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Abstract: Microbial natural product discovery programs face two main challenges today: rapidly
prioritizing strains for discovering new molecules and avoiding the rediscovery of already known
molecules. Typically, these problems have been tackled using biological assays to identify promising
strains and techniques that model variance in a dataset such as PCA to highlight novel chemistry.
While these tools have shown successful outcomes in the past, datasets are becoming much larger
and require a new approach. Since PCA models are dependent on the members of the group being
modeled, large datasets with many members make it difficult to accurately model the variance in
the data. Our tool, hcapca, first groups strains based on the similarity of their chemical composition,
and then applies PCA to the smaller sub-groups yielding more robust PCA models. This allows for
scalable chemical comparisons among hundreds of strains with thousands of molecular features. As a
proof of concept, we applied our open-source tool to a dataset with 1046 LCMS profiles of marine
invertebrate associated bacteria and discovered three new analogs of an established anticancer agent
from one promising strain.
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1. Introduction

Natural product drug discovery programs continue to provide new and bio-medically relevant
pharmacophores [1]. Among the potential sources of natural products, bacteria have proven to be a
particularly prolific resource; for example, the genus Streptomyces is responsible for an unrivaled 80% of
known actinomycete natural products [2]. Many natural products discovery programs rely heavily on
collecting source organisms from diverse ecological niches in an attempt to harness the biological and
chemical diversity stemming from these living systems. Given the time-span of a traditional natural
product discovery pipeline [3–5], it is important to minimize the chemical redundancy and maximize
chemical diversity in an environmental collection in order to minimize rediscovery. As such, tools to
effectively survey sources of natural products prior to employing their chemistry for drug discovery
are critical for effective discovery programs. Without effective tools, many downstream assay hits
invariably result from similar or identical chemotypes, drastically increasing the number of resources
required to discover new high-value leads. Although we have previously demonstrated that liquid
chromatography mass spectroscopy (LCMS)-based metabolomics help to partly address this problem,
we also found that there are fundamental limits to scaling these methods [6,7]. Specifically, there are
no good tools to handle large LCMS-based untargeted metabolomics datasets that aligned with drug
discovery goals. To meet this need we developed a tool called hcapca that enables rapid assessment of
chemical diversity using low cost LCMS-based untargeted metabolomics.
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As an alternative to LCMS techniques, Clark et al. recently demonstrated an excellent method
to compare functional chemistry between closely related environmental isolates using in situ
matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) based
proteomics and metabolomics. They were able to discriminate between freshwater Micromonospora
isolates that were more than 99% similar by 16S rRNA sequencing [8]. While MALDI clearly holds
promise, many natural product discovery programs including ours, have chosen to utilize LCMS-based
untargeted metabolomics techniques [3,9–17]. Compared to MALDI, reduced ion suppression [18],
increased sensitivity, better metabolite coverage, and the ability to separate complex mixtures based on
retention time all make LCMS a very attractive low-cost option for strain dereplication.

Given the appeal of LCMS, there have been a number of recent chemoinformatic advancements
to better utilize its power, setting the stage for systems-level metabolomic investigations [19–32].
XCMS [26] and MZmine2 [32] are open source tools written to generate spectral tables that incorporate
high-throughput peak detection and retention time correction. Tools such as GNPS [33] and
MS-DIAL [24] aim to dereplicate molecular features using tandem MS data (MS2) while more
recent techniques such as MASST [21] and Qemistree [34] enable one to search and classify those
features based on publicly available molecular databases. However, many of these technologies,
though amenable to large datasets, rely on MS2 data which provide rich sub-structure information but
often focus only on the most intense ions. Although these innovative tools and techniques are extremely
powerful, we believe that as a first step, hcapca can provide the necessary strain dereplication and
help prioritize promising strains. Thereafter, optimization and additional scrutiny can be performed
on the selected strains using MS2-based tools yielding even more chemical information.

While the tools used to identify strains with diverse chemistry are immensely important,
the chemical diversity is also dependent on the environment where samples originate. New and diverse
chemistry can be accessed by exploring non-traditional environmental niches such as caves and insect
symbionts, making new sources for lead compounds available [35–48]. Although this increases the
likelihood of finding new chemical entities, it is still difficult to identify these elusive molecules because
a majority of the molecules produced are often shared, even across different genera. For example,
Doroghazi et al. showed that related strains of actinobacteria—a phylum known for their prolific
natural product potential [37,38]—shared 80% of their nonribosomal peptide synthetases (NRPSs)
and 73% of their type II polyketide synthase (PKS) gene cluster families (GCFs) [49]. Additionally,
Ziemert et al. and Jensen et al. showed that while there was a core set of metabolites within each of
three species of Salinospora, unusual gene clusters were more random in occurrence [2,50]. In short,
the microbial potential for chemical diversity does exist within organisms but is difficult to capture
without specialized tools. hcapca employs principal component analysis (PCA), an unsupervised
learning technique, which can highlight this hidden chemical diversity in an LCMS dataset. hcapca
models variance in the data, collapses common metabolites, and highlights molecules that account for
the greatest overall variance i.e., are likely to be “interesting”. Thus, hcapca enables users to access the
diversity even within their large datasets to discover new chemistry.

Unsupervised techniques have been used in the past on metabolomics data [51–59] including
hierarchical clustering analysis (HCA) [8,60]. Indeed, even within the realm of natural products
discovery, we and others have successfully used PCA to identify novel chemical scaffolds [6,51,52,60–67].
However, we believe we are the first to rigorously integrate HCA with PCA. Thus, we present hcapca—a
general and highly effective algorithm designed to enable untargeted strain prioritization for drug
discovery from large metabolomics datasets. As a proof of concept, we analyzed 1046 LCMS extracts
from marine invertebrate associated bacteria resulting in 71,000+ molecular features. Using hcapca,
we rapidly organized this large dataset into 90 clusters. Upon examining one of the 90 clusters,
we discovered three previously unknown analogs of lomaiviticin [68,69], an anticancer compound.
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2. Results

2.1. PCA

Effective prioritization of samples for natural product drug discovery requires the identification
of samples with unique chemistry. Unique or interesting chemistry can be identified by finding the
sources of chemical variance amongst our samples. In our tool, we use PCA to model the variance in a
dataset. PCA is a powerful algorithm that reorients data along the principal axes of variance in a dataset
thus enabling the identification of interesting samples and subsequently, novel molecules [70,71].
PCA is agnostic of sample metadata such as species of the strains in the dataset or biological activity
of the metabolites. This enables the discovery of chemically significant outliers [6,7,36,47,72–74] and
important overarching patterns [17,70,71,75] even in datasets with little to no metadata i.e., datasets
composed of samples from niche (often underexplored) environments.

However, for very large datasets with more complex chemistry, PCA alone is insufficient to
reveal clear trends. Ultimately, the model is dependent on the set of strains chosen for the dataset [7].
As shown in Figure 1, as we decrease the number of samples being modeled (numbers at the top right
corner for subplots Figure 1a–d), trends become increasingly clearer. The amount of variance being
explained by each principal component or PC (shown in parentheses on the axes of each subplot) also
increases since there is less variation in the dataset. In Figure 1a, there are 1046 samples (and thus
1046 PCs) present and the first two PCs represent only 5.7% of the total variance in the dataset.
For comparison, useful PCA models typically have far fewer PCs and an order of magnitude higher
explained variance in PCs 1 and 2 than in the dataset being modeled [7,70,71,75].
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Figure 1. Subplots (a–d) show the PCA scores plot for four datasets. The number of samples in each
dataset is shown in the top right corner of each plot. The total variance explained by a principal
component (PC) is shown in parentheses next to the axis labels on each subplot. As the number of
samples in a PCA decreases, the variance explained by each PC increases due to a combination of fewer
samples and lesser overall variance in the dataset.
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2.2. HCA

An overabundance of data in a single PCA model can be avoided by using HCA to split the dataset
into smaller subgroups and then subjecting each of those subgroups to PCA. Analogous to clustering
gene expression data [53], metabolite-based HCA assumes that samples with similar metabolic profiles
are chemically related and should be grouped together. Performed alone, HCA is able to organize
samples into a tree based on the similarity between microbial metabolomes. An example of such a
tree, also called a dendrogram, is shown in Figure 2. The next step is to pick smaller clusters from
this tree and subject each of them to PCA. However, while the human eye can pick out a few clusters
or groups, the problem of choosing appropriate clusters quickly becomes intractable. Additionally,
for very large datasets such as ours, dendrograms are extremely large and difficult to both visualize
and interpret by human eyes alone. In fact, the dendrogram shown in Figure 2 is only a small portion
(123 samples) of the tree representing all 1046 samples. Representations of the full tree can be found in
Figures S1 and S3.
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Figure 2. (a) Partial dendrogram generated from an HCA of all 1046 samples. The scale on the left
denotes dissimilarity i.e., the closer to the bottom a pair of samples are, the more similar they are to
each other. Only a small subset of the figure is shown for clarity; the original complete dendrogram
may be found in the Supplementary Information as Figures S1 (linear display) and S3 (circular display).
(b) Arbitrary dissimilarity cutoff choice of 0.95 results in eight different groups being formed. The groups
have been colored accordingly. The eight groups have been colored as red, brown, grey, blue, magenta,
teal, orange, and green. The yellow dots indicate the point at which the tree branch diverges to form
each respective colored group of samples.

2.3. HCA and PCA in Combination

hcapca solves the problem of sub-cluster generation and readily enables visualization of the
sub-trees generated. Our aim is to create a tree based on the similarity between strains and then divide
that tree into smaller sub-groups. Upon generating a tree such as Figure 2a, a decision must be made on
how to divide this tree into smaller sub-groups. Typically, this is done by choosing a dissimilarity value
on the Y-axis and drawing a line straight across the entire tree. The branches below the intersections
of the straight line are considered separate sub-groups as shown in Figure 2b. Our next step would
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be to model the variance in these sub-groups using PCA. However, there are two problems that we
must first solve. Firstly, there exist many values of dissimilarity cutoffs that would lead to groups with
only one sample. Figure 2b shows how, if we chose a dissimilarity cutoff of 0.95, we are able to draw
a line straight across (red dashed line) which intersects the tree branches at various points (colored
yellow). These branches and the samples within are each treated as a separate group. Notice that the
“groups” colored red, brown, purple (first three samples on the left in Figure 2b) and teal contain one
sample each. PCA models are not possible for single samples. Secondly, the blue colored group in
Figure 2b still contains 88 samples; far too many to allow for a robust PCA model. One simple solution
is to regenerate a new tree from just the blue group and again choose an arbitrary dissimilarity cutoff

to form sub-groups. While this solves our problem of having too many samples in a sub-group, our
dissimilarity cutoff decision is still arbitrary and dependent on the choice of samples [7]. This is the
same phenomenon we have observed with PCA—the choice of samples changes the PCA (or HCA)
model completely [7].

Herein lies the innovation of hcapca; instead of choosing an arbitrary dissimilarity cutoff value
for making sub-groups, we can use the variance explained by the PCs (from a PCA model) to decide
the cutoff for us. First, as before, a distance matrix of all the samples is generated and a large tree
is made (Figure 3a). Next, the tree is partitioned at the point where it first branches (point of first
divergence in Figure 3a–c), and the sum of the variance is explained by the first two PCs (SoV12 )
is simultaneously calculated from PCA models of each sub-cluster. If the SoV12 is smaller than the
preset cutoff value (25%), the cluster is re-partitioned (this condition is denoted in red color below
each cluster). If the SoV12 is greater than or equal to the preset cutoff value, the cluster is no longer
partitioned (this condition is denoted in green color below each cluster) and a PCA model of the
samples in that sub-cluster is calculated (the squares at the bottom of Figure 3c).
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Figure 3. Scheme depicting hcapca logic. Note also that a small (35 sample) example of the walk
through of hcapca processing and interactive visualization is depicted in Supplementary Information
Figures S4–S13. (a) The first tree is partitioned into two smaller sub-clusters. (b) Since the SoV12 for the
two sub-clusters does not meet the cutoff value (25%), they are further split into smaller groups (c).
The SoV12 of the red and green clusters is more than the cutoff value and so their partitioning stops and
PCA models are made (red/green squares). The green and blue sub-clusters have SoV12s lower than
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the cutoff so they are split further as indicated by the ellipsis. (d) The overall structure of this schema
results in a “tree-of-trees”. The circles represent the various nodes being formed and are colored as
per the trees (from a, b, and c) that they represent. Dashed borders indicate nodes that need to be
partitioned further while solid lines denote nodes that can no longer be split.

Using explained variance as a user-set cutoff for determining cluster composition and R
Shiny [76–78] based interactive visualizations, hcapca thus helps to visualize the breakdown of
the large tree into smaller and smaller sub-trees based on the chemical similarity within the data.

In effect, the overall process yields a large “tree-of-trees” where each node represents a smaller
tree. This representation is shown in Figure 3d where the overall tree is drawn parallel to each
corresponding part of Figure 3a–c, and colored based on the splitting. Nodes that can be further
partitioned are indicated by dashed borders and ones that will no longer be split are indicated by
solid lines. In Figure 3d, two of the nodes reached the cutoff threshold (solid red and green borders);
the other two did not and consequently were partitioned further (dashed blue and yellow circles). Thus,
by combining HCA with PCA and recursive partitioning of the tree, we can obtain small, chemically
similar sample groupings that yield more informative PCA models.

2.4. Identification of Novel Chemistry

It is important to reiterate our hypothesis that “outliers” in metabolomic data are more likely
to be novel. Using PCA to model the chemical variance in a dataset, identify promising strains and
their metabolites, and thereby discover novel molecules is a credible approach backed up by both
our group’s own work [6,7,17,36,47,48,73,74], as well as by genomic studies [49,50] done by other
groups. The addition of HCA serves to broaden the scope to allow large scale analyses and offer a
more robust method of identifying promising strains. To demonstrate and utilize this algorithm for
strain prioritization and drug discovery, we examined PCA models of the terminal nodes more closely
and identified bacterium WMMA1901 (henceforth A1901) as a possible producer of novel chemistry
(Figure 4). Figure S2 shows the location of the node in the overall tree. The HCA for this node contained
eight samples (Figure 4a) and the PCA model for the node showed that the strain harbored interesting
chemistry (Figure 4b). The highlighted red square on the Scores plot shows how A1901 is pulled out
in the PCA. Since the scores and loadings plots are algebraically and geometrically related, the red
squares on the loadings plot highlight the metabolites of interest that likely originate from strain
A1901. Subsequent traditional isolation and purification by HPLC and structure elucidation by NMR
revealed three new molecules (Figure 4c). Compounds FZ4-23-1, FZ4-22-1, and FZ4-22-2, are analogs
of lomaiviticin, a class of anticancer compounds [68,69].



Metabolites 2020, 10, 297 7 of 15

Metabolites 2020, 10, x FOR PEER REVIEW 7 of 15 

 

 
Figure 4. A1901 was identified from the PCA of node ‘fj’ shown in Figure S2. (a) The dendrogram of 
the node ‘fj’ contains eight strains in total. (b) PCA scores and loadings plots of the node containing 
A1901 with red squares highlighting the strain and its corresponding metabolites respectively are also 
shown. (c) Structures of the new lomaiviticin congeners. 

Figure 4. A1901 was identified from the PCA of node ‘fj’ shown in Figure S2. (a) The dendrogram of
the node ‘fj’ contains eight strains in total. (b) PCA scores and loadings plots of the node containing
A1901 with red squares highlighting the strain and its corresponding metabolites respectively are also
shown. (c) Structures of the new lomaiviticin congeners.

To further illustrate the utility of our tool, we highlighted the position of A1901 (see Figure 5
below) in each of the four PCA plots shown previously in Figure 1. It is immediately apparent that,
without hcapca, neither A1901 nor its unique metabolites would be discovered so expediently. To
further illustrate the utility of our tool, we highlighted the position of A1901 (see Figure 5 below) in
each of the four PCA plots shown previously in Figure 1. It is immediately apparent that, without
hcapca, neither A1901 nor its unique metabolites would be discovered so expediently.
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Figure 5. (a–d) represent the PCA models for the nodes mw, yq, ss, and bm from Figure S2, respectively.
Sub-plots (i–iv) correspond to (a–d), respectively, highlighting the position of A1901 using a red dot
while de-emphasizing other points in the plot by making them grey. Without the utilization of hcapca,
the discovery of the new anticancer compounds would not have been possible.
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3. Materials and Methods

Previously generated LCMS data from our library were used for this analysis. The library itself
was created through isolation of bacteria from sponge and ascidian specimens, cultivation in solid or
liquid media, extraction using solvents, and finally a UPLC-HRMS analysis to generate LCMS profiles.
Please refer to our previous publications for the details [6,7,17] and to Supplementary Information
Table S1 for all media employed during fermentations.

3.1. Generation of Spectral Intensity Tables

3.1.1. Profile Analysis

Bruker Compass ProfileAnalysis 2.3 (Billerica, MA, USA). Find Molecular Features was applied to
LCMS data under these parameters: S/N threshold, 5; correlation coefficient threshold, 0.7; minimum
compound length, 10; smoothing width, 1. The LCMS datasets were evaluated in a time range from
2 to 14 min and in a mass range from m/z 150 to 1500. Advanced bucketing was employed using
∆RT = 0.33 min and ∆m/z = 4 ppm as parameters.

3.1.2. MZmine2

We generated mass lists (detected ions) for each scan using Mass Detection (cutoff of 1E3),
detected chromatograms using Chromatogram Builder (∆m/z = 4 ppm, ∆RT = 0.33 min), and separated
individual peaks using the Chromatogram Deconvolution module (using ADAP module: an S/N
threshold of 5, peak duration of 0 to 0.33 min, and RT wavelet range of 0 to 10 min). Isotopes were
removed using the Isotopic peak grouper module and alignment was performed using both RANSAC
and Join aligners. Finally, the data was exported to a CSV file and separated into 4 parts as specified in
the Data format section below.

3.1.3. Data Format

The script expects data in four different files: Analyses.dat contains the sample names separated
by new line characters, Variables_m.dat contains the m/z values separated by spaces all on one line,
Variables_t.dat contain retention time values separated by spaces all on one line, and Table.dat contains
the spectral intensity values separated by spaces with one line for each sample. Each row of Table.dat
contains the intensity for the corresponding analysis name in the same order as the Variables_m and
Variables_t values. It is important to realize that, even though the script was written to accommodate
LCMS data, hcapca can be adapted to other kinds of data. For example, if a user does not have data
for both m/z and retention time, they can fill one of the tables with zeroes and it has no bearing on the
shape of the tree, placement of the nodes, etc.; i.e., the results are subject to contextual interpretation.
Examples of the table formatting are available at—https://github.com/chanana/hcapca#table-format.

3.1.4. Hierarchical Clustering Analysis (HCA)

Using the spectral intensity table (Table.dat), a distance matrix was first calculated using the
Euclidean distance between each sample along its vector of m/z-rt values.

d(p, q) =

√√ n∑
i=1

(qi − pi)
2 (1)

where, d is the distance between points p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn). Here p can be
thought of a sample in Rn with the m/z-rt pair pi representing a coordinate in each dimension.

Then, clustering was performed by employing the unweighted pair group method using the
arithmetic mean (UPGMA) using correlation as a distance measure. Subsequently, the dataset was

https://github.com/chanana/hcapca#table-format
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partitioned into the first two clusters that formed. This process was repeated on the resulting two
clusters until the user-specified variance cutoff was met.

3.1.5. Principal Component Analysis (PCA)

Once the entire tree had been built using the procedure described above, the clusters at the ends
of the trees (the terminal nodes) were subjected to PCA. The data at each terminal node was Pareto
scaled [79] and mean subtracted before PCA was performed. To demonstrate visually what the entire
tree looks like prior to the construction of more refined elements of the dendrogram we refer readers to
Figures S1 and S3 of the Supporting Information.

3.1.6. Displaying Results

The results of hcapca data processing were displayed using our custom-made Shiny app [76],
an interactive web design package written for the R programming language [78]. This app can be
accessed once the code is run based on the instructions located at https://github.com/chanana/hcapca.
The app runs on the local system of the user and is specific to each analysis the user performs.

3.1.7. Source Code and Instructions

https://github.com/chanana/hcapca

4. Conclusions

Unique molecules within a large dataset generally have an increased likelihood of being new
or novel. We have demonstrated that hcapca is able to leverage this property by being able to
differentiate the A1901 metabolome from all other samples in its subgroup leading to the discovery
of the lomaiviticin analogs. Our tool is open source, written in R [78], and encompasses all steps
from the HCA, partitioning of the tree, and subsequent PCA of the terminal nodes requiring only a
table of LCMS spectral intensities and a cutoff variance as input. Importantly, hcapca is available as
a Docker image allowing it to be run on Windows, macOS, and Linux (Ubuntu) operating systems.
Both proprietary and open-source software such as MZmine2 [32] can be used for upstream processing
of raw LCMS files to generate the spectral tables required as the input; with appropriately formatted
data tables (please refer to the Github repository or the Data Format section of the Methods for details).
The installation instructions, as well as the entire source code for hcapca is available to the public for
free at https://github.com/chanana/hcapca. As exemplified here with the discovery of new secondary
metabolites from A1901, hcapca represents an important technology enabling the rapid identification
of unique data points from very large datasets and is virtually unlimited in its potential applications to
assorted scientific fields.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/7/297/s1,
Figure S1: Full dendrogram of all 1046 samples obtained by HCA. The figure’s actual size is 192 × 9” making
it extremely difficult to visualize at a detailed level, Figure S2: Depiction of the tree-of-trees i.e., the processing
of all samples via hcapca, Figure S3: The large tree (of 1046 samples seen in Figure S1) represented as a circular
dendrogram using iToL, Figure S4: Screen shot of first step in analyzing HCA and PCA results following hcapca
of a dataset, Figure S5: Screen shot of tree tab (with instructions) of hcapca results, Figure S6: Example of how to
view a given dendrogram for a specific node viewable by drop-down menu, Figure S7: Screen shot of window
in which PCA tab showing results of overall tree can be used to view the node and its “parent” nodes, Figure
S8: How to navigate the PCA tab of results from hcapca processing of the example dataset provided, Figure S9:
Demonstration of how the Scores plot (from Figure S8 steps) gets drawn and can be used to identify samples
with greatest variance, Figure S10: Screen shot of the Loadings plot and how metabolite samples within a specific
microbial producer vary from each other, Figure S11: Depiction of how hcapca leads to the plot showing individual
and cumulative variances for all principal components in a given sample, Figure S12: Screen shot of first “log off”
page enabling one to exit the hcapca application, Figure S13: Screen shot of page indicating completion of exit
from hcapca application, Table S1: Comprehensive listing of all media ingredients used to generate data herein for
the 1046 sample set.

https://github.com/chanana/hcapca
https://github.com/chanana/hcapca
https://github.com/chanana/hcapca
http://www.mdpi.com/2218-1989/10/7/297/s1
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