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A B S T R A C T   

Despite the inevitable shift in medical practice towards a deeper understanding of disease etiology and pro-
gression through multigenic analysis, the profound historical impact of Mendelian diseases cannot be over-
looked. These diseases, such as cystic fibrosis and thalassemia, are characterized by a single variant in a single 
gene leading to clinical conditions, and have significantly shaped our medical knowledge and treatments. In this 
respect, the monogenic approach inevitably results in the underutilization of Next-Generation Sequencing (NGS) 
data. 

Herein, a retrospective study was performed to assess the diagnostic value of the clinical exome in 32 probands 
with specific phenotypic characteristics (patients with autoinflammation and immunological dysregulation, N =
20; patients diagnosed with Hemolytic uremic syndrome N = 9; and patients with Waldenström macroglobuli-
nemia, N = 3). A gene enrichment analysis was performed using the *. VCF file generated by SOPHiA-DDM-v4. 
This analysis selected a subset of genes containing pathogenic or likely pathogenic variants with autosomal 
dominant (AD) inheritance. In addition, all variants of uncertain significance (VUS) were included, filtered by AD 
inheritance mode, the presence of compound heterozygotes, and a minor allele frequency (MAF) cutoff of 0.05 
%. 

The aim of the pipeline described here is based on a perspective shift that focuses on analyzing patients’ gene 
assets, offering new light on the complex interplay between genetics and disease presentation. Integrating this 
approach into clinical practices could significantly enhance the management of patients with rare genetic 
disorders.   

1. Introduction 

The latest advances in Next-Generation Sequencing (NGS) technol-
ogy, in addition to the ongoing refinement of software tools and data 
processing pipelines, have significantly improved our ability to analyze 
the genetic complexity of diseases [1,2]. Despite significant advances in 
understanding the genetic basis of numerous medical conditions, the 
shift to multigene analysis represents a significant break from the classic 
Mendelian genetic paradigm. Mendelian diseases, which are character-
ized by changes in a single gene, have historically dominated genetic 
research and diagnostic testing. Disorders such as thalassemia and cystic 
fibrosis are prominent examples of this monogenic framework, and the 
discovery of pathogenic variants in genes is critical in clinical practice 

[3]. 
Nevertheless, accumulating evidence suggests that many compli-

cated diseases are caused by complex interactions between several 
genes, resulting in a paradigm shift towards multigene analyses [3]. This 
transition represents the recognition of the complex genetic landscape 
that supports specific disease problems beyond the simplicity of the 
Mendelian framework. As our understanding increases, the need to 
study numerous genes simultaneously becomes clearer. Multigene 
analysis not only broadens the field of genetic research but also ac-
knowledges the interplay of gene interactions in generating disease 
clinical manifestations. This change marks a significant advancement in 
our attempt to unravel the rich genetic tapestry that leads to complex 
disease conditions [3]. 
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Due to a variety of circumstances, the NGS diagnosis yield has varied, 
with rates ranging from 25 % to 50 % [4,5]. These factors include the 
genetic and allelic diversity of the disease, criteria employed for patient 
recruitment, clinical manifestations, choice of sequencing platforms, 
and specific laboratory analytical methods applied [4]. The essence of 
precision medicine hinges on accurately deciphering the genetic con-
dition of each patient. The complex interplay between these variables 
can either enhance or limit the efficacy of NGS in clinical diagnostics 
[6]. 

Herein, a multigenic enriched analysis approach is proposed as an 
innovative methodology that requires an extension investigation of data 
obtained from clinical exome sequencing (CES). 

This strategy, similar to the Copernican heliocentric revolution, aims 
to reorient the analysis by focusing on a unique subset of genes in each 
individual. The goal was to determine how all these genetic factors 
contribute to the development of disease or clinical symptoms. 

A meticulous evaluation of the entire ensemble of variated genes, 
leaving no genetic stones unturned, differs from the traditional pipeline 
that frequently focuses on recognizing a particular gene as a major 
descriptor of a pathological state. 

The importance of not prematurely dismissing genetic alterations 
with ambiguous implications has been highlighted by considering var-
iants of uncertain significance (VUS) alongside pathogenic and likely 
pathogenic variants. 

This strategy accomplished two main objectives: improving the 
initial diagnosis and identifying novel characteristics strongly associated 
with modified genes. Consequently, patients diagnosed with rare genetic 
diseases will likely take advantage of more effective clinical pathway 
placements and consequent treatment interventions. 

2. Methods 

2.1. Patient selection for analysis 

All patients provided informed consent, and in the case of pediatric 
patients, consent was obtained from both parents. Specific attention was 
given to patients suffering from autoinflammation and immunological 
dysregulation. These conditions, characterized by significant pheno-
typic variability, present challenges in clinical interpretation. It is 
noteworthy that these patients do not have specific entries in OMIM or 
defined HPO terms, and the use of generic terms could potentially 
introduce bias into the results. Furthermore, investigations were con-
ducted into two less complex conditions: Hemolytic Uremic Syndrome 
(HUS), a rare condition characterized by the destruction of red blood 
cells, resulting in acute kidney failure that primarily affects children and 
can lead to severe complications if not promptly treated; Waldenström 
Macroglobulinemia (WM), an uncommon type of non-Hodgkin lym-
phoma characterized by abnormal white blood cells monoclonal 
immunoglobulin M (IgM), leading to blood thickening and various 
systemic symptoms. In these conditions, no results were obtained from 
the virtual analysis panels. The cohort, in its entirety, consisted of 
twenty probands diagnosed with immunological dysregulation and 
autoinflammation, nine diagnosed with HUS, and three with a potential 
diagnosis of WM. 

2.2. Data analysis 

Clinical SOPHiA GENETICS’ Clinical Exome Solution (CES) 
sequencing was performed on a NextSeq 550 (Illumina, San Diego, USA) 
following the manufacturer’s instructions. To further investigate the 
processed clinical exome data, information from the SOPHiA-DDM-v4 
platform was rigorously reanalyzed using two separate web tools: 
Enrichr (https://maayanlab.cloud/Enrichr/) and DisGeNET 
(https://www.disgenet.org/home/). This dual-tool technique was used 
for enrichment analysis, which drastically improved our understanding 
of processed clinical exome data. 

The major emphasis of our enrichment process was on a meticulously 
selected set of genes obtained from *. VCF file created using the SOPHiA- 
DDM-v4. This collection included all variants categorized as variants of 
unknown significance (VUS), pathogenic, or likely pathogenic. To 
improve the precision of our analytical approaches, we filtered the 
identified genes based on inheritance mode, existence of compound 
heterozygotes, and a 0.05 % minor allele frequency (MAF) cutoffs. 

Enrichr is a powerful and easy-to-use tool for analyzing gene set 
enrichment. This includes several elements that enhance the analysis 
and visualization of the enrichment results. It can be easily integrated 
into existing workflows and is accessible via online browsers, making 
gene-set enrichment analysis a comprehensive and accurate resource. 
The software supports the use of several ranking systems for enriched 
terms, allowing for varied results, prioritization, and analyses. It also has 
interactive visualization capabilities, most likely powered by JavaScript 
data-driven documents (D3) [7–9]. 

DisGeNET is a data-collection tool that can identify links between 
human genetics and diseases. It is a popular tool that integrates a wide 
range of research data, prioritizes measures, and provides standard an-
notations for determining the molecular basis of human diseases and 
potential drug discovery. Moreover, these data are enhanced by the 
application of NLP-based text-mining tools, which combine genotype- 
phenotype interaction data from many databases and include the 
entire range of human diseases, including Mendelian and unusual traits 
linked with disease. These statistics were improved using NLP-based 
text-mining methods for data extraction from the literature. Metrics 
and annotations were provided to enhance the prioritization process and 
facilitate data retrieval and analysis [10]. 

3. Results 

In total, 32 patients who visited our Operative Unit between January 
2022 and February 2023 were thoroughly examined. These probands 
either lacked the pathogenic variants required for diagnostic investiga-
tion, or their alterations could only partially account for the observed 
clinical symptoms. The original investigation, which used the SOPHiA- 
DDM-v4 analytical platform, was unable to provide a satisfactory 
explanation of the clinical concerns. The objective of this study was to 
conduct a thorough investigation of probands using databases and in-
tegrated text-mining techniques to uncover new information that would 
improve our understanding of the clinical signs and symptoms of the 
disease, beginning with the original * . VCF file dataset obtained from 
the SOPHiA-DDM-v4. 

These files provided the basis for subsequent analyses. A subgroup of 
genes with autosomal dominant (AD) inheritance, containing patho-
genic or potentially pathogenic variants, was selected through a gene 
enrichment analysis. Additionally, all variants of unknown significance 
(VUS), filtered by compound heterozygotes, AD inheritance mode, and a 
minor allele frequency (MAF) limit of 0.05 %, were included. The initial 
stage of filtration included consulting the Human Phenotype Ontology 
database (HPO, https://hpo.jax.org/app/) to identify terms or condi-
tions using phenotype codes. In parallel, diseases cataloged in the Online 
Mendelian Inheritance in Man (OMIM, https://www.omim.org/) data-
base were considered. This follows a conventional clinical genetics 
procedure that uses preexisting datasets to filter and identify potential 
genes associated with specific phenotypes and disorders [11,12]. 

The secondary strategy focused on the identification of individual- 
specific genes through exome sequencing. These identified genes 
served as the input for the Enrichr and DisGeNET databases. By inte-
grating the results derived from these databases, associations with dis-
eases and clinical traits were not only identified, but novel and 
previously unexplored correlations between genes and diseases were 
also unveiled. This methodology thereby substantiates the efficacy of the 
adopted approach in revealing intricate genetic-disease relationships.  
Table 1 gives a thorough overview of the discrepancies between the text 
mining results and the analysis of the HPO and OMIM terms. The first 
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Table 1 
Comparative Analysis of SOPHiA-DDM-v4 Filtering by Text Mining with Enrichr and DisGeNET VS OMIM and HPO Data.  

ID OMIN and HPO results Disgenet and Enrich results Protein VAF% gnomAD 

Ces_01 CUBN: c.8593G>A LPL c.953A>G CUBN: c.8593G>A, p.Val2865Met 48% 0.25 
LPL c.953A>G, p.Asn318Ser 56.9% 0.25 
CD74: c.364G>C p.Ala122Pro 60% 0.25 

Ces_02 RAG1: c.416G>T RAG1: c.416G>T, p.Gly139Val, 44.8% 0.0 
CNTNAP2: c.3328G>A, p.Gly1110Arg, 47.3% N/A 
DICER1: c.1124C>G, p.Pro375Arg 47% 4.0E-4 
MEFV: c.2177T>C, p.Val726Ala 45.7% 0.001 

Ces_03 TCF3: c.607G>A TCF3: c.607G>A, p.Ala203Thr, 45.3% 1.0E-4 
GLI3: c.3239T>G, p.Met1080Arg, 46.3% N/A 
TGFBR2: c.931T>C, p.Ser311Pro 48.5% N/A 

Ces_04 CASP10: c.703_704dup TNFRSF13B: c.260T>A CASP10: c.703_704dup, p.Leu235Phefs*2, 46.1% 0.0 
TNFRSF13B: c.260T>A, p.Ile87Asn, 52% 5.0E-4 
DCC: c.3059T>C, p.Phe1020Ser, 46.1% N/A 
FEZF2: c.697C>A, p.Pro233Thr, 52.3% 0.0 
POMC: c.157G>A p.Asp53Asn 50.4% 0.0 

Ces_05 WT ATN1: c.530G>A, p.Arg177Gln, 53% 1.0E-4 
CABIN1:c.5024G>A, p.Gly1675Glu, 36.5% N/A 
IRF8:c.11G>A, p.Arg4Gln, 29.6% 0.0 
KLF1:c.887T>C, p.Leu296Pro, 52.2% N/A 
SIRT1:c.25C>T, p.Leu9Phe 38.7% N/A 

Ces_06 CD40: c.647-1G>A IL6ST: c.736A>G CD40: c.647- 1G>A, p.?, 20.4% N/A 
IL6ST: c.736A>G, p.Asn216Asp, 44.3% 0.0 
CCR3: c.92C>T, p.Thr31Ile, 57.6% 0.0 
COL4A3: c.4678C>A, p.Val1560Ile, 43.2% 1.0E-4 
CREBBP: c.3109A>G, p.Thr1037Ala, 40% 0.0 
IL17F: c.371A>C, p.Gln124Pro, 54.9% N/A 
MYH9: c.32A>G, p.Tyr11Cys, 48.8% 1.0E-4 
MYH9: c.1102A>G, p.Asn368Asp 48.5% 0.0 

Ces_07 WT SLC4A7:c.317C>T, p.Gln373* 39.7% 1.0E-4 
Ces_08 WT GC: c.553A>G, p.Met185Val, 43.4% 1.0E-4 

ICAM1:c.1432C>T, p.Arg478Trp, 56.1% 0.0041 
PDGFRA:c.1516C>T, p.Leu506Phe, 100% 0.0 
RORA: c.242_244del p.Phe81del 49.2% 0.0 

Ces_09 TGc.1567T>C TG: c.1567T>C, p.Ser523Pro, 56.5% 0.0018 
CACNA1:c.6019C>T, p.Pro2007Ser, 54.7% 0.0 
CNTNAP2: c.2611G>T, p.Val871Leu, 42.5% 0.0 
CNTNAP2:c.3328G>A, p.Gly1110Arg, 48.2% N/A 
KITLG: c.53T>C, p.Leu18Pro, 43.3% N/A 
KMT2D:c.1168G>A, p.Val390Ile, 51.3% 0.0 
SELP:c.2180G>A, p.Gly727Glu, 47.4% 0.0012 
TLX1:c.412A>G, p.Arg138Gly, 50.9% N/A 
TTN:c.6127A>G p.Lys2043Glu 51.6% N/A 

Ces_10 TCF3: c.920A>G TCF3:c.931G>G, TCF3: c.920A>G, p.His307Arg, 46.4% 0.0 
TCF3:c.931G>G, p.Val311Leu, 53.1% 0.0 
ADAM10: c.409C>A, p.Val137Ile, 51.5% 0.0 
AXL: c.299G>T, p.Arg100Leu, 50% N/A 
THBD: c.1502C>T, p.Pro501Leu, 40.3% 0.0018 
TIRAP: c.427C>T p.Arg143Trp 57% 1.0E-4 

Ces_11 SIAE: c.467A>G SIAE: c.467A>G, p.Tyr166Cys, 50.6% N/A 
UNC13D:c.73A G UNC13D:c.73A>G, p.Arg25Gly, 54.5% N/A 
UNC13D:c.-130C>T UNC13D:c.-130C>T, p.?, 50.0% N/A 
UNC13D:c.2341G>A, UNC13D: c.2341G>A, p.Val781Ile 52.4% 0.0013 

Ces_12 NLRP3: c.2113C>A SIAE:c.835C>T, NLRP3: c.2113C>A, p.Gln705Lys, 47.7% 0.04 
SIAE:c.835C>T, p.Arg279Cys, 46.9% 0 
BCOR: c.3331C>T, p.Pro1111Ser, 45% 0 
CCR5: c.187A>T, p.Ser63Cys, 55.60% 0.0008 
EXT1:c.1814G>A, p.Arg605Gln, 45.50% N/A 
MMP1: c.152+1G>A, p.?, 42.30% 0.0001 
MMP1: c.375del, p.Ile125Metfs*45, 43.90% 0.012 
MYH9: c.3630- 4C>T, p.?, 43.60% 0 
NLRP2:c.1765G>T, p.Asp589Tyr, 44% 0.0004 
TRPM2: c.3122T>G, p.Leu1041Arg, 50% N/A 

Ces_13 TCN2: c.508C>T UNC13D: c.5C>T TCN2: c.508C>T, p.Arg170Trp, 43.80% 0 
UNC13D: c.5C>T, p.Ala2Val, 49.10% 0 
LRP5: c.1738G>A, p.Val580Ile, 46.30% 0.0005 
MAPK1: c.928C>A, p.His310Asn, 32% N/A 
NOD2: c.649G>A, p.Glu217Lys 52.50% N/A 

Ces_14 WT APOE: c.21_26del, p.Arg7_Lys8del 53% N/A 
C3: c.4740G>C, p.Gln1580His 48.60% N/A 
CCR3: c.32A>G, p.His121Arg 48.70% N/A 
ENG: c.1099G>A, p.Ala367Thr 43.50% 0 
FOXO1: c.- 2C>T, p.? 43.20% N/A 
IFIH1: c.505A>T, p.Lys169* 42.90% N/A 
NFATC2: c.2284C>T, p.Arg762Cys 50.30% 0 

(continued on next page) 
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Table 1 (continued ) 

ID OMIN and HPO results Disgenet and Enrich results Protein VAF% gnomAD 

SLC22A1: c.188G>T, p.Gly63Val 42.50% N/A 
Ces_15 ATM:c.6860G>A 

ATM:c.1236-2A>T 
ITCH: c.1117C>T 
KRAS: c.407G>A, 

ATM:c.1236-2A>T, p.Gly2287Glu 44.70% 0 
ATM:c.6860G>A, p.? 38.90% 0 
ITCH: c.1117C>T, p.Arg373Cys 55% N/A 
KRAS: c.407G>A, p.Ser136Asn 55.90% 0 
GABBR1: c.97C>T, p.Pro33Ser 41.90% N/A 
HAVCR1: c.329G>A, p.Arg110His 46.70% 0.0001 
PON3: c.931T>A, p.Ser311Thr 43.90% 0 

Ces_16 JAK3c.362G>A JAK3: c.362G>A, p.Arg121His 43.50% 0.0002 
AXIN1: c.644C>T, p.Ser215Leu 45.50% 0.0004 
CYP21A2: c.518T>A, p.Ile173Asn 26.90% N/A 
CYP21A2: c.844G>T, p.Val282Leu 24.10% N/A 
CYP4F3: c.753del, p.Asp252Metfs*53 47.90% N/A 
MAP2K2: c.238G>A p.Ala80Thr 47% 0 

Ces_17 WT ADAM10: c.1931G>A, p.Arg644Gln 44.60% 0 
CBLB: c.227A>G, p.Lys76Arg 46.20% N/A 
CIC: c.112G>A, p.Asp38Asn 44.10% N/A 
EGFR: c.3200A>G, p.Asn1067Ser 54.30% 0 
EOMES: c.491C>T, p.Pro164Leu 56.60% N/A 
P2RX7: c.1456C>A,, p.Gln486Lys 50.40% N/A 
PKM: c.1178G>T, p.Arg393Leu 42.30% N/A 
SH3BP2: c.688G>T, p.Gly230Cys 48.30% 0 
SLC11A1: c.335G>A, p.Arg112His 42.10% 0 
TPM3: c.*87_*104dup p.? 42.30% N/A 

Ces_18 NLRP1: c.-155T>G NLRP12: c.779C>T SLC46A1: c.946C>G ZFAT: c.3385G>A NLRP1: c.- 155T>G, p.? 57.10% N/A 
NLRP12: c.779C>T, p.Thr260Met 41.40% 0.0007 
SLC46A1: c.946C>G, p.Leu316Val 49.30% N/A 
ZFAT: c.3385G>A, p.Glu1129Lys 43.80% 0 
A4GALT: c.973C>T, p.Arg325Trp 52% 0 
ABI3BP: c.1522+2T>A, p.? 56.20% 0 
CILP: c.1547G>A, p.Arg516His 50.70% 0.0001 
LPA: c.4282C>T, p.Arg1771Cys 47.50% 0.0019 
LPA: c.5311C>T, p.Pro1428Ser 46.30% N/A 
LRRK2: c.7532T>C, p(Ile2511Thr 44.10% N/A 
NLRX1: c.830G>A, p(Arg277His 52.50% 0.0002 
TNN: c.70294G>C, p.Arg23535His 48.40% 0.0001 
TNN: c.70604G>A, p.Glu23432Gln 47.40% N/A 

Ces_19 WT PSTPIP1: c.*21C>T, p.? 39.6% 3.0E-4 
REN: c.145C>T p.Arg49* 35.7% 1.0E-4 

Ces_20 UNC13D: c.1609G>T UNC13D: c.1609G>T, p.Val537Leu 39.90% 0 
ALDH2: c.913G>A, p.Glu305Lys 67% N/A 
GPC3: c.301A>C, p.Lys101Gln 43% 0 
HDAC9:1621T>C, p.Trp541Arg 50% N/A 
ITGAM: c.1237C> p.Arg413Trp 49.60% 0 
T, SPP1: c.98T>C, p.Leu33Pro 39.70% N/A 
TTN: c.47925G>T, p.Leu29065Arg 49.30% 0 
TTN: c.87194T>G, p.Trp15975Cys 46.30% 0 

Ces_21 WT NUMA1 c.5636G>C, p.Ser1879Thr 50.4% N/A 
SPP1: c.680A>G p.Lys227Arg 54.6% 4.0E-4 

Ces_22 CD46 c.1148C>T CD46 c.1148C>T, p.Thr383Ile 46.5% 6.0E-4 
MYH9: c.2180A>G p.Asn727Ser 48.2% N/A 

Ces_23 WT KMT2D: c.*48T>A, p.? 26.7% N/A 
MAP2K1: c.1138G>A, p.Gly380Ser 45.1% 0.0 
NUMA1: c.6295- 
148_*124del 

p.? 23.5% N/A 

Ces_24 WT COG4: c.340A>G, p.Ser114Gly 47.20% 0 
FBN1: c.3509G>A, p.Arg1170His 36% 0.0012 
RYR1 c.3301G>A, p.Val1101Met 46.70% 0 
SALL4 c.1287T>G, p.Phe429Leu 37.90% 0.001 

Ces_25 WT F8: c.1318A>G, p.Arg440Gly, 46.2% N/A 
PML: c.1754C>T, p.Ala585Val 49.7% 6.0E-4 

Ces_26 WT ALG8 c. 1516G>A, p.Ala506Thr 48.20% 0.0005 
COG4 c.2039A>G, p.Asn680Ser 57% 0 
FLT1 c.2174C>A, p.Ser725* 46.90% 0 
ITGA2B c.457G>A, p.Ala153Thr 47.20% 0.0002 
RUNX1 c.109G>A, p.Gln1026Arg 39.60% 0 
NOS2 c.3077A>G p.Val1326Met 50.80% 0 
PTPRJ: c.3976G>A p.Gly37Ser 52.10% N/A 

Ces_27 WT NLRP1:c.3589C>A p.Leu1197Ile 51.1% 0.0 
Ces_28 WT ANKRD11: c.5614G>A, p.Val1872Ile, 46% N/A 

PTPRC: c.2822C>T, p.Pro941Leu, 37.5% N/A 
VWF: c.6112A>G p.Met2038Val 30% 0.0 

Ces_29 SLC7A7:c.1381_1384dup SLC7A7:c.1381_1384dup, p.Arg462Asnfs*7 46.80% 0 
SLC22A1 c.784C>T, p.Arg262Cys 52.40% 0 
THPO p.Ala209_*354del 33.10% N/A 
TUBB1 c.925C>T, p.Gln43Pro 44.60% N/A 

(continued on next page) 
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group of 20 probands in the table came with a diagnosis of auto-
inflammation and immunological dysregulation, while the other nine 
had suspicions of hemolytic uremic anemia (HUS), but no pathogenic 
variants were discovered by the virtual panel comprising the primary 
known genes connected with the disease (ADAMTS13, C3, CD46, CFB, 
CFH, CFHR1, CFHR3, CFHR, CFI, COG1, DGKE, MMACHC, MTRR, 
PRDX1, THBD, TMEM165, ZNFX1). The remaining three patients may 
have WM, although no identified pathogenic variants were found in 
MYD88. 

Text mining analysis provides valuable insights into the variability of 
the affected organs and their clinical characteristics, offering important 
information on the complex landscape of autoimmune and auto-
inflammatory conditions. Numerous interactions between immune- 
related disorders and their mechanisms have been revealed by a sub-
stantial amount of knowledge on these disorders, highlighting their 
complexity. These conditions involve distinct modifications related to 
innate and adaptive immunity, which involve a series of events that lead 
from an initial inflammatory state to the damage of specific organs. The 
analysis revealed several genes with distinct relationships, as well as 
possible etiological and phenotypic alterations, providing new knowl-
edge into the mechanisms that control the beginning and progression of 
these conditions, which are still mostly unknown. 

In the CES_05 study, where traditional filtering with OMIM and HPO 
terms yielded no results, we identified five genes associated with the 
phenotype of immunological dysregulation: ATN1, CABIN1, IRF8, KLF1, 
and SIRT1. Specifically, the protein encoded by ATN1 (atrophin1) in-
teracts with CABIN1 (Calcineurin Binding Protein 1) via HDAC7 (His-
tone Deacetylase 7), and with SIRT1 (Sirtuin1), a post-translational 
regulator that modulates inflammation. CABIN1 is known to play a role 
in T cell activation as a negative regulator of calcineurin [13]. 

Similarly, KLF1 (KLF Transcription Factor 1) interacts with IRF8 
(Interferon Regulatory Factor 8) through the protein BCL11A (Tran-
scription factor B-cell lymphoma/leukemia 11A) [14,15]. IRF8 is 
essential for the development and maturation of myeloid cells (dendritic 
cells, monocytes, macrophages), and for the expression of intrinsic 
anti-microbial functions such as antigen capture, processing, and pre-
sentation to lymphoid cells, and for the activation of these cells in 
response to cytokines and pro-inflammatory stimuli. Further examina-
tion of the potential correlations between the identified proteins reveals 
a complex network of regulatory mechanisms involving gene expression 
modulation, T cell activation, and inflammatory response regulation. 
This highlights the complexity of immune dysregulation and the po-
tential for targeted therapeutic interventions [16]. 

The analysis was also extended to patients initially diagnosed with 
HUS but without a pathogenic variation identified using the virtual gene 
panel. Text mining revealed a wider array of genetic variants in this 
patient sample, suggesting a probable lack of precision in the diagnosis 
and genetic heterogeneity within the condition. 

Interestingly, the diagnosis was refined for the Ces_27 sample, con-
firming the presence of the NLRP1 variant c .3589C>A. NLRP1 has been 
associated with an increased risk of Addison’s disease, a rare chronic 
condition caused by adrenal gland failure, which can lead to renal 
microangiopathy and, eventually, renal failure [17]. 

In the third group of three patients with WM, different genetic var-
iants, including NOD2, LRRC8A, and ID3 with VWF, were detected. 
Primary analysis using conventional OMIM and HPO keywords did not 
identify related genes. However, the genes discovered are related to 

Schnitzler’s syndrome (SchS), an autoinflammatory disease, congenital 
agammaglobulinemia, and primary Sjögren’s syndrome (pSS). These 
findings enable the reassessment of patients and the potential use of 
these data for differential studies to enhance classification [18–21]. 

Remarkably, the text-mining approach revealed a much larger pool 
of gene matches, successfully concluding the diagnosis in all cases, 
compared to only 16 cases partially diagnosed using the conventional 
OMIM and HPO approaches. Additionally, the text-mining method en-
sures that no information is lost from the conventional OMIM and HPO 
filtering, as it includes the resulting genes in the larger list. This dem-
onstrates the power and potential of text mining in genetic research and 
diagnosis. 

4. Discussion 

The accelerated evolution of NGS technologies, complemented by 
the continuous refinement of software tools and data analysis pipelines, 
has revolutionized our ability to explore the genetic foundations of 
diseases. This extends our understanding of the genetic contributions to 
various medical conditions [22]. 

However, the NGS revolution is characterized by variable diagnosis 
rates that do not have defined values but rather span a wide range 
(25–50 %); thus, they are influenced by a variety of factors that affect 
the accuracy and efficacy of this technology [4,5]. 

Diagnostic success becomes more complicated when dealing with 
diseases characterized by extensive genetic and allelic diversity. In such 
scenarios, multiple genes may contribute to the condition, each with 
varying levels of influence, requiring additional analytical depth and 
precision. 

The application of basic filters within the currently used tools, which 
include the utilization of specific HPO terms or diseases documented in 
the OMIM database, plays a pivotal role in curating genetic information. 
These filters, while seemingly straightforward, possess the remarkable 
ability to significantly restrict the vast wealth of genetic data accessible 
from an entire range of genes [23,24]. 

HPO terms offer a structured vocabulary to describe the phenotypic 
abnormalities associated with a particular genetic condition. OMIM 
serves as a comprehensive resource cataloging a myriad of inherited 
genetic disorders and the genes implicated in their etiology. By har-
nessing the power of these two resources, the software can narrow the 
search for pertinent genetic information [24]. 

One of the primary functions of these filters is to identify genes that 
are directly relevant to a specific disease or set of clinical characteristics. 
This targeted approach is instrumental in the diagnosis and management 
of genetic conditions. This allows healthcare professionals and re-
searchers to efficiently shift through genomic data and focus their 
attention on genes most likely to be associated with the observed clinical 
manifestations [25] this precision comes at a cost and a significant 
portion of the genomic data is excluded. When these filters were applied, 
several genes that did not directly align with the specified HPO terms or 
OMIM-listed diseases were screened. Although this is advantageous in 
terms of efficiency and focus, potentially valuable genomic information 
residing outside the predefined scope remains unexplored [25]. This 
highlights the existing dichotomy between the "analog" data provided by 
clinical characteristics, which often overlap or are attributable to 
completely different pathologies, and the "digital" data provided by 
variants that define genes implicated in syndromic forms, even those 

Table 1 (continued ) 

ID OMIN and HPO results Disgenet and Enrich results Protein VAF% gnomAD 

TUBB1 c.c.128_129delinsCC p.Arg309Cys 45.40% 0 
Ces_30 WT NOD2 c.1965G>T p.Leu655Phe 44.4% 5.0E-4 
Ces_31 WT LRRC8A c.1634G>A p. Arg545His 56.6% 0.0 
Ces_32 WT ID3 c.*4G>A, UTR3 35.3% 2.0E-4 

VWF c.1653C>A ’p.Asn551Lys 50.8% N/A  
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different from the initially suspected ones, as seen in reverse genomics. 
This may have resulted in the oversight of genes with previously 

undiscovered associations with the conditions under investigation. 
These “hidden” genes may provide crucial clues regarding disease 
mechanisms, potential treatment targets, or genetic modifiers that could 
enhance our understanding and management of this condition. Stringent 
adherence to these filters can inadvertently limit the ability to reveal 
novel genetic insights. 

However, the application of HPO and OMIM filters is not a one-size- 
fits-all approach. Its utility depends on the specific objectives of the 
genetic analysis. In situations where a clinician is seeking a rapid 
diagnosis of a patient with well-defined clinical features, these filters are 
invaluable. They expedite the diagnostic process by identifying genes 
that are most likely to be causative. However, for researchers exploring 
the intricacies of complex genetic disorders or less-characterized con-
ditions, a broader, less-filtered approach may be necessary to cast a 
wider net and explore the full genomic spectrum. 

This multigenic approach emphasizes the significance of a thorough 
genetic perspective that illustrates the complex network of hereditary 
factors influencing health and disease. Understanding the complexity of 
many diseases, the role played by different genes, and how a person’s 
unique genetic profile is defined. 

It may also be combined with information offered by the statistical 
method of Polygenic Risk Scores (PRS), which predict a particular 
phenotype by integrating the cumulative impact of several genetic 
variants that only marginally increase the overall risk. 

The potential integration of the multigenic approach with PRS is 
fascinating because it will help us comprehend the genetic landscape of 
complicated diseases. The potential benefit of combining multigenic 
analysis with PRS collective genetic risk could provide a more complete 
picture of genetic susceptibility, especially in the absence of a diagnosis. 
This is evident in diseases where multigenic research reveals a variety of 
genetic variants but is unable to identify the key contributors. 

In these scenarios, the ability to distinguish between hereditary and 
non-genetic disorders with significant environmental components is 
extremely useful for disease diagnosis. This technique advances preci-
sion medicine by adding PRS and multigenic analysis to the diagnostic 
process, allowing medical professionals to provide patients and their 
families with personalized treatment. 

5. Conclusion 

In conclusion, our retrospective study highlights the limitations of 
traditional methods for obtaining information on uncommon genetic 
diseases. The need to improve diagnostic accuracy also becomes clear in 
the case of autosomal recessive and autosomal dominant single-gene 
conditions. 

NGS has ushered in a new age by enabling the use of multigenic 
approaches and the availability of a plethora of genomic data. This 
comprehensive multigenic approach allows for the customization of 
treatment plans according to the individual genetic profile of each pa-
tient. Conditions such as PKU and thalassemia are excellent examples of 
the complex features of autosomal recessive and autosomal dominant 
illnesses, which highlight the complex interactions between genes and 
disease symptoms. When a multigenic approach is applied, genetic 
testing is used to detect variations accurately, offering important in-
formation regarding the likelihood of the disease [26,27]. 

Furthermore, the shift in our understanding from monogenic to 
multigenic disorders reflects the changing complexity of genetic con-
tributions to health and disease. As we move away from the period of 
“orphan” illnesses, which are frequently overlooked owing to their 
rarity, towards a more comprehensive understanding of multigenic 
factors, the potential for therapeutic advances becomes clearer [28]. The 
transition to multigenic illnesses, which includes the investigation of 
modifier genes, reveals the dynamic characteristics of genetic research 
and its implications for precision medicine [28]. 

To summarize, the trajectory of genetic research, together with ad-
vances in technology such as NGS, establishes multigenic analysis as the 
foundation of precision medicine. This radical change promises to 
improve diagnostic accuracy while also opening the door for personal-
ized and targeted treatment approaches, eventually improving patient 
outcomes and influencing medical care approaches. 

The table presents a detailed comparison of two distinct methodol-
ogies: the application of SOPHiA-DDM-v4 filters for OMIM and HPO 
analysis, and a text mining strategy involving the Enrichr and DisGeNET 
databases. 

The first 20 samples (Ces_01 to Ces_20) are from patients with 
autoinflammation and immunological dysregulation. The second col-
umn lists genes identified using specific DDM platform filters, including 
OMIM Inflammation, Autoinflammatory disease, and HPO terms 
(HP:0000285, HP:0004313, HP:0010976, HP:0001433, HP:0004315, 
HP:0001875). The third column displays genes identified through Dis-
GeNET and Enrichr analysis using terms such as Autoimmune Auto-
inflammatory Disease, Neutropenia Lymphocytopenia, and Primary 
Immunodeficiencies. 

Samples Ces_21 to Ces_29 are related to suspected Hemolytic Uremic 
Syndrome (HUS) cases. These were analyzed using the OMIM term: HUS 
and HPO terms such as HP:0001919, HP:0001937, HP:0004431, 
HP:0005575. The resulting genes are displayed in the second column. 
The third column shows genes identified through DisGeNET and Enrichr 
analysis using terms such as Hemolytic and Uremic Syndrome, Throm-
bocytopenia, Kidney Injury, and Complement Deficiency. 

Samples Ces_30 to Ces_32 are suspected cases of Waldenström’s 
Macroglobulinemia (WM). Genes identified using the OMIM term: 
Waldenström’s Macroglobulinemia and HPO term: HP:0005508 are 
displayed in the second column. The third column shows genes identi-
fied through DisGeNET and Enrichr analysis using terms such as 
Waldenström’s Macroglobulinemia, Hypogammaglobulinemia, Macro-
globulinemia, and Cryoglobulinemia. 

It’s noteworthy that all genes identified through the OMIM and HPO 
filters were consistently present in the results of the text mining analysis. 
Genes and variants highlighted in red are of particular interest. Com-
pound heterozygotes are shown in bold font. The final three columns 
report the corresponding amino acid changes, the variant allele fre-
quency (VAF), and the frequency in the gnomAD (Genome Aggregation 
Database). (Fig. 1). 
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Fig. 1. In the diagram, a comprehensive comparison is presented between two approaches: one involving the application of SOPHiA-DDM-v4 filters in the analysis of 
OMIM and HPO approaches, and the other employing a text mining strategy utilizing Enrichr and DisGeneNET databases. The results reveal the identification of 
multiple causative genes for each patient, underscoring the significant heterogeneity of the autoinflammatory syndrome condition. Additionally, potential causative 
genes were identified in samples Ces_05, Ces_07, Ces_08, Ces_14, Ces_17, and Ces_19 where a conventional filtering method using OMIM and HPO had failed to 
identify any causative gene. 
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