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Medical research shows that eye movement disorders are related to many kinds
of neurological diseases. Eye movement characteristics can be used as biomarkers
of Parkinson’s disease, Alzheimer’s disease (AD), schizophrenia, and other diseases.
However, due to the unknown medical mechanism of some diseases, it is difficult
to establish an intuitive correspondence between eye movement characteristics and
diseases. In this paper, we propose a disease classification method based on decision
tree and random forest (RF). First, a variety of experimental schemes are designed
to obtain eye movement images, and information such as pupil position and area is
extracted as original features. Second, with the original features as training samples,
the long short-term memory (LSTM) network is used to build classifiers, and the
classification results of the samples are regarded as the evolutionary features. After that,
multiple decision trees are built according to the C4.5 rules based on the evolutionary
features. Finally, a RF is constructed with these decision trees, and the results of disease
classification are determined by voting. Experiments show that the RF method has good
robustness and its classification accuracy is significantly better than the performance
of previous classifiers. This study shows that the application of advanced artificial
intelligence (AI) technology in the pathological analysis of eye movement has obvious
advantages and good prospects.

Keywords: eye movement, disease discrimination, decision tree, random forest, long short-term memory

INTRODUCTION

Eye movement information can be used as an important indicator of a variety of medical diseases
and has been a focus of extensive research. Summarizing recent academic literature, the correlations
between eye movement and congenital nystagmus, autism, depression, schizophrenia, Parkinson’s
syndrome, vertigo, and epilepsy have been verified and studied.

Yang et al. (2015) developed a digital eye tracker to determine the efficacy of congenital
idiopathic nystagmus surgery. Giordano et al. (2017) proposed a computer system for
ophthalmologists and neuropsychiatrists to customize experiments according to different
scenarios and employed it in investigation experiments for patients with glycogen storage
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disease, idiopathic congenital nystagmus, and
neurodevelopmental diseases to assess their eye
movement performances.

Murias et al. (2018) carried out an eye gaze tracking
experiment in which children with autism spectrum disorder
(ASD), aged 24–72, months were asked to watch a videotape
that was designed to attract the attention of children to
evaluate their social communication skills. They analyzed the
relationship between the children’s eye gaze performance and
social communication outcome measures that are typically used
in ASD clinical trials, and it was proposed that eye gaze tracking
could be a non-invasive, quantitative, and objective biomarker
associated with social communication abilities in children with
ASD. Vargas-Cuentas et al. (2017) designed an eye tracking
algorithm to measure the gaze preferences of children with ASD
and of a healthy control group when viewing social scenes and
abstract scenes shown simultaneously on the left and the right
sides of the screen, respectively, and achieved very high accuracy
in the classification of children with ASD and healthy children.
Dicriscio and Troiani (2017) implemented a paradigm designed
to capture patterns of pupil adaptation in children with ASD
during sustained periods in dark and light environments. It
was found that pupil dilation features are related to individual
differences measured by the Social Responsiveness Scale, a
measurement for autism traits.

Typical applications of eye movement information in the
diagnosis of depression have been described in previous papers
(Li et al., 2016; Shengfu et al., 2017; Xu et al., 2017a; Duque
and Vazquez, 2018). Shengfu et al. (2017) had patients with
major depressive disorder (MDD) and non-depressed controls
complete eye tracking tasks and analyzed the attention preference
of the participants according to positive, negative, and neutral
expressions. According to the results of their study, eye
performance in free observation tasks can also be affected by
age. Malsert et al. (2012) carried out an experiment in which
patients with MDD performed an antisaccade task, and the
results suggested that antisaccade performance is associated with
the clinical scale score. Furthermore, because error rates had
good performance in predicting patients’ states after depressive
disorder therapies, error rates could be a state marker for mood
disorders (Malsert et al., 2012).

Research on the diagnosis of schizophrenia has also involved
eye movement analysis (Dowiasch et al., 2016; Yu et al., 2016;
Morita et al., 2017; Xu et al., 2017b; Silberg et al., 2018). Morita
et al. (2017) considered eye movements as a biomarker of
schizophrenia. They recruited 85 schizophrenia patients and 252
healthy controls to perform free fixation, stable fixation, and
smooth tracking tasks and employed an integrated eye movement
score to distinguish patients with schizophrenia from healthy
controls. Asgharpour et al. (2015) examined the relationship
between symptom severity and visual attention allocation while
facing emotion-neutral face pairs between adult patients with
schizophrenia and healthy controls and concluded that the
facial recognition deficit of schizophrenia is related to decreased
attention to face stimuli.

Some scholars have applied eye movement information
to Alzheimer’s disease (AD) research (Coubard, 2016;
Fernández et al., 2016; Lim et al., 2016). Lim et al. (2016)

analyzed cerebrospinal defects through fluid analysis, brain
imaging, and postmortem, which are commonly applied
methods for detecting AD pathological biomarkers, and
presented the evidence of ocular biomarkers in AD to explore
potential future research approaches of eye movement analysis
for AD diagnosis.

As a type of dyskinesia, Parkinson’s disease is likely to be
related to optic nerve dysfunction, which affects the cerebral
cortex and the subcortical network due to neurodegeneration,
causing abnormal eye movements. Archibald et al. (2013) carried
out an experiment in which a series of visuo-cognitive tasks
was performed by patients with Parkinson’s disease, with and
without cognitive impairment, and the error rates and the visual
exploration strategies of the patients were examined. According
to their study, the visual performances of patients are impaired
significantly regardless of cognitive damage, which indicates that
there could be a disease-specific impact on the networks directing
visual search or exploration.

Wiener-Vacher et al. (2019) gave various oculomotor tasks
before and after orthoptic vergence training to children who
had dizziness with vergence disorders and found that their
orthoptic and oculomotor parameters improved significantly
after the training. Degirmenci et al. (2010) performed tests
including tracking, saccade, optokinetic, gaze, positional, and
Dix–Hallpike tests on patients with vertigo and/or other
problems related with equilibrium caused by relapsing–remitting
multiple sclerosis (RRMS) and found electronystagmographical
characteristics sensitive to detecting the vestibular system
involvement in RRMS patients.

Hunfalvay et al. (2019) carried out research focused on people
with different severities of traumatic brain injury (TBI) as well
as asymptomatic controls. Eye tracking tests were performed to
measure horizontal and vertical saccades, and it was concluded
that eye tracking methods could be a reliable way to quantify the
severity of TBI. Reddy et al. (2019) measured the parameters of
eye movement while reading in subjects with TBI and found the
parameters to be affected by TBI no matter the severity of the
injury, compared to controls. Vakil et al. (2019) presented TBI
patients and healthy controls with photographs of male faces, and
the result showed that TBI patients paid less attention to the given
target and had less dwell time on them, and their memory for
faces was also impaired.

Concussion is a form of mild TBI incurred through direct or
transmitted impulses to the head that result in functional brain
injury. Video-oculographic (VOG) recordings of eye movements
can quantitatively describe ocular motor performance in
concussed subjects (Williams et al., 1997; Crevits et al., 2000;
Heitger et al., 2002, 2004, 2006, 2009; Kraus et al., 2007; Pearson
et al., 2007; Rizzo et al., 2016). Through investigation, VOG
was found to be an objective and precise way for acquiring
eye movement data for concussion evaluation, although some
issues including cost, availability, and explanation still need to be
explored (Akhand et al., 2019).

Artificial intelligence (AI) is increasingly delivering
breakthroughs in numerous research fields and is urgently
demanded in disease diagnosis. Considering that eye movement
can be recorded and collected conveniently in the form of video,
some machine learning methods are especially suitable for
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dealing with eye movement videos, including long short-term
memory (LSTM) network, decision tree, and random forest (RF).

Kothari et al. (2020) trained and evaluated RF and a recurrent
neural network (RNN) model to develop algorithms for the
categorization of gaze events (e.g., fixations, pursuits, saccade,
and gaze shifts) without fixing the head. Zandi et al. (2019)
performed a driving simulation experiment to measure driving
behavior for detection of drowsiness. The eye tracking data were
input into an RF and a non-linear support vector machine for
binary classification of the state of vigilance, and the RF method
achieved an accuracy of∼90%.

According to investigation in published papers, machine
learning methods are promising ways of handling eye videos,
and many fields have already benefited from them. Up to now,
there have been few reports of machine learning being used in
eye movement analysis and disease diagnosis. They are usually
analyzed in traditional ways, which may limit the mining of eye
movement features and neglect some valuable information.

Besides that, to better excavate eye movement features,
multiple experimental schemes should be designed and, after
collecting eye videos, eye movement information should
be extracted and quantified to obtain appropriate medical
characteristics.

Artificial intelligence research confirms that deep learning
can automatically acquire valuable features and improve
the robustness of object classification by learning a large
number of samples. Thus, AI techniques can be adopted
to build eye movement-based disease classifiers. In this
paper, experiments are designed to obtain eye videos,
and then multiple original eye movement features are
extracted for further analysis. The original eye movement
features are used to build the LSTM classifiers, and
then the output probabilities of the samples are used as
evolutionary features for subsequent decision tree and
RF construction. The classification results are eventually
obtained with the RF.

MATERIALS AND METHODS

Experimental Scheme Design and
Original Eye Movement Features
Extraction
Experimental Scheme Design
When human eye activity is used in related scientific research,
the first step is to record and extract eye movement information.
The experimental scheme used in this study was designed to
generate natural or synthetic images on the display screen,
guide eye gazing or tracking, and record eye images at
the same time. Through image analysis, the position, area,
shape, and other pupil information were obtained. Medical
characteristics can then be obtained by mining the pupil
information and can be applied for physiological lesions and
psychological state analysis.

In recent years, with the development of computer video
technology, cameras have become capable of recording the

whole process of eye movement, extracting pupil information
accurately and obtaining eye movement features for subsequent
research. Therefore, an eye tracker has become the main means
of obtaining eye movement information. Figure 1 shows the
infrared video eye tracker developed by our laboratory. The
device employs a video camera with an infrared LED to obtain
eye movement images and transmit to the computer in real time.
The software on the host can produce various patterns to guide
the eye movement according to the experimental scheme so as to
induce some diseases to be shown in the process of eye tracking.

In order to carry out medical research through eye movement
information, a variety of experimental schemes need to be
designed. Moving objects with different speeds and paths or
images with specific scenes are generated on the computer screen
to stimulate eye tracking and analyze its medical meaning. Our
eye tracker supports gaze test, saccade test, smooth pursuit test,
optokinetic test, positional test, and positioning test, and each can
be selected for different purposes.

In this study, we designed two experimental schemes: an
optokinetic test and a smooth pursuit test. The tests are
characterized by a spot of red light moving along a specific
trajectory to guide the subjects’ eye tracking. In the first scheme,
the light spot moves from left to right along a horizontal line in
the center of the screen. After it reaches the right edge, it returns
to the left and repeats the movement. In the latter scheme, the
light spot moves along a two-way zigzag track, and after reaching
the right endpoint, it returns to the left and starts again from the
beginning, as shown in Figure 2. During the test, the subjects
wore the eye tracker, sat in front of a screen, and were asked to
track the moving light spots on the screen. At the same time,
a video of the eye movement is transmitted to a host computer
through the WiFi module of the eye tracker and is recorded

FIGURE 1 | The eye tracker in our laboratory.
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FIGURE 2 | The moving trajectories of the light spots in the two experimental
schemes.

on the same computer as that generating the tracking image.
When the designated number of frames is recorded, the data
acquisition ends.

The Original Eye Movement Features Extraction
Because the eye movement is obtained with infrared LED
illumination, the light is more robust to interference and pupils
are made more obvious and easy to extract. By using the general
image analysis method, we can get accurate pupil information, as
shown in Figure 3. According to the area covered by the detected
pupil pixels, the position, area, shape, and other parameters
of pupils in each frame of the video can be calculated as eye
movement features.

In our study, based on the detected pupil area, we calculate
nine parameters as optional features: position (including abscissa
and ordinate), area (including pupil area and the area of
the minimum bounding rectangle), symmetry (including the
azimuth angle and the aspect ratio of the minimum bounding
rectangle), and shape regularity (including the length of pupil
outline, left to right area ratio, and top to bottom area ratio).

Due to the differences in pupil size, initial position, and view
angle of the subjects, it is necessary to normalize the pupil
information. Supposing fi is a certain pupil feature obtained from
the eye movement image of frame i, and the video contains M
frames in total, then the normalized feature gi is obtained by
Equation (1).

gi =
(
fi − min

i=1∼M
(fi)
)

/

(
max
i=1∼M

(fi)− min
i=1∼M

(fi)
)

(1)

With the above-mentioned processing, the values of
the normalized features will be in the range of 0–1.
g =

[
g1, g2, ..., gM

]
is constructed as a feature vector. This

feature corresponds to a certain parameter of the pupil in
a specific experimental scheme. If there are s experimental
schemes, and k parameters from the detected pupil are extracted
in each scheme, then s × k feature vectors will be obtained for
every subject; that is, s × k feature vectors will be established for
each participant for subsequent classification and recognition.
Because the feature g comes from pupil information directly,
it is called an original eye movement feature in the following
sections of this paper.

FIGURE 3 | Pupil extraction of eye movement image.

Evolutionary Features Extraction
The characteristic information of eye movement obtained
from the eye tracking experiment is time-varying, and its key
pathological information may exist in some special period.
Therefore, a disease classification model should be constructed
based on eye movement features, and it needs to have memory
of the temporal domain and should automatically retain
important momentary information according to the rules or
classification results. LSTM is a kind of special RNN that can
handle long-distance dependence, which RNNs generally cannot
manage, and is especially suitable for feature extraction and
classification of time series signals. It is widely used in natural
language processing, text analysis, speech recognition, machine
translation, and other fields.

Because eye movement information can also be used as
time series signals, the LSTM network is adopted to classify
the eye movement features in our study. According to the eye
tracking experiment schemes, the time sequence features g =[
g1, g2, ..., gM

]
obtained during the test should be divided into

equal time slices and then input to each cell of the LSTM
network. The last hidden layer of the LSTM is followed by a
full connection network. The number of neurons in the output
layer of the full connection network represents the classification
categories. Finally, the discrimination result of the sample is
obtained through a Softmax function, as shown in Figure 4A.

In our study, feature vector g, which is used as the input of
LSTM network, is called the original eye movement feature, and
its classification ability is weak. It can be expected that some
features may not be associated with partial specific diseases and
thus have no contributions for classification. It is necessary to
fuse all the features together effectively to get more accurate
classification results.

Therefore, we use the classification results Pi of the LSTM
classifier as evolutionary eye movement features for subsequent
classification. In this study, we selected three categories, including
healthy people, brain injury patients, and vertigo patients, so
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FIGURE 4 | Long short-term memory (LSTM) network classification results served as evolutionary eye movement features: (A) the LSTM classifier in our work and
(B) sample distribution map based on evolutionary eye movement features.

we will get Pi, i = 1, 2, 3. Because P1 + P2 + P3 = 1, there are
only two free variables in the three features; thus, we choose
P1 and P2 as evolutionary features; that is to say, through the
LSTM classification network, the original feature vector g with
M elements is transformed into the evolutionary feature vector
Ef = [P1, P2] with two elements. For a total of s × k features, we
form s × k feature vectors named Ef. Because the evolutionary
features are obtained by the LSTM network through learning
from the labels of the training samples, they have stronger abilities
to discriminate the samples.

Figure 4B presents the distribution of a sample set with a
certain feature vector of Ef. The sample set includes 32 samples
of three types, including 8, 12, and 12 samples of each type. It can
be seen that the classification ability of this feature vector to these
three categories of samples is poor.

Disease Classification Method Based on
Decision Tree and Random Forest
Because a single LSTM classifier comes from the eye movement
feature of a certain experimental scheme, its classification ability
for different diseases will vary greatly and cannot be accurately
estimated. In fact, as shown by the previous analysis, assuming
that there are s experimental schemes and k parameters are
extracted from the detected pupil in each scheme, therefore s× k
original features will be obtained for the subject. Because two
feature components as [P1, P2] can be obtained through the
LSTM network from each original feature, a total of 2 × s × k
evolutionary features can be obtained for each subject. These
features can be used to construct more effective classifiers.

Decision tree and RF algorithms are a kind of AI method
that can effectively deal with such problems. RF refers to a
classifier that uses multiple trees to train and predict samples.
This classifier was first proposed by Leo Breiman and Adele
Cutler and is registered as a trademark. RF is essentially a type
of ensemble learning, which is a branch of machine learning. Its
basic unit is a decision tree, and its output category is determined
by which output category contains a majority of all the decision

trees. Therefore, the construction of decision trees is the key
step of an RF algorithm. In our study, decision tree and RF
algorithms are used to solve the joint classification problem of
eye movement features.

Decision Tree Construction
Decision tree is a supervised machine learning method. Given
2 × s × k evolutionary eye movement features of the sample
and its label, a decision tree can be obtained by learning, which
can give classification results to new samples. The decision
tree generation algorithms include ID3, C4.5, and CART. The
decision tree has a tree-like structure in which each internal node
represents a feature judgment, each branch represents the output
of a judgment result, and finally, each leaf node represents a
classification result.

There are three categories of samples recruited in our study,
and each sample has 2 × s × k features. The C4.5 algorithm is
used to construct the decision tree. Generally, assume a sample set
named as D, which contains W categories with N samples in total.
N1, N2, . . . and NW are the numbers of samples corresponding
to W categories, and the equation N = N1 + N2 + · · · + NW is
satisfied. The number of features is named as M, M = 2 × s × k.
The key tasks during construction of decision trees are the feature
selection of the branch node and the feature value determination
for comparison. Because N samples is assumed in the sample
set, each feature has N values. There may be N−1 segmentation
points to separate the values of a feature. For M features, there
are M × (N−1) segmentation points. According to the C4.5
algorithm, the information gain rate should be calculated for each
segmentation point.

First, the entropy of sample set D, called H(D), is computed in
Equation (2):

H(D) = −

W∑
l=1

Nl

N
log2

Nl

N
(2)

Let a feature segmentation point be J, which divides sample
set D into two sets, J1and J2 = N − J1are the numbers of samples
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in the two sets, respectively. Considering the classification of the
J1samples in the first set, suppose that it contains p categories,p ≤
W. Meanwhile, the numbers of samples of the p categories are
named as d1, d2, . . . , dp, respectively, and J1 = d1 + d2 + . . .+
dp, then the entropy of the first set is determined by Equation (3).

H(J1) = −
p∑

l=1

dl
J1

log2
dl
J1

. (3)

Similarly, considering the classification of the J2 samples in
the second set, suppose that it contains q categories, q ≤W,
and the numbers of samples of the q categories are named as
d1, d2, . . . , dq, respectively, and J2 = d1 + d2 + . . .+ dq, then
the entropy of the second set is determined by Equation (4).

H(J2) = −
q∑

l=1

dl
J2

log2
dl
J2

(4)

The conditional entropy of the sample set D segmented by
feature J is calculated by Equation (5).

H(D|J) =
2∑

i=1

Ji
N
H(Ji). (5)

According to the above-mentioned computation, the
information gain g(D, J) of feature segmentation point J can be
obtained [see Equation (6)].

g(D, J) = H(D)−H(D|J) (6)

For the two sample sets formed according to the partition by
segmentation point J, the entropy is determined by Equation (7).

H(J) = −
2∑

i=1

Ji
N

log2
Ji
N

(7)

Finally, according to Equation (8), we can calculate the
information gain rate gr(D, J) induced by dividing sample set D
by feature segmentation J

gr(D, J) = g(D, J)/H(J) (8)

After the information gain rates of all possible partition points
J are calculated, the segmentation point J with the maximum
information gain rate is selected to realize node branching.
According to the constraints of decision tree construction, such
as the tree depth, the minimum nodes allowed to be split, etc., the
decision tree can be constructed. Generally, the decision tree will
grow until a single category is reached; that is, p or q is 1. The
decision tree can be used to pre-classify the test samples.

Random Forest Construction for Disease
Classification
The so-called RF is used to randomly select samples and
features, constructing multiple decision trees. The final
classification results are determined by the voting of these
decision trees. In order to enhance the robustness and
avoid overfitting, there will be two random selections while

constructing each decision tree. The specific steps are described
as follows:

(1) First, the samples are randomly selected. For N samples of
set D, the bootstrap method is used to randomly select N
samples with replacement to form a sample set, which is
used for the new construction of the decision tree.

(2) A total of log2([M(N − 1))] feature segmentation points
are randomly chosen from the M × (N−1) segmentation
points at each branch node of the tree. The information
gain rate of all the selected points are computed, and the
segmentation point with the maximum value is selected
to branch nodes. Meanwhile, the adopted segmentation
point is marked to avoid being selected again at the
following branch nodes.

(3) Each tree grows to the maximum without any pruning to
get the decision tree.

(4) Repeat the above-mentioned steps (1) to (3), wherein
multiple decision trees are generated to make up the RF.
Use the RF classifier to test the new data. The classification
result depends on the number of votes of the decision tree
classifiers. The samples which have not been selected in the
process of constructing the decision tree can be used as test
samples to verify the performance of the RF classifier.

RESULTS

Sample Grouping and the Original Eye
Movement Features Extraction
In order to verify the classification method proposed above, we
designed two experimental schemes, those being the optokinetic
test and the smooth pursuit test; thus, s = 2. The moving
trajectories of the light spots are shown in Figure 2. The subjects
track the moving light spots while 250 frames of video are
recorded at a frame rate of 30 frames per second. The pupil
is detected from each frame, and then the abscissa x, ordinate
y, and area r of pupil are extracted as eye movement features,
k = 3. Therefore, the number of original eye movement features
is s× k = 6.

In cooperation with medical institutions, we recruited 60
patients from two categories to participate in the experiment,
including 24 patients with brain injury and 36 patients with
vertigo. In addition, 36 healthy volunteers were invited for
comparative testing. The healthy controls, brain injury (including
cerebral infarction) patients, and vertigo patients are recorded as
C1, C2, and C3, respectively.

According to the demands of classifier construction in our
study, all 96 samples were divided into three groups. The first
and the second groups were called training groups; the first group
was used to train the LSTM classifier, and the second one was
used to train the decision tree and RF. The third group was called
the testing group and was used to test the performance of all
intermediate or final classifiers. Each group contained 32 samples,
and the distribution of each group of samples in each category is
shown in Table 1.
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TABLE 1 | Composition of the three groups of samples.

C1 C2 C3

Group 1 12 8 12

Group 2 12 8 12

Group 3 12 8 12

All 96 subjects participated in the eye tracking experiments.
Six eye movement features as gi, i = 1, 2, ..., 6 were calculated
for each subject, and these features are called original eye
movement features.

LSTM Classifiers Training and the
Evolutionary Features Extraction
Six original eye movement features were obtained in the previous
step. Because they are derived from 250 frames of recorded eye
movement, each feature is a vector containing 250 elements.
The LSTM classifiers are constructed for each feature vector, and
all six classifiers adopt the same structure. The 250 elements
are divided into 10 slices according to the time sequence, and
each slice contains 25 elements; that is to say, in Figure 4A,
the vector Xi contains 25 elements, while t = 10. The number
of neurons in the hidden layer is set to 64, and the output
of the full connection network is three, corresponding to the
sample categories.

The 32 samples of group 1 are used for LSTM classifier
training. Because one LSTM classifier is trained for each
feature vector, six LSTM classifiers can be obtained.
Python + Tensorflow is applied to realize the experimental
simulation. Figure 5 shows the change of classification accuracy
for the six classifiers over the rounds of iterations in the training
process. The accuracy is defined as the ratio of the number
of correctly classified samples to the total number of samples
in all categories.

It can be seen from Figure 5 that the convergence rates of
the six classifiers are different, but after nearly 60 iterations, all
classifiers can correctly classify the training samples, so we get six
LSTM classifiers based on the samples of training group 1.

In order to obtain the evolutionary eye movement features,
we use the six LSTM classifiers to test the samples in training
group 2. The sample features selected during the test of each
classifier should correspond to the features adopted during the
training of each classifier. The accuracy of each classifier is shown
in Table 2. For each sample in training group 2, six vectors of
Ef = [P1, P2] can be obtained from the test results of the six
LSTM classifiers; that is to say, two feature components called
P1 and P2 are obtained from each LSTM classifier. Eventually,
2 × s × k = 12 features are obtained for every sample.
They are called evolutionary eye movement features and are
expressed asf1, · · · , f12. Their corresponding relations are shown
in Table 3.

The 12 features of Table 3 are evolutionary features, which
are obtained by the six LSTM classifiers and the samples in
training group 2. These features will be used to construct the
decision trees and RF.

FIGURE 5 | The classification accuracy changed in the process of training.

Decision Tree Construction and
Performance Analysis
After the 12 evolutionary eye movement features f1, · · · , f12 are
obtained, they can be adopted for the construction of decision
trees and RF according to C4.5 algorithm.

Because there are 32 samples in training group 2, there will
be a maximum of 31 segmentation points for each feature; that
is, M = 2 × s × k = 12, N = 32. Therefore, the total of feature
segmentation point J is M × (N−1) = 372. The 32 samples
are randomly selected 32 times by the bootstrap method to get
a new sample set. Then, from the 372 segmentation points,
log2(M(N − 1)) ≈ 8 feature segmentation points are selected
randomly to construct a decision tree, which is then processed
according to the steps in “Random Forest Construction for
Disease Classification.” Figure 6 shows two decision trees built
by the above-mentioned method.

It can be seen from the decision trees in Figure 6
that although eight features are selected, only three to four
features are eventually adopted in each tree due to the small
number of samples. If more samples are collected, each
decision tree will adopt more features, and the classification
robustness will be better.

Construction and Performance Analysis
of Random Forest Classifiers
The previous procedure is repeated to construct 20 decision
trees based on the randomly selected samples and features.
In the process of decision tree construction, the features used
in the node branch are no longer selected. According to the
classification results of each decision tree, the category with the
most votes is regarded as the classification result of the subject.

Sample group 3 is especially designed for RF testing to analyze
the performance of this method. For comparative analysis,
sample group 3 is used to test all previous classifiers.

In order to verify the effectiveness of our method, we compute
the three key indicators of precision, recall, and FScore to
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TABLE 2 | Accuracy of the six long short-term memory classifiers to the samples in training group 2.

Classifier 1 Classifier 2 Classifier 3 Classifier 4 Classifier 5 Classifier 6

Accuracy (%) 68.75 62.5 87.5 84.375 71.875 78.125

TABLE 3 | Corresponding relations among the evolutionary features and the test results of the long short-term memory classifiers.

Classifier 1 Classifier 2 Classifier 3 Classifier 4 Classifier 5 Classifier 6

Test result P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

Evolutionary features f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

FIGURE 6 | Two decision trees constructed by randomly choosing the samples and the features.

evaluate the performance of the classifiers. First, we choose two
LSTM classifiers, and their results are presented in Figure 7.
Figure 7A shows the above-mentioned three parameter values of
LSTM classifiers 1 and 2. Because the experiment includes three
categories, but these performance indicators are only defined
for binary classification, we convert the three categories into
three binary classification problems by selecting one category and
evaluating it against the remaining two categories to calculate
the parameters. The three markers in the horizontal direction
represent the classifications of C1, C2, and C3 against the
remaining classes, respectively. The ordinate represents the
calculation results of the three indicators of the two classifiers.

Figures 7B,C respectively, correspond to two LSTM classifiers,
each showing five curves. Three of them are ROC curves relating
to the above-mentioned three binary classification problems, and
the other two are the average values obtained by adopting macro-
and micro-methods from the three curves. In addition, the area
under the curve (AUC) values were calculated for each of the five
curves, which also represent the classification performance.

Figure 8 was generated using the same method as in Figure 7,
and each curve is associated with two classifiers. Figure 8 relates
to the two decision trees constructed by the C4.5 algorithm.

Because the decision tree gets the final decision result, the
classification probability of the sample is only 0 or 1, with
no intermediate value, such that there is only one threshold
when constructing the ROC curve. Therefore, the ROC curve is
composed of two line segments. In spite of this, the AUC values
still reflect the performance of the classifiers.

From these figures, we can see that the performance of the
LSTM classifier is not stable. The performance of the different
classifiers is very different, and the classification performance
of the same classifier for different classes is also very different.
Because the LSTM classifier comes from different features and
some features are not related to some diseases, it has no
classification value. The decision trees in Figure 8 come from the
optimal selection of various evolutionary features with stronger
classification abilities, which can be applied for the construction
of RF. In order to verify the effectiveness of RF for disease
classification, we compared the accuracy of the three classifiers
with that of RF (see in Figure 9A). It contains three curves. The
first one is the test results of the six LSTM classifiers, and the
second one is the test results of six decision trees constructed by
C4.5 algorithm. Finally, the last curve is the classification result
of RF constructed by 20 decision trees. In order to facilitate the
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FIGURE 7 | The performance of two long short-term memory (LSTM) classifiers. (A) Three classification performance indicators of two LSTM classifiers. (B) The
receiver operating characteristic (ROC) curves and the area under the curve (AUC) values of LSTM classifier 1. (C) The ROC curves and the AUC values of LSTM
classifier 2.

FIGURE 8 | The performance of two decision trees constructed by C4.5 algorithm. (A) Three classification performance indicators of two decision trees. (B) The
receiver operating characteristic (ROC) curves and the area under the curve (AUC) values of decision tree 1. (C) The ROC curves and the AUC values of decision tree
2.

FIGURE 9 | (A) Test accuracy of four classifiers for sample group 3 (six points on the horizontal axis represent six tests). (B) Three classification performance
indicators of random forest. (C) The receiver operating characteristic curves and the AUC values of forest.

comparison and reduce the accidental factors, we also construct
six RFs and record the classification accuracy for each one.
Figure 9A shows the classification accuracy of the three classifiers
for the six tests of sample group 3.

It can be seen from Figure 9A that the three classifiers have
different accuracy rates for the testing samples. The accuracy rates
of the six RFs are 0.96875, 0.96875, 0.96875, 0.96875, 0.9375,
and 0.9375. In the six tests of 32 samples in the testing group,
the numbers of correct classification are 31, 31, 31, 31, 30, and
30, which are significantly higher than that of other classifiers,
showing good disease classification performance.

In order to further evaluate the disease classification ability of
RF, we compute the three key indicators of precision, recall, and
FScore to evaluate the performance (Figure 9B), ROC curves,
and AUC values (Figure 9C). They all show better performance
than that of other classifiers.

DISCUSSION

Medical research has confirmed that eye movement information
is related to a variety of mental activities and physical diseases.

Frontiers in Neuroscience | www.frontiersin.org 9 August 2020 | Volume 14 | Article 798

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00798 August 4, 2020 Time: 15:41 # 10

Mao et al. Eye Movement-Based Disease Classification

However, due to the mechanism being unclear, it is difficult
to directly associate eye movement characteristics with disease
discrimination. Therefore, medical diagnosis methods based on
eye movement are not practical, and it is especially difficult to
distinguish multiple diseases. The aim of this study is to use
advanced AI technology to extract more valuable eye movement
features by a supervised learning method. To establish the
relationship between diseases and eye activities, eye movement
information is explored for effectiveness in relation to disorders
under various experimental schemes. More effective disease
classifiers can be constructed to mine the potential value of eye
movement research.

The advantage of this research is that, by exploiting the
learning ability of an AI algorithm for samples, the features can
be automatically evaluated and chosen without prior pathological
knowledge. The effective relationships can be established through
experimental schemes for automatic extraction of eye movement
features and disease classification.

The drawbacks of this study lie in several aspects: First, during
the test, the subjects are required to stay awake, participate in the
test as required, and try to keep their heads still, which limits
the scope of use. Second, there are too few samples, resulting
in the classifier not being sufficiently robust. In future work, we
will collect more samples for training classifiers to improve the
reliability. Based on research of pathological knowledge, we can
present a more valuable experimental scheme and extract more
features for disease discrimination. Advanced classification and
clustering techniques will be explored to improve the ability of
classifiers to distinguish specific diseases and may even discover
some unknown diseases.

CONCLUSION

To exploit eye movement information for disease diagnosis, AI
technology is applied for self-learning and feature extraction.
Features can be evaluated and automatically selected by a
supervised learning algorithm. A variety of experimental schemes
were designed to guide the subjects for eye tracking while
a video of eye movement is recorded. The pupil is detected
through image processing, and a variety of original eye movement
features are obtained. For each original feature, an LSTM

classifier is established, and the classification results are treated
as evolutionary features, which are applied to build decision
trees and an RF. The process of constructing the RF reflects
the effectiveness of evaluation and selection of eye movement
characteristics guided by the sample labels. The experimental
results also demonstrate the efficiency of this method and greatly
encourage the research value and prospect of AI techniques in
disease diagnosis.
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