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1  |  INTRODUC TION

Aging is a complex process, associated with the accumulation of 
damaged molecules, progressive loss in structure and function of 
cells, tissues, and organs, and increased vulnerability to death.1 Even 

if the aging process is multifaceted and diverse, laboratory manipu-
lation of genes in different laboratory model animals has increased 
the lifespan of these organisms. Most genes that are associated 
with increasing lifespan are part of the nutrient-sensing pathway 
and the mutation in these genes mimics the state of food shortage.2 
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Abstract
Aging is a multifaceted process impacting cells, tissues, organs, and organ systems 
of the body. Like other systems, aging affects both the adaptive and the innate com-
ponents of the immune system, a phenomenon known as immunosenescence. The 
deregulation of the immune system puts elderly individuals at higher risk of infec-
tion, lower response to vaccines, and increased incidence of cancer. In the Western 
world, overnutrition has increased the incidence of obesity (linked with chronic in-
flammation) which increases the risk of metabolic syndrome, cardiovascular disease, 
and cancer. Aging is also associated with inflammaging a sterile chronic inflammation 
that predisposes individuals to age-associated disease. Genetic manipulation of the 
nutrient-sensing pathway, fasting, and calorie restriction (CR) has been shown to in-
crease the lifespan of model organisms. As well in humans, fasting and CR have also 
been shown to improve different health parameters. Yet the direct effect of fasting 
and CR on the aging immune system needs to be further explored. Identifying the 
effect of fasting and CR on the immune system and how it modulates different pa-
rameters of immunosenescence could be important in designing pharmacological or 
nutritional interventions that slow or revert immunosenescence and strengthen the 
immune system of elderly individuals. Furthermore, clinical intervention can also be 
planned, by incorporating fasting or CR with medication, chemotherapy, and vaccina-
tion regimes. This review discusses age-associated changes in the immune system and 
how these changes are modified by fasting and CR which add information on inter-
ventions that promote healthy aging and longevity in the growing aging population.
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The relationship between the effect of nutrition on longevity was 
first introduced to the scientific community by the experiment con-
ducted by McCay CM et al, where they showed rats with retarded 
growth (due to starvation) showed a higher lifespan compared to 
mice under normal feeding cycles.3

Fasting is the voluntary prevention of ingestion of a minimum or 
no food and drinking calorie beverage for a period lasting from 12 h 
to 3 weeks depending on the intended purpose. Calorie restriction 
is decreasing the intake of calories by 20%–40%, without changing 
the pattern of meal frequency. Calorie restriction and fasting have 
been implemented for different purposes including delaying aging 
and prevention of disease.4

Undoubtedly nutrition is critical for proper immune response; 
previous works have shown that essential nutrients like vitamin A 
are crucial for effective adaptive immune response, for instance, it 
can impact the ILC3 (Innate lymphoid cells-3) immune response.5 
Similarly, fatty acids are crucial for the ILC2 immune response in 
clearing parasitic infection and its shortage leads to a decrease in 
ILC2-derived cytokines like IL-5 and IL-13.6 In contrast, adaption of 
the Western world diet has been linked with immunopathological 
conditions like inflammatory bowel disease, multiple sclerosis, and 
asthma.7

Different mechanisms of fasting and CR have been linked with 
healthy aging trajectories in different organisms.4 Yet the direct 
effect of fasting and CR on the aging immune system needs to be 
further explored. As fasting and CR are already being practiced by 
different religious groups and volunteers, understanding its effect 
on the immune cells can help in integrating it as a therapeutic strat-
egy for treating cancer, infectious diseases, and noninfectious dis-
eases and increasing vaccine response.

1.1  |  Immunosenescence and its modulation with 
fasting and calorie restriction

Alongside other systems in the body, aging affects both the adap-
tive and the innate components of the immune system, a phenom-
enon known as immunosenescence. The deregulation of the immune 
system puts elderly individuals at higher risk of infection, lower re-
sponse to vaccines, and increased incidence of cancer. Of the two 
systems, the adaptive part of the immune system is most impacted 
by aging.8

1.2  |  The innate immune system and the impact of 
aging, fasting, and calorie restriction

Components of the innate immune system, like macrophages, neu-
trophils, natural killer cells, and dendritic cells are the first line of 
defense and initiate the adaptive immune response. Aging results in 
the phenotypic and functional changes of the innate immune cells, 
this results in the decrease in phagocytosis, defect in chemotaxis, 
and cellular signal transduction.9

1.3  |  Neutrophils

Neutrophils are the first cells that arrive at the site of infection 
or inflammation. Once they arrive at the site, they are capable of 
phagocytosis, produce reactive oxygen species, produce proteo-
lytic enzymes, and also able to form neutrophil extracellular traps 
(NETs) which trap pathogens and clear the pathogen after that they 
undergo apoptosis.10

Most studies have shown that the normal aging process does 
not affect the number of neutrophils,11,12 others have shown an in-
crease in number13 and others showed a decrease in number with 
an increase in age.14 Whereas the functionality of neutrophils like 
phagocytosis, use of free radicals to kill intracellular pathogens, and 
chemotaxis have been shown to decrease with age.15 In humans, 
72-h intensive fasting showed an increase in the number and fre-
quency of neutrophils which is linked with a decrease in lymphocyte 
frequency. Transcriptomic and proteomic profiling revealed fasting 
increases the degranulation and activation profile of neutrophils. The 
expression of cytokines was also increased in neutrophils after fast-
ing which indicates that fasting has a stimuli effect on neutrophils.16

1.4  |  NK cells

Broadly the natural killer (NK) cells can be divided based on the ex-
pression of the CD56 molecule into CD56bright immunoregulatory 
role, and CD56dim cytotoxic population. Aging affects this popula-
tion in a different manner where an expansion of CD56dim mature 
NK cells and a decline of CD56bright NK cells is observed with age.17 
In general, the number of NK cells increases with age but on a per-
cell basis, the functionality decreases. This decrease in functionality 
is linked with intracellular molecules like granzyme A which de-
creases with age.18

In humans, calorie restriction has been shown to decrease the 
number of peripheral NK cells.19 Acute 3-day fasting in mice showed 
that the number of NK cells remained the same, whereas the num-
ber of NK cells that express TNF-related apoptosis-inducing ligand 
(TRAIL)+ and CD69+ NK cells increased in fasting mice. Similarly, 
TRAIL-mediated antitumor activity of NK cells (partly regulated by 
HSP70) showed to increase in fasted mice compared to controls.20

1.5  |  Monocytes and macrophages

Monocytes have cell surface receptors like Toll-like receptors (TLRs) 
and pattern recognition receptors (PRRs) that recognize pathogens 
and can respond by producing different inflammatory molecules. 
Using the cell surface markers, CD14 and CD16 monocytes can be 
divided into different subsets. The classical monocyte expresses 
high CD14 and no/low CD16 (CD14++CD16−/+), the intermediate 
monocytes express CD16 and high CD14 (CD14++CD16+), and the 
nonclassical monocytes have a higher level of CD16 with lower ex-
pression of CD14 (CD14+ CD16++).21
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The proportion of CD16+ expressing intermediate and nonclassical 
monocytes increases with age. Compared to CD14++CD16− mono-
cytes, CD14+CD16+ monocytes have shorter telomeres, increased 
expression of β-galactosidase, and produce more inflammatory mol-
ecules and are linked with pathologies like atherosclerosis in the el-
derly.22 Similarly, the accumulation of nonclassical monocytes with age 
is associated with an increase in the production of TNF-α and IL-8 in the 
elderly, and also these monocytes express senescence-associated se-
cretory phenotype (SASP), high levels of basal NF-κB and IL-1α level.23

During a period of fasting, monocytes express the ligand CXCR4 
to migrate to the bone marrow and hibernate. These monocytes have 
distinct transcriptional features that alter their ability to respond to 
infection.24 In humans, fasting decreases the number of circulation 
CD14+CD16− and CD14+CD16+ monocytes but does not affect the 
number of neutrophils. Similarly, fasting in mice decreased the number 
of pro-inflammatory monocytes expressing Ly-6Chigh in the blood and 
different tissues including the lung, spleen, liver, and adipose tissue.25

Macrophages have intra and extracellular receptors that help 
them recognize infectious agents, involved in tissue damage sig-
nals and tissue homeostasis.26 With aging, macrophages' ability to 
infiltrate the site of infection has been shown to decrease, which 
could compromise initiating the adaptive immune response.27 On 
the other hand, intermittent fasting in overweight and obese women 
has been shown to increase infiltration of M1-macrophages (CD40+) 
and M2-macrophages (CD163+) into the adipose tissue and skeletal 
muscle, respectively.28

1.6  |  Dendritic cells

Dendritic cells (DCs) are the most effective antigen-presenting 
cells (APCs) and have expressed cell surface molecules like MHC-II, 
CD80, and CD86 which make them effective in initiating an immune 
response. DCs are divided into two subclasses, which are plasma-
cytoid DCs (pDCs) and conventional DCs (cDCs) also known as 
myeloid DCs (mDCs). pDCs are lymphoid origin with a cell surface 
marker CD11c−CD123+ and use TLRs (TLR7 and TLR9) to identify 
viral components and secret types I and type II interferon, whereas 
mDCs (cDCs) are derived from myeloid progenitors surface marker 
CD11c+ CD123− and are potent antigen-presenting cells bridging 
the innate and adaptive immune response.29

The impact of aging on the number of DCs is dissimilar; some 
studies have shown that both healthy elderly and frail elderly in-
dividuals showed a reduced number of pDCs compared to young 
adults, whereas no significant change in the number of mDCs was 
observed between the two groups.30 Others showed the number 
of mDCs was maintained in individuals above the age of 20 years, 
whereas the number of pDCs decreased with age,31 others also 
showed the number of both mDCs and pDCs were not affected by 
age.32 Functionally, pDCs from elderly individuals secrete a lower 
level of interferon (IFN)-α linked with lower expression of TLR7 and 
TLR9.30 Similarly aging impaired DCs phagocytosis and chemotaxis 
ability, and decreased PI3K signaling.32

Short-term fasting induces in higher number of CD103+CD11b− 
DCs in mesenteric lymph nodes and intestinal lamina propria.33 A 
fasting mimicry diet has increased tissue infiltration of CD103+ den-
dritic cells in mice and helps in the activation of T cells.34 Together, 
this could indicate that fasting or calorie restriction could help the 
immune response to fight cancer and infection by facilitating the tis-
sue infiltration ability of dendritic cells.

1.7  |  The adaptive immune response and the 
impact of aging, fasting, and calorie restriction

The adaptive immune system is crucial in controlling infection, vac-
cine response, and cancer immune surveillance and it is meaningfully 
affected by aging. Aging especially alters the structure of the thymus 
affecting the output of naïve T cells. Furthermore, age-dependent 
epigenetic modification like heterogeneity of DNA methylation and 
histone acetylation impacts the immune system of the elderly.35

1.8  |  T cells

T cells express a unique cell surface receptor, the T cell receptor 
(TCR) which is used to recognize antigens bounded with MHC-I 
for CD8+ T cells and with MHC-II for CD4+ T cells. The CD8+ T 
cells have more of a cytotoxic function, whereas the CD4+ T cells 
function as helpers (activation of B cells and CD8 + T cells) and regu-
lators of the immune response. The CD4 + T cells are heterogene-
ous and are further divided into T helper (Th) 1, Th2, Th17, Th22, 
Treg (regulatory T cells), and Tfh (T follicular cells). Phenotypically, 
the T cells can be distinguished as naïve T cells (CD45RA+CCR7+), 
central memory T cells (CD45RA−CCR7+), effector memory T cells 
(CD45RA−CCR7−CD45RO+), and effector memory reexpressing 
CD45RA (TEMRA) T cells as (CD45RA+CCR7−).36

The proliferative capacity of hematopoietic stem cells (HSCs) 
and lymphoid output decrease with age and a shift toward myeloid 
progenitors leading to a decrease in naïve T cells with age.37 By com-
parison, the loss of naïve CD4T cells can be compensated through 
peripheral cell division but the naïve CD8 T cells decrease dramati-
cally in elderly individuals. With aging, expansion of phenotypically 
distinct CD8 effector T cells and a decrease in CD28 expression are 
observed.38

During dietary restriction, memory T cells develop a mechanism 
of long-term survival by adapting to a shortage of nutrients. Similarly, 
the number of memory T cells in the circulation and the secondary 
lymphoid organs decrease, and the population of memory T cells 
increases in the bone marrow.39 Eight-week calorie restriction (CR) 
showed an increased number of naïve CD4 T cells and a decrease 
in memory CD4 T cells among participants under CR.40 Similarly, 
6 months of 10% and 30% calorie restriction increased T cell pro-
liferation capacity and its response to delayed hypersensitivity.41 
On the contrary, long-term calorie restriction in healthy nonobese 
adults showed similar levels of cellular markers like CD8+CD28− T 
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cells and CD57 and PD-1 expressing T cells compared to control 
nonobese healthy adults.42 Likewise, weight loss-associated calorie 
restriction decreases natural killer cells and weakens antiviral immu-
nity.19 Whereas in mice, DR suppresses cellular markers like PD-1, 
Tim3, KLRG1, and transcription factors NR4A1 and TOX which are 
linked with T cell exhaustion.43 This indicates the complex interac-
tion of fasting with cells of the immune system and further studies 
are needed to elucidate this interaction.

1.9  |  B cells

B cells are the main players of humoral immunity and use membrane-
bounded immunoglobulin (Ig) to identify the invading pathogen. 
Within the germinal center, antigen-engaged B cells undergo so-
matic mutation on the variable region of immunoglobulin resulting in 
B cells expressing high-affinity antibody-producing plasma cells and 
memory B cells against the pathogen.44 Using cell surface markers 
including CD19, CD20, CD21, IgD, CD27, CD38, and CD24, B cells 
can be categorized into different groups. For instant resting, naïve B 
cells express IgD+CD27−CD38+CD24+CD21+, switched memory B 
cells express IgD−CD27+CD38−CD24−CD21− and plasma cells ex-
press IgD– CD27 ++ CD38+++ CD24–.45

Studies have shown that the telomerase activity of both naïve 
and memory B cells was maintained with age but the number of 
memory B cells increased with age.46 The number of circulating 
naïve B cells decreases with age alongside the general decrease in 
lymphogenesis. The production of high-affinity antibodies and the 
decrease in response to vaccination have also been reported with 
an increase in age. The differentiation of memory cells into plasma 
cells is also affected by age.47 The number of peripheral B-1 cells (ex-
pressing CD19+CD20+CD27+CD38low/int CD43+) and their ability 
to produce IgM decreases with age.48

Mice under 3 days of fasting and 2 weeks of 30% DR showed 
a decrease in the total number of CD19+B220+ B cells and an in-
crease in the IgM+IgD+ B cells in the bone marrow compared to 
mice under ad  libitum feeding. Likewise, immature transitional B 
cells expressing (CD19+B220+IgM+IgD−) and mature B cells express-
ing (CD19+B220+IgM+IgD+) depleted in the spleen of mice under 
dietary restricted and fasting compared to mice in ad libitum feed-
ing.49 Fasting also induces apoptosis of B cells, increases phagocy-
tosis activity, decreases the number of naïve B cells in the Peyer's 
patches (PP), and facilitates the accumulation of naïve B cells in the 
bone marrow (Figure 1).50

1.10  |  Effect of fasting and calorie restriction on 
inflammaging and autophagy

1.10.1  |  Inflammaging

Inflammation is a crucial process that facilitates the maintenance 
and restoration of tissue and the clearance of pathogens. On the 

other hand, chronic inflammatory processes are linked with differ-
ent pathologies, like rheumatoid arthritis. Aside from this pathologi-
cal involvement of chronic inflammation, the aging process is linked 
with a low-grade, chronic, and sterile inflammation (an inflammation 
without infection) termed as “Inflammaging.”51

The normal healthy aging process (aging without any clinical 
disease) is characterized by an increased level of pro-inflammatory 
biomarkers like increased levels of IL-6, CRP, IL-18, IL-8, IL-1, and 
TNF-α. Similarly, with aging, increased levels of chemokines like 
MCP-1 and RANTES and other molecules like sTNF-RI, sTNF-RII, 
and sCD30 have also been reported.52,53 Beside the appearance of 
inflammaging in the normal aging process, it has been linked with 
many age-associated pathologies like cardiovascular disease, de-
mentia, cancer, and diabetes.54 Systemic high levels of TNF-α and 
IL-6 in older adults have been associated with the risk of CVD.55 
Whereas the use of anti-inflammatory molecules like TNF-α inhibi-
tors in psoriasis and rheumatoid arthritis patients has decreased the 
risk of CVD.56 Similarly, age-associated loss of muscle strength and 
muscle mass was associated with increased levels of TNF-α and IL-
6.57 Inflammaging has been linked with mild cognitive impairment, 
diabetes, cancer, chronic kidney impairment, and severe disease 
complications in infection like COVID-19 in elderly individuals.58–61

Consumption of excess food is linked with chronic inflamma-
tion,62 and it contributes to different pathologies like type 2 diabe-
tes, cardiovascular disease, atherosclerosis, metabolic syndrome, 
and nonalcoholic fatty liver diseases.63 On the contrary lower levels 
of inflammatory mediators like C- reactive protein (CRP) and TNF-α 
were associated with healthy diets like fish, nuts, whole grains, 
fruits, and vegetables.64 Individuals under a religious fasting regime 
showed a reduced level of circulatory pro-inflammatory cytokines 
like TNF-α, IL-6, and IL-1β during the fasting period compared to be-
fore and after the fasting period.65 Other studies also showed that in 
humans, 12 weeks of alternative day fasting has shown a decreased 
level of inflammatory molecules like CRP.66 After 8 weeks of inter-
mittent fasting, a significant decrease in the level of inflammatory 
molecules like IL-6, TNF-α, and IL-1β was observed.67 To conclude 
inflammaging is one characteristic of aging and age-associated pa-
thologies, overnutrition is also associated with a state of higher in-
flammation, whereas fasting and calorie restriction decreases the 
level of different inflammatory molecules and can contribute to 
healthy aging.

1.10.2  |  Autophagy

Autophagy is an evolutionary conserved, self-degradation mecha-
nism used for removing damaged molecules, aggregated proteins, 
and damaged organelles. The autophagy process encompasses dif-
ferent mechanisms employed by the cell to degrade cytoplasmic 
substrates which include microautophagy, macroautophagy, and 
chaperone-mediated autophagy. The autophagic proteolysis activ-
ity decreases with age and accumulation of mis-fold proteins, lipid 
droplets, and toxic insults inside the cytoplasm has been linked with 
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age-associated pathologies like neurodegenerative disorders.68 
Genome-wide analysis revealed Atg5 and Atg7 which are genes 
involved in autophagy were downregulated in the human brain in 
normal aging.69

Inhibiting the autophagy process by pharmacological interven-
tion or genetic modification cancels its positive effect on lifes-
pan extension and its beneficial antiaging effect. This indicates 
the crucial role played by the autophagy process in extending 

lifespan.70 In humans, proteomic profiling showed that intensive 
fasting for 72 h (water-only fasting) results in an increased level 
of proteins like Atg3, Atg5, Atg16, and Beclin1 play an important 
role in the process of autophagy process and a decrease in the 
level of proteins like Bcl-2 which inhibit autophagy. Similarly, it in-
hibits the apoptosis process in leucocytes together; this indicates 
that fasting is important or helps leucocytes in maintaining cellular 
homeostasis.16

F I G U R E  1  Effect of fasting or calorie restriction on phenotypic and functional changes associated with immunosenescence and 
inflammaging. The middle of the diagram (light blue) indicates the different immune cells and immune response (inflammation). The left side 
of the diagram (light red) indicates the phenotypic and functional changes in different cells associated with aging. Senescent cells accumulate 
with age and secrete senescence-associated secretory phenotype (SASP) which aggravates inflammaging at the same time inflammaging can 
drive immunosenescence (the two arrows on the left side). The right side of the diagram (light green) shows how fasting or calorie restriction 
modulates age-associated changes in the immune system.
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1.11  |  Fasting and calorie restriction in infection, 
chronic disease, and cancer

1.11.1  |  Infection

Nutrients are crucial in maintaining the homeostasis of the body 
as well as providing key micronutrients like vitamins, iron, and zinc 
which are crucial for immune response.71 Importantly, the effect of 
nutrients and calorie restriction in fighting a particular infection de-
pends on the type of pathogens that infect the body. For instance, 
mice infected with the influenza virus were able to survive when 
fed glucose compared to mice that were fed with 2-deoxy-D-glucose 
(2DG) which blocks glycolysis, whereas in bacterial sepsis feeding 
glucose was detrimental.72 On the other hand, mice under short-
term fasting were protected from Listeria monocytogenes infection 
compared to mice under ad  libitum fed by creating a Th1-biased 
environment.33 Similarly, the bacterial load of Mycobacterium tuber-
culosis (MTB) was reduced in mice under CR. CR also enhances the 
intracellular killing and clearance of MTB and protects mice from 
MTB infection.73 This indicates fasting can be planned with medica-
tion but the type of pathogens needs to be identified.

1.12  |  Chronic disease

With aging, the incidence of chronic diseases like diabetes and cardi-
ovascular disease increases. One of the root causes of these chronic 
diseases is obesity. Fasting and calorie restriction have been imple-
mented as a strategy for weight reduction. Improvement in the level 
of blood glucose and insulin which are the main features of diabe-
tes were also alleviated by CR and fasting. Similarly, CR and fasting 
showed a reduction of visceral fat which is one of the risk factors of 
diabetes. Fasting also modifies waist circumference, systolic blood 
pressure, body weight, and fasting plasma glucose.74 Likewise, CR 
and fasting have been shown to decrease risk factors of cardiovas-
cular disease like CRP, TNF-α, TNF-βand improve lipid profile.75

1.13  |  Cancer

Immune cells can recognize altered peptides generated from malig-
nant cells. This property of the immune cells is used for devising im-
munotherapy like activation of antitumor T cells, antagonistic and 
agonist immune checkpoint modulators, or adoptive transfer of en-
gineered T cells to patients. Immunotherapy has improved the qual-
ity of life as well as the survival rate of cancer patients.76

Chronic calorie restriction has been shown to delay the inci-
dence of cancer in rodents77 and nonhuman primates.78 Fasting 
alters the level of growth factors and metabolites that create an 
unfavorable survival environment for cancer cells as well as make 
them susceptible to cancer therapy.79 Standard chemotherapy with 
a cycle of fasting-mimicking diet (FMD) showed a positive response 
to cancer. FMD reshaped the antitumor immunity of cancer patients, M
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like decreased immunosuppressive myeloid cells, regulatory T cells, 
and enhanced levels of intratumor cytotoxic CD8+ T cells and en-
richment of IFNγ in these cells (Table 1).80

2  |  CONCLUSION AND 
RECOMMENDATIONS

With an increasing number of elderly individuals across the globe, 
mechanisms that promote healthy aging are crucial. In general, 
evidence-based scientific experiments on fasting and calorie re-
striction have shown to promote healthy aging as well as to alleviate 
some markers of immunosenescence and inflammaging. Thus, similar 
to regular exercise, a vegetarian diet, etc., fasting/calorie restriction 
should also be considered part of a healthy lifestyle. Furthermore, 
fasting and calorie restriction increases the fitness of the immune 
system in fighting infection and cancer which are more common in 
the elderly.

As fasting and calorie restriction have long been part of human 
society and are being practiced by volunteers and religious groups, 
it can be easily integrated in planning medication for infectious 
disease, cancer, and in vaccine response. However, more data are 
needed especially on nutritional approaches including, the amount 
of nutrients, type of nutrients, and combination of nutrients that 
promote healthy aging and an effective immune response in humans. 
Furthermore, strategies on how to integrate fasting/calorie restric-
tion in boosting immune response like the length of the intervention, 
and at what age is best to start fasting still need to be standardized 
so that its actual effect on the aging immune system can be clari-
fied and used. Personalized parameters like age, BMI, comorbidity, 
and general health status of individuals should be considered when 
employing fasting/calorie restriction to avoid undesired side effects 
and to gain the maximum benefit.
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