 (n = 0–2) in solution (Table 4)

follow a general trend of decreasing the absorption onset, while

increasing the conjugation length. The electrochemistry of each

Scheme 14: The synthesis of TTF-oligothiophene H-shaped systems
54 (n = 0–2).

H-shaped system 54 (n = 0–2) on the other hand is not so

straightforward. While the first and the second oxidation waves

are easily identified and assigned for 51 (vide supra), for 54

(n = 0–2) it is only the first oxidation wave which can be
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Table 4: The properties of monodisperse oligothiophene-TTF systems in dichloromethane solution.

51 54 (n = 0) 54 (n = 1) 54 (n = 2)

E1ox, Va +0.29/0.21 +0.39/+0.32 +0.27/+0.21 +0.26/+0.23
E2ox, Va +0.53/0.45 +0.86/+0.75 +0.54/+0.48 +0.66/+0.49
E3ox, Va – +1.13 +0.76/+0.71 +0.97/+0.94
E4ox, Va – – +0.97/+0.89 –
Ered, Va – –2.12 –2.19 −1.98
HOMOb, eV −4.93 –5.06 –4.96 −4.95
LUMOb, eV – –2.92 –2.81 −3.00
HOMO–LUMO gap, eV – 2.14 2.15 1.95
λmax, nm 443 351 431 461
Absorption onset, eV 2.32 2.92 2.45 2.20

aThe electrochemical data are referenced against the Fc/Fc+ couple. Both Epa and Epc or anodic peak value (Epa, if the wave is irreversible) for the
oxidation waves and cathodic peak values (Epc) for the reduction waves are quoted. bHOMO/LUMO values were calculated using the formula HOMO/
LUMO = −Eonset

ox/Eonset
red − 4.80.

Scheme 15: The oxidation of a fused TTF-oligothiophene system.

unequivocally assigned to the first oxidation potential of the

TTF unit. It is interesting to note that the terthiophene-TTF

H-shaped system 54 (n = 0) exhibits a significantly higher

potential for the formation of TTF+• than that of the quinqui-

and septithiophene systems 54 (n = 1–2). This can be explained

by the increased π-donating ability of the oligothiophene with a

higher conjugation length due to a more pronounced contribu-

tion of the quinoidal resonance structure. This effect is only

possible for hybrid systems with a TTF unit directly fused to the

PT backbone (Scheme 15).

Quinqui- and septithiophene TTF bridge systems 54 (n = 1–2)

are prone to strong aggregation in solution and, as with 51, a

mixture of chloroform with CS2 was used for NMR spec-

troscopy in these cases. For compound 54 (n = 2) the absorp-

tion spectrum as a thin film exhibits a maximum at 496 nm and

is red-shifted by 35 nm compared to the solution state spectrum,

suggesting strong intermolecular interactions in the solid phase.

Single crystal X-ray diffraction of 54 (n = 2) (Figure 5) revealed

that the molecules in the solid state are essentially planar, apart

from a significant torsion angle of 33° between the terminal

thiophene A and the thiophene B.

The angle between planes D and F is 5.79°, with the inter-ring

distance being 3.74 Å. The angle between thiophenes C and G

is higher (18.36°) but the two S-atoms are involved in a weak

non-covalent interaction with a distance of 3.81 Å between

them. The strong π–π stacking interaction and the presence of

multiple S–S non-covalent interactions in the H-shaped TTF-

oligothiophene system 54 (n = 2) made this compound a

promising p-type organic semiconductor material. The time of

flight mobility for this compound was found to increase

from 1.4 × 10−6 to 1.1 × 10−5 cm2 V−1 s−1, as the electric field

increases from 1 × 105 to 4 × 105 V cm−1 [92].

Compound 54 (n = 1) was tested as a solution processable

p-type semiconductor in OFETs using two solvents for spin-

coating – chloroform and chlorobenzene [93]. A bottom

contact, bottom gate device configuration was used with an

n-doped silicon gate and a SiO2 dielectric layer. After annealing

at 120 °C, AFM imaging indicated a closely packed grain-like
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Figure 5: Molecular structure and packing arrangement of compound 54 (n = 2). Adapted by permission from [92]. Copyright 2011 The Royal Society
of Chemistry.

Figure 6: AFM tapping mode images of the compound 54 (n = 1) film cast on an untreated SiO2 substrate surface from solutions in chlorobenzene
(left), CHCl3 (centre) and on an ODTS treated SiO2 substrate from CHCl3 (right). Reproduced with permission from [93]. Copyright 2014 The Royal
Society of Chemistry.

surface morphology of the film cast from chlorobenzene as a

result of the strong propensity of H-shaped TTF-quinquithio-

phene 54 (n = 1) to aggregate in this solvent (Figure 6, left).

Upon spin-coating and further annealing, the rate of nucleation

exceeded the rate of  grain growth,  leading to the

small size of the crystalline domain. An OFET mobility of
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1.41 × 10−4 cm2 V−1 s−1 calculated in the saturation region was

observed. An increase in the field effect mobility (to

µ = 1.17 × 10−3 cm2 V−1 s−1) by almost an order of magnitude

was observed in devices cast from chloroform. As with polymer

48, tapping mode AFM of the organic semiconductor film spin-

coated from this solvent revealed that, after annealing, the

surface morphology consisted of large crystalline domains with

a smooth grain boundary (Figure 6, centre). Such a striking

difference in morphology of the films cast from chlorobenzene

and CHCl3 is explained by the high energy of solvation of 54

(n = 1) in chloroform, which leads to a higher crystallisation

rate compared to the rate of nucleation during spin-coating and

subsequent annealing. When substrates with a pre-treated

n-octadecyltrichlorosilane (ODTS) SiO2 surface were used for

spin-coating from a CHCl3 solution, the surface morphology

remained essentially the same (Figure 6, right), with a further

increase in mobility (µ = 8.61 × 10−3 cm2 V−1 s−1) observed

due to the beneficial effects of large crystalline domains on the

field effect mobility.

Compound 54 (n = 1) was tested as a donor material in

BHJSCs. The results are presented in Table 3. Similar to

polymer 48, the device prepared by spin-coating the blend of 54

(n = 1) and PC71BM from solution in o-DCB showed a higher

performance than that fabricated with CHCl3, with a short

circuit current density (increased up to 9.81 mA cm−2) being

more affected by the solvent than the open circuit voltage

(0.78 V). AFM revealed a smoother surface morphology of the

donor–acceptor blend film cast from o-DCB than that when

chloroform was used as solvent.

Conclusion
The series of poly- and oligothiophene based compounds

bearing TTF units reported so far in the literature have been

discussed. The most interesting properties were exhibited by

polymers where TTF units were incorporated alongside the

conjugated backbone, allowing for the different charge trans-

port mechanisms on the basis of TTF mixed valence states and

polarons to be observed. Upon positioning the TTF unit in the

vicinity of the polymer backbone, a variation of electrochem-

ical behaviour is observed, including complete dominance by

the TTF units and, at times, independent activity of both elec-

troactive entities.

The initial idea of creating materials with hybrid charge trans-

port on the basis of the polaron mechanism and the mixed

valence state of doped TTF units has developed now into efforts

to use the TTF unit as a handle for controlling the morphology

of organic semiconductors in the solid state. The great chal-

lenge in this field is to design hybrid materials where the pos-

ition of the TTFs relative to the polymer backbone and the

choice of optimised processing conditions allow tuning of the

energy levels and the intrinsic charge carrier mobility in order

to achieve maximum device performance.
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