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Abstract
Alu elements and long interspersed element-1 (LINE-1 or L1) are two major human inter-

sperse repetitive sequences. Lower Alu methylation, but not LINE-1, has been observed in

blood cells of people in old age, and in menopausal women having lower bone mass and

osteoporosis. Nevertheless, Alu methylation levels also vary among young individuals.

Here, we explored phenotypes at birth that are associated with Alu methylation levels in

young people. In 2010, 249 twenty-years-old volunteers whose mothers had participated in

a study association between birth weight (BW) and nutrition during pregnancy in 1990, were

invited to take part in our present study. In this study, the LINE-1 and Alu methylation levels

and patterns were measured in peripheral mononuclear cells and correlated with various

nutritional parameters during intrauterine and postnatal period of offspring. This included

the amount of maternal intake during pregnancy, the mother’s weight gain during pregnan-

cy, birth weight, birth length, and the rate of weight gain in the first year of life. Catch-up

growth (CUG) was defined when weight during the first year was>0.67 of the standard

score, according to WHO data. No association with LINE-1 methylation was identified. The

mean level of Alu methylation in the CUG group was significantly higher than those non-

CUG (39.61% and 33.66 % respectively, P< 0.0001). The positive correlation between the

history of CUG in the first year and higher Alu methylation indicates the role of Alu methyla-

tion, not only in aging cells, but also in the human growth process. Moreover, here is the first

study that demonstrated the association between a phenotype during the newborn period

and intersperse repetitive sequences methylation during young adulthood.

Introduction
DNAmethylation is an epigenetic mark directly on CpG dinucleotide sequences [1]. The ma-
jority of DNA methylation in the human genome is on intersperse repetitive sequences (IRS).
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IRS methylation plays a crucial role in cellular phenotypes, controlling genomic integrity as
well as gene expression [2]. Reduction of genomic methylation can lead to genomic instability
[1], relating to endogenous DNA double strand break repair [3]. Genomic instability is one of
the hallmark characteristics of cancer and aging cells. Global hypomethylation also alters gene
expression. For example, long interspersed element-1 (LINE-1 or L1) can regulate the degree
of gene expression by adjusting intragenic LINE-1 methylation level [4,5]. Here in this study
we evaluated whether IRS methylation during young adulthood would be associated with phe-
notypes during the new born period.

Alu elements are human abundant IRS, presenting up to 300,000 copies in the human ge-
nome [1]. Lower Alu methylation has been observed in blood cells of people during old age [6],
and in menopausal women having lower bone mass and osteoporosis [7], familial breast cancer
[8], gastric cancer [9], and chronic lymphocytic leukemia [10]. On the other hand, higher Alu
methylation has been reported in various conditions such as colorectal cancer [11], insulin re-
sistance [12], cardiovascular risk, including hypertension/diabetes [13], and systemic lupus er-
ythematosus [14]. No change was found in many conditions, such as exposure to pollutants,
including metals and particulate air pollution [15], breast cancer [16], and prenatal arsenic ex-
posure [17].

Most of LINE-1s are truncated. Only approximately 2 thousand copies contain 5’UTR,
where methylated CpG were studied [1]. Many studies of blood cells reported lower methyla-
tion of LINE-1 in pollution exposure [9,18–20], smoking in patients with Parkinson’s disease
[21], increased oxidative stress [22], and several cancers [23], whereas higher methylation of
LINE-1 was detected in early colorectal cancer [11], malignant melanoma [24]. Recently some
studies reported the association between intrauterine and early life insult and epigenetic with
the levels of line-1 methylation [17]. For example intrauterine exposure to higher levels of arse-
nic was positively associated with DNA methylation in LINE-1 in umbilical cord blood [17].
Also lower LINE-1 methylation is related to development of adiposity in 553 boys, aged 5–12
years [25].

Here we investigated the correlation between phenotypes of the perinatal period with IRS
methylation during young adulthood. In 2010, we invited volunteers who had participated as
newborns for birth weight and nutrition during a pregnancy study in 1990 (Chiang Mai Low
Birth Weight Study-CMLBWS) [26]. We found that offsprings with history of intrauterine
growth retardation (IUGR) such as poor intrauterine nutrition, mother with pregnancy in-
duced hypertension (PIH) were associated significantly with rapid weight gain (catch-up
growths) in the first year of life than those offsprings without IUGR [27]. Also these IUGR off-
springs with abundant postnatal nutrition were significantly associated with catch-up growths
(CUG) during the first year of life. These CUG had been reported previously, but was associat-
ed with metabolic and non-communicable diseases, such as high body fat deposition [28], in-
creased blood pressure [29], and diabetes [30]. However, the precise mechanism of this
association is still unknown. The epigenetic memory was proposed to be a molecular mecha-
nism [31]. During in utero, or early postnatal development, short term changes through envi-
ronmental affect could permanently change gene expression, and consequently organ
development at a time of extreme vulnerability.

We chose to evaluate DNA methylation, not only its levels, but also its patterns. Changes in
DNAmethylation of IRS is not homogenous. Previously, we demonstrated not only a general,
but also locus specific influence of LINE-1 methylation [32]. Therefore, in some situations
methylation of different IRS loci were not harmoniously changed. For example, both hypo and
hypermethylated LINE-1 loci can be discovered in smoke-exposed oral epithelial [33]. Current-
ly, there are two commonly used techniques: pyrosequencing [1], and Combine Bisulfite Re-
striction Analysis (COBRA) [34].Both techniques precisely measure methylation levels.
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Unfortunately, pyrosequencing can only measure DNAmethylation levels. Therefore, herein
this study, we chose to evaluate LINE-1 and Alu methylation levels and patterns by COBRA.

Materials and Methods
In 2010, we invited adolescents whose mothers had participated in a birth weight and nutrition
during pregnancy study in 1990 [26]. In brief, the 1990 study recruited 2184 pregnant women
with gestational age< 24 weeks. Researchers followed up every subject’s antenatal care up to
delivery. The study recorded demographic data, anthropometric data, socioeconomic data.
During delivery, the birth weight, birth length, and placental weight were also recorded. As a
follow-up, every three months in the first year of the child’s life, their weight was also recorded.
Maternal diet intake was assessed by two methods. First, the 24-hour food recall method was
used during the initial interview. Each mother was asked to recall all food consumed during the
previous day and to estimate quantities in ordinary measures or servings. Then all details were
calculated by using Thai Food Tables [35]. The amount of food was calculated as energy, pro-
tein, fat and carbohydrate at each of the three trimesters: weeks 10–12 (first trimester), weeks
22–24 (second trimester), and weeks 32–34 (third trimester).The food frequency questionnaire
(FFQ) was used to assess the frequency of consumption of 34 foods in the previous month. Nu-
trient intakes in the FFQ were validated against the 24-hour food recall method.

In 2010, all 2184 offspring were invited to participate in the study. Their histories, physical
exams, and blood samples were collected to determine their current general condition. The test
consisted of the participants sitting quietly in a room at the clinic for at least 20 minutes.
Twice, at intervals of 5–10 minutes, their blood pressure was measured on the left arm at heart
level. Anthropometric measurements were performed. While wearing indoor clothes, the par-
ticipant’s height, weight, and waist circumference measurement were taken. Each participant
filled out questionnaires on various cardiovascular risk factors, smoking experience, and past
medical history. The participants fasted at least 12 hours before attending the study, and then
venous blood samples were collected. Total cholesterol and plasma glucose were measured
using the Beckman Coulter analyzer (UnicelDxc 800, Fullerton, California, USA).

COBRA LINE-1 and COBRA Alu
Also blood samples were collected and extracted to measure the level of LINE-1 and Alu meth-
ylation [36]. DNA extraction was performed by standard phenol chloroform extraction proto-
col. All DNA samples were treated with sodium bisulfite essentially following guidelines
provided (EZ DNAMethylation-Gold Kit, Zymo research corp, Orange, CA, USA). For
COBRA LINE-1, the bisulfate-treated DNA was subjected to 40 PCR cycles with LINE-1-F
(5’-CGTAAGGGGTTAGGGAGTTTTT-3’) and LINE-1-R (5’-RTAAAACCCTCCRAAC-
CAAATATAAA-3’) primers at an annealing temperature of 50°C. For COBRA Alu, the bisul-
fite-treated DNA was subjected to 40 cycles of PCR with two primers, Alu-F (5’-
GGCGCGGTGGTTTACGTTTGTAA-3’) and Alu-R (5’TTAATAAAAACGAAAT TTCAC-
CATATTA ACCAAAC-3’) at an annealing temperature of 53°C. After PCR amplification, the
LINE-1 amplicons (160 bp) were digested with TaqI and TasI in NEB buffer 3 (New England
Biolabs, Ontario, Canada), while the Aluamplicons (117 bp) were digested with TaqI in TaqI
buffer (MBI Fermentas, Burlington, Canada). Both digestion reactions were incubated at 65°C
overnight. The LINE-1 and Alu element digested products were then electrophoresed on an
8% non-denaturing polyacrylamide gel and stained with the SYBR green nucleic acid gel stain
(Gelstar, Lonza, Rockland, ME, USA). Distilled water was used as negative control. All experi-
ments were performed in duplicate. DNA samples from HeLa, Jurkat and Daudi cell lines were
used as positive controls in every experiment and to standardize interassay variation [1].

Catch-Up Growth in Early Life and Alu Methylation

PLOS ONE | DOI:10.1371/journal.pone.0120032 March 25, 2015 3 / 15



Both COBRA LINE-1 and COBRA Alu detected methylation status of two CpG dinucleo-
tides [36]. Therefore, COBRA can report four IRS methylation patterns, hypermethylation
(mCmC) when both of the CpGs of the same locus were methylated. Hypomethylation (uCuC)
when both of the CpGs of the same locus were unmethylated. We also reported two partial
methylation pattern (mCuC and uCmC). Both methylation level and pattern were reported in
percentage number. For methylation levels we reported the percentage of methylated CpG. For
methylation pattern, percentage numbers of loci of each pattern were determine. Detail analy-
sis of LINE-1 and Alu methylation levels and patterns were the same as recently reported [36].

Statistical analysis
We analyzed the association between the level of LINE-1 and Alu methylation with various
nutritional parameters, both intrauterine factors and early postnatal period. Since our study in
LINE-1 and Alu methylation was conducted in blood sampling 20 years later, we therefore ana-
lyzed current parameters and epigenetic levels to see the difference between perinatal risk fac-
tors and current risk factors. The small for gestational age (SGA) defined as weight<10
percentile of gestational age [37], and the history of CUG in weight during the first year of life,
defined the weight>0.67 standard score according to WHO data [38]. For the dichotomous
data, an independent sample t-test was performed to determine differences between LINE-1
and Alu element methylation patterns. The continuous data were analyzed for the correlation
with Pearson method. All P value was corrected for multiple comparisons (fault discovery rate
—Simmes method). The data was presented in mean and standard deviation. Analysis was per-
formed by STATA for Windows version 13.0. The significant levels quoted were two-sided and
P< 0.05 was considered statistically significant.

Table 1. Baseline data of participants during pregnancy and delivery period (in 1990) and during
follow up period in 2010 study.

Baseline item Mean ± standard deviation

Pregnancy and delivery period

Mothers age (yr) during pregnancy 26 ± 4.63

Body mass index at recruitment in study 21.26 ± 2.50

Birth weight (gram) 2814.54 ± 452.07

Birth length (cm) 47.89 ± 4.61

Gestational age (months) 38.90 ± 1.98

Age of mother during delivery (years) 26.20 ± 4.69

Placental weight (gm) 556 ± 111.57

Placental diameter (cm) 19.20 ± 2.64

Follow up period

Age of offsprings (months) 246.06 ± 5.63

Waist circumference (cm) 77.25 ± 1.30

Body mass index 21.71 ± 4.80

Plasma cholesterol (mg/dl) 167.13 ± 31.93

Fasting blood sugar (mg/dl) 83.66 ± 13.27

Systolic blood pressure (mmHg) 115.23 ± 12.93

Diastolic blood pressure (mmHg 73.71 ± 10.80

doi:10.1371/journal.pone.0120032.t001
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Table 2. The comparison of percentage of Alu (above panel) methylation and the percentage of LINE-1 methylation (below panel) in participants
who are absence or presence the following risk factors: catch up growth, small for gestational age, male and smoking history.

Type of methylation Total Alu Alu_UU Alu_MM Alu_UM Alu_MU

Intrauterine factor/early postnatal factors

Catch up growth history Absence Presence Absence Presence Absence Presence Absence Presence Absence Presence

Mean 33.66 39.61 44.85 37.39 12.16 16.60 23.75 26.04 19.23 19.97

SD 6.99 7.22 8.76 8.71 9.07 8.58 6.95 7.11 6.06 6.55

p-values control the FDR(simes) <0.00001 <0.00001 0.0233 0.1858 0.7849

Small for gestational age
history

Absence Presence Absence Presence Absence Presence Absence Presence Absence Presence

Mean 36.32 33.91 40.50 44.61 13.14 12.44 25.56 24.06 20.80 18.90

SD 7.67 7.72 8.78 9.36 11.00 8.31 7.89 6.73 6.89 5.54

p-values control the FDR(simes) 0.1428 0.0700 0.6999 0.3723 0.1428

Gender of off spring Female Male Female Male Female Male Female Male Female Male

Mean 34.63 34.06 43.20 44.62 12.47 12.74 25.04 23.38 19.30 19.26

SD 7.92 7.53 9.66 8.93 8.89 8.95 7.30 6.43 5.56 6.32

p-values control the FDR(simes) 0.8233 0.6373 0.9136 0.3820 0.9574

Smoking history Absence Presence Absence Presence Absence Presence Absence Presence Absence Presence

Mean 34.07 35.27 44.07 42.99 12.21 13.53 24.30 23.49 19.42 19.99

SD 7.55 7.75 9.37 8.72 8.53 9.79 6.85 5.50 5.68 6.77

p-values control the FDR(simes) 0.6251 0.6251 0.6251 0.6251 0.6251

Type of methylation Total LINE- 1 LINE- 1_MM LINE- 1_UU LINE- 1_MU LINE- 1_UM

Intrauterine factor/early postnatal factors

Catch up growth history Absence Presence Absence Presence Absence Presence Absence Presence Absence Presence

Mean 79.87 79.74 49.09 50.49 7.86 8.35 22.28 20.19 20.78 20.98

SD 5.52 8.95 12.20 18.26 5.40 6.21 9.35 10.10 14.19 15.46

p-values control the FDR(simes) 0.9410 0.7849 0.7849 0.4542 0.9410

Small for gestational age
history

Absence Presence Absence Presence Absence Presence Absence Presence Absence Presence

Mean 79.24 80.21 48.95 49.53 9.27 7.31 23.11 21.90 18.67 21.26

SD 6.23 5.96 13.14 12.42 6.22 4.99 9.03 9.02 13.63 13.25

p-values control the FDR(simes) 0.4470 0.7718 0.0990 0.5007 0.3723

Gender of off spring Female Male Female Male Female Male Female Male Female Male

Mean 80.11 79.88 49.91 48.72 8.24 6.93 21.54 22.98 20.31 21.37

SD 5.73 6.42 12.09 13.18 5.69 4.61 8.39 9.81 13.14 13.65

p-values control the FDR(simes) 0.9136 0.8233 0.3820 0.6373 0.8233

Smoking history Absence Presence Absence Presence Absence Presence Absence Presence Absence Presence

Mean 79.69 80.48 48.82 49.94 7.86 6.61 21.57 23.38 21.76 20.06

SD 5.98 6.96 12.46 14.23 5.54 3.60 8.92 9.50 13.54 12.72

p-values control the FDR(simes) 0.6251 0.6251 0.6251 0.6251 0.6251

doi:10.1371/journal.pone.0120032.t002
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Ethics statement
This study was conducted according to the guidelines laid down in the Declaration of Helsinki,
and all procedures involving human subjects were approved by the Human Experimentation
Committee, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thai-
land (Project Number 17/52). Written informed consent was obtained from all subjects togeth-
er with their mothers and participants’ anonymity was preserved.

Results
249 participants, who were offspring in CMLBWS, were recruited in this study. There were 103
males (41.4%), 27 current smokers (10.8%), 49 SGA, and 45 CUG. Mothers in CMLBWS, on
average, had a normal range of BMI (Table 1). During delivery phase, the mean birth weight of
offspring was 2814.54 grams, which was not in a low birth weight range.

In the perinatal parameters, there were significant correlations only between CUG and non-
CUG in the levels of methylation in the percentage of total Alu, Alu_UU, and Alu_MM
(Table 2). The mean level of total Alu_methylation in the CUG group was marked higher than

Fig 1. The boxplots of the total Alu methylation (%) between non catch up growth group (non-CUG) and catch up growth (CUG).

doi:10.1371/journal.pone.0120032.g001
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those not in CUG (39.61% and 33.66% respectively, P< 0.0001) (Fig. 1). In contrast, the mean
level of unmethylated loci (Alu_UU) in the CUG group was considerably lower than those in
non-CUG group (37.39% and 44.85%, P<.0001 respectively). In contrast, there was no signifi-
cant association between the levels of Alu_methylation with other perinatal parameters. The
LINE-1 methylation levels were not correlated with any perinatal parameters (Fig. 2).

There was no significant correlation between the levels of Alu_methylation and LINE-1
methylation with various intrauterine parameters (during pregnancy), including maternal in-
take during 3 trimesters (carbohydrate, protein, fat, energy, weight gain), birth weight and pla-
cental weight (Table 3). Similarly no correlation was found between Alu_methylation and
LINE-1 methylation with early postnatal factors.

There was no significant correlation between Alu_methylation and LINE-1 methylation
with current factors such as gender, age, BMI, waist circumference, plasma cholesterol, fasting
glucose and blood pressure (Table 4) (Figs. 3, 4). When authors analysed the association be-
tween CUG and non-CUG with the perinatal data, CUG group had higher incidence of preg-
nancy induce hypertension of mother during pregnancy than those in non-CUG (9.8% and
0.3% respectively, P = 0.04). Also maternal fat intake in the first trimester in CUG group was
significant lower than those in non-CUG group (P = 0.03). When authors explored further on
the association between CUG and non-CUG with current factors, waist circumference in CUG

Fig 2. The boxplots of the LINE-1 methylation (%) between non catch up growth group (non-CUG) and catch up growth (CUG).

doi:10.1371/journal.pone.0120032.g002
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Table 3. The correlation analysis between the percentage of Alu and LINE-1 methylation in various nutritional factors during pregnancy and
delivery.

Type of methylation Total
Alu

Alu_UU Alu_MM Alu_UM Alu_MU Total
LINE-1

LINE-
1_MM

LINE-
1_UU

LINE-
1_MU

LINE-
1_UM

Intrauterine factor/early postnatal factors

bmi in first visit of mothers

Correlation, r 0.0868 -0.1361 0.0079 0.1834 -0.0131 0.0025 0.0165 0.0588 -0.0620 0.0031

p-values control the FDR(simes) 0.6217 0.1895 0.9687 0.0500 0.9687 0.9687 0.9687 0.7134 0.7134 0.9687

Gestational age at delievery

Correlation, r 0.0061 0.0307 0.0430 -0.0218 -0.0883 0.0797 0.0437 -0.1459 -0.1139 0.0938

p-values control the FDR(simes) 0.9260 0.8015 0.7340 0.8233 0.4222 0.4222 0.7340 0.2150 0.3675 0.4222

Mother age when pregnancy

Correlation, r 0.1340 -0.1308 0.0956 0.0357 0.0215 -0.0758 -0.0496 0.0675 0.0603 -0.0209

p-values control the FDR(simes) 0.2300 0.2300 0.4853 0.7341 0.7446 0.5737 0.6236 0.5737 0.5737 0.7446

Mother weight gain in 1st trim

Correlation, r -0.2221 0.1445 -0.2911 0.0495 0.0008 -0.0719 -0.0911 -0.0730 0.0495 0.0809

p-values control the FDR(simes) 0.9188 0.9188 0.9188 0.9188 0.9972 0.9188 0.9188 0.9188 0.9188 0.9188

Mother weight gain in 2nd trim

Correlation, r 0.0359 0.0313 0.0939 -0.0664 -0.1127 0.0282 0.0194 -0.0134 -0.0977 0.0543

p-values control the FDR(simes) 0.8295 0.8295 0.5313 0.8012 0.5313 0.8295 0.8364 0.8364 0.5313 0.8030

Mother weight gain in 3rd trim

Correlation, r 0.0069 -0.0298 -0.0191 0.0597 0.0054 -0.0026 0.0399 0.1415 -0.1234 -0.0075

p-values control the FDR(simes) 0.9681 0.9681 0.9681 0.9681 0.9681 0.9681 0.9681 0.2835 0.2835 0.9681

maternal protein intake in 1st
trim

Correlation, r 0.1792 -0.3042 -0.0243 0.3200 0.2015 -0.1120 -0.0679 0.0569 0.1524 -0.0596

p-values control the FDR(simes) 0.4560 0.1070 0.8576 0.1070 0.4427 0.6782 0.7490 0.7490 0.5154 0.7490

maternal protein intake in 2nd
trim

Correlation, r -0.0781 0.0889 -0.0426 -0.0523 -0.0090 0.0771 0.1000 0.0220 -0.0971 -0.0347

p-values control the FDR(simes) 0.6140 0.6140 0.8016 0.8016 0.9062 0.6140 0.6140 0.8533 0.6140 0.8016

maternal protein intake in 3rd
trim

Correlation, r 0.0351 0.0047 0.0662 -0.0471 -0.0516 0.0649 0.0316 -0.0599 -0.0524 0.0277

p-values control the FDR(simes) 0.7752 0.9494 0.7752 0.7752 0.7752 0.7752 0.7752 0.7752 0.7752 0.7752

maternal carbohydrate intake
in 1st trim

Correlation, r 0.0455 -0.1566 -0.1002 0.2867 0.0863 -0.0482 -0.0179 0.0986 0.1776 -0.1482

p-values control the FDR(simes) 0.8188 0.6780 0.7476 0.3060 0.7476 0.8188 0.8950 0.7476 0.6780 0.6780

maternal carbohydrate intake
in 2nd trim

Correlation, r 0.0130 -0.0545 -0.0335 0.0541 0.0717 -0.0548 -0.0362 0.0292 -0.0124 0.0326

p-values control the FDR(simes) 0.8679 0.8679 0.8679 0.8679 0.8679 0.8679 0.8679 0.8679 0.8679 0.8679

maternal carbohydrate intake
in 3rd trim

Correlation, r 0.0667 -0.0562 0.0586 0.0261 -0.0319 0.0584 0.0239 -0.0744 -0.0437 0.0346

p-values control the FDR(simes) 0.7371 0.7371 0.7371 0.7371 0.7371 0.7371 0.7371 0.7371 0.7371 0.7371

maternal fat intake in 1st trim

Correlation, r -0.1108 -0.0070 -0.2159 0.1875 0.1165 -0.2166 -0.1785 0.1022 0.0731 0.0820

p-values control the FDR(simes) 0.6420 0.9589 0.4600 0.4600 0.6420 0.4600 0.4600 0.6420 0.6543 0.6543

(Continued)
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group was significantly higher than those in non-CUG group (78.6 cm and 74.9 cm respective-
ly, P = 0.04). The mean BMI in CUG group was higher than those in non- CUG group
(22.5 cm and 20.7 cm respectively, P = 0.05).

Discussion
This study evaluated the association between Alu and LINE-1 methylation of 20-year-old indi-
viduals with various phenotypes during their babies period (intrauterine and early postnatal
period). Whereas no association with LINE-1 methylation was identified, the correlation be-
tween the history of CUG in the first year, and higher Alu methylation,was demonstrated. In-
terestingly, Alu, but not LINE-1 hypomethylation, is associated with aging, and also disease
phenotype due to aging, such as osteoporosis [6][7]. These two evidences suggest that methyla-
tion of different IRSs possess different functions. Alu methylation plays a role in cell growth
and prevents cellular aging[6][7]. The role of IRS methylation is to control genome stability.
Loss of Alu methylation in aging cells may lead to genomic instability, one of the hallmarks of
aging cells. Cells of individuals with CUG may require higher levels of genome stability. Our

Table 3. (Continued)

Type of methylation Total
Alu

Alu_UU Alu_MM Alu_UM Alu_MU Total
LINE-1

LINE-
1_MM

LINE-
1_UU

LINE-
1_MU

LINE-
1_UM

maternal fat intake in 2nd trim

Correlation, r -0.0856 0.0317 -0.1138 0.0983 0.0020 -0.0075 -0.0097 -0.0065 0.0657 -0.0357

p-values control the FDR(simes) 0.8757 0.9797 0.8757 0.8757 0.9797 0.9797 0.9797 0.9797 0.9422 0.9797

maternal fat intake in 3rd trim

Correlation, r -0.1703 0.2038 -0.0872 -0.1354 -0.0260 0.0059 -0.0040 -0.0109 -0.0217 0.0223

p-values control the FDR(simes) 0.0975 0.0500 0.5855 0.2130 0.9557 0.9557 0.9557 0.9557 0.9557 0.9557

Amount of energy intake in 1st
trim

Correlation, r 0.0310 -0.1641 -0.1361 0.3124 0.1248 -0.1082 -0.0672 0.1172 0.1745 -0.1053

p-values control the FDR(simes) 0.8189 0.5444 0.5444 0.1800 0.5444 0.5444 0.6880 0.5444 0.5444 0.5444

Amount of energy intake in
2nd trim

Correlation, r -0.0230 -0.0237 -0.0635 0.0658 0.0541 -0.0340 -0.0152 0.0283 -0.0078 0.0094

p-values control the FDR(simes) 0.9169 0.9169 0.9169 0.9169 0.9169 0.9169 0.9169 0.9169 0.9169 0.9169

Amount of energy intake in 3rd
trim

Correlation, r -0.0078 0.0339 0.0214 -0.0367 -0.0421 0.0534 0.0186 -0.0692 -0.0468 0.0398

p-values control the FDR(simes) 0.9152 0.8831 0.8831 0.8831 0.8831 0.8831 0.8831 0.8831 0.8831 0.8831

brithweight

Correlation, r -0.0985 0.1054 -0.0604 0.0283 -0.1105 0.1267 0.0767 -0.1694 -0.1095 0.0693

p-values control the FDR(simes) 0.2233 0.2170 0.3984 0.6673 0.2170 0.2170 0.3270 0.0750 0.2170 0.3466

birthlegth

Correlation, r -0.1064 0.0905 -0.0887 0.0533 -0.0713 0.0487 0.0102 -0.1007 -0.0204 0.0438

p-values control the FDR(simes) 0.5120 0.5120 0.5120 0.6491 0.6170 0.6491 08809 0.5120 0.8487 0.6491

Placental weight

Correlation, r -0.0935 0.0415 -0.1196 0.0860 0.0118 -0.0427 -0.0417 -0.0056 -0.0587 0.0809

p-values control the FDR(simes) 0.5340 0.6724 0.5340 0.5340 0.9320 0.6724 0.6724 0.9320 0.6724 0.5340

trim = trimester

doi:10.1371/journal.pone.0120032.t003
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PCR evaluated overall methylation statuses of a hundred thousand copies of Alu, but only a
few thousand copies of LINE-1. Although there are hundreds of thousands of copies of Alu
and LINE-1, most of LINE-1 are truncated and missing CpG dinucleotide containing 5’UTR.
Therefore, Alu methylation represents genomic methylation more than LINE-1, consequently
genomic stability.

This study is the first to show the correlation of IRS methylation in young adults with that
of new born phenotypes. Therefore, it is highly likely that IRS methylation is quite stable.
There are a number of studies that show differences in IRS methylation in WBC of many dis-
eases [8–14]. Therefore, IRS methylation is a potential marker for disease risk prediction.

An additional study to evaluate Alu methylation levels at birth is useful to prove that Alu
hypermethylation is discoverable at birth. Moreover, Alu methylation level may be useful in
predict in growth rates of new born infants and better nutritional management. This is particu-
larly important because many previous studies found CUG in early life is associated with meta-
bolic syndrome [39][40] and future coronary artery disease [41][42]. Guenard and colleagues
conduct a study to analyse the effect of maternal weight loss surgery (bariatric surgery) on

Table 4. The correlation analysis between the percentage of Alu and LINE-1 methylation in various current risk factors during follow up study
(2010).

Type of methylation Total
Alu

Alu_uu Alu_MM Alu_UM Alu_MU Total
LINE-1

LINE-
1_MM

LINE-
1_UU

LINE-
1_MU

LINE-
1_UM

Factors in follow up study 2010

Age at recent study

Correlation, r 0.0503 -0.0050 0.0815 -0.0294 -0.0805 0.0056 -0.0010 -0.0492 -0.0083 0.0261

p-values control the FDR(simes) 0.9881 0.9881 0.9881 0.9881 0.9881 0.9881 0.9881 0.9881 0.9881 0.9881

Body mass index in recent
study

Correlation, r 0.0307 -0.0788 -0.0295 0.0497 0.1114 -0.0459 -0.0716 -0.1211 -0.0350 0.1391

p-values control the FDR(simes) 0.6541 0.5224 0.6541 0.6541 0.2997 0.6541 0.5224 0.2845 0.6541 0.2845

Waist circumference in recent
study

Correlation, r -0.0013 -0.0324 -0.0364 0.0155 0.0885 -0.0536 -0.0819 -0.1282 -0.0360 0.1532

p-values control the FDR(simes) 0.9839 0.7789 0.7789 0.9049 0.5010 0.7789 0.5010 0.2230 0.7789 0.1620

Plasma cholesterol in recent
study

Correlation, r -0.0063 -0.0361 -0.0498 0.0482 0.0755 -0.0183 -0.0035 0.0604 -0.0228 -0.0034

p-values control the FDR(simes) 0.9589 0.9589 0.9589 0.9589 0.9589 0.9589 0.9589 0.9589 0.9589 0.9589

Fasting glucose in recent
study

Correlation, r -0.0478 0.0655 -0.0145 -0.0858 0.0186 0.0545 0.0671 0.0758 -0.0958 -0.0287

p-values control the FDR(simes) 0.6713 0.6428 0.8270 0.6428 0.8270 0.6582 0.6428 0.6428 0.6428 0.8174

Systolic blood pressure in
recent study

Correlation, r 0.0679 -0.0244 0.0925 -0.0917 0.0077 -0.0123 -0.0162 -0.0653 -0.0523 0.0766

p-values control the FDR(simes) 0.6138 0.9072 0.6138 0.6138 0.9072 0.9072 0.9072 0.6138 0.6892 0.6138

Diastolic blood pressure in
recent study

Correlation, r 0.0773 -0.0369 0.0959 -0.0158 -0.0677 -0.0465 -0.0463 0.0155 -0.1551 0.1423

p-values control the FDR(simes) 0.6015 0.7194 0.4850 0.8133 0.6084 0.6697 0.6697 0.8133 0.1270 0.1270

trim = trimester

doi:10.1371/journal.pone.0120032.t004
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methylation levels of genes involved in cardiometabolic pathway in before surgery and after
surgery [43]. Based on 5,698 genes, the methylation level was differentiated between before sur-
gery and after surgery sibling, indicating a preponderance of glucoregulatory, inflammatory
and vascular disease genes. They also demonstrated previously that the prevalence of obesity,
adiposity, hypertension, dyslipidemia in children born after bariatric surgery was markedly
lower than in sibling born before maternal bariatric surgery[44]. They suggest that these im-
provements in cardiometabolic indicators may be attributable to an improvement intrauterine
environment. Similarly our study found the mean level of Alu methylation was higher in CUG
group than those non-CUG. Maternal in CUG had higher incidence of pregnancy induced hy-
pertension and lower maternal diet of fat in first trimester than those in non-CUG group. Also
CUG group was associated with higher waist circumference and BMI than those in non-CUG
group in adult. These stressed the importance of the intrauterine environment such as nutri-
tional factors and maternal stress in fetal programming [45]. Epigenetics is a potential mecha-
nism of this association.

Conclusions
This study showed the positive correlation between the history of CUG in the first year, and
that higher Alu methylation indicates the role of Alu methylation in the human growth

Fig 3. The boxplots of the total Alu methylation (%) between female andmale.

doi:10.1371/journal.pone.0120032.g003
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process. To our knowledge, this is the first study which demonstrated the association between
a phenotype during the newborn period and IRS methylation during young adulthood. Know-
ing Alu methylation levels at birth may be useful in predicting the growth rate of newborns,
and better nutritional management to prevent metabolic syndrome and coronary artery disease
in adults.
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