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Abstract

The ability to adapt to different conditions is key for Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), to
successfully infect human hosts. Adaptations allow the organism to evade the host immune responses during acute
infections and persist for an extended period of time during the latent infectious stage. In latently infected individuals,
estimated to include one-third of the human population, the organism exists in a variety of metabolic states, which impedes
the development of a simple strategy for controlling or eradicating this disease. Direct knowledge of the metabolic states of
M. tuberculosis in patients would aid in the management of the disease as well as in forming the basis for developing new
drugs and designing more efficacious drug cocktails. Here, we propose an in silico approach to create state-specific models
based on readily available gene expression data. The coupling of differential gene expression data with a metabolic network
model allowed us to characterize the metabolic adaptations of M. tuberculosis H37Rv to hypoxia. Given the microarray data
for the alterations in gene expression, our model predicted reduced oxygen uptake, ATP production changes, and a global
change from an oxidative to a reductive tricarboxylic acid (TCA) program. Alterations in the biomass composition indicated
an increase in the cell wall metabolites required for cell-wall growth, as well as heightened accumulation of triacylglycerol in
preparation for a low-nutrient, low metabolic activity life style. In contrast, the gene expression program in the deletion
mutant of dosR, which encodes the immediate hypoxic response regulator, failed to adapt to low-oxygen stress. Our
predictions were compatible with recent experimental observations of M. tuberculosis activity under hypoxic and anaerobic
conditions. Importantly, alterations in the flow and accumulation of a particular metabolite were not necessarily directly
linked to differential gene expression of the enzymes catalyzing the related metabolic reactions.
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Introduction

Mycobacterium tuberculosis, the causative agent of tuberculosis (TB),

caused 8.8 million new TB cases and resulted in the death of 1.5

million people worldwide in 2010 [1]. Furthermore, it is estimated

that one-third of the human population is latently infected with

the disease, with an overall lifetime risk of developing active TB

disease of 10% [2]. In the United States, more than 80% of

clinically observed TB results from reactivated latent infections

[3,4]. The latent disease state prevents eradication, confounds

diagnosis, increases HIV comorbidity [5], prolongs existing TB

treatment to at least six months [6,7], and increases the risk for the

development of drug resistance [8]. The variety of disease states,

ranging from dormant to sub-clinical to clinical disease manifes-

tations, complicates the treatment and eradication of the disease

[9]. The presence of latent infections results in a dangerous

reservoir of the disease. The manifold of latent disease manifes-

tations [10,11] is poorly understood and difficult to replicate in

model systems of TB, making it quite challenging to reach the

United Nation’s goal of eradicating TB before 2050 [12] and

developing effective therapeutics [13].

Targeting different aspects of metabolism in the latent state is

a viable therapeutic strategy that is supported by evidence of

differential metabolic activity among several dormant and latent

states of M. tuberculosis [14–17]. One of the challenges in targeting

metabolism in latent disease is the inability of existing experi-

mental model systems to fully capture the range of observed

phenotypes. While experimental in vitro persister models can be

created based on acid stress, hypoxic stress, and carbon starvation

[18], there is a need for studying the manifold of disease states.

Here, we propose an in silico approach to create state-specific

models based on readily available gene expression data. The

coupling of differential gene expression data with a metabolic

network model allows us to metabolically characterize any TB

disease state, provided the corresponding microarray data are

available. We applied this technique to characterize the metabolic

adaptations of M. tuberculosis in response to hypoxia.

Similar to the introduction of nitric oxide [19] and carbon

monoxide [20], hypoxia is one of the factors that characterize the

onset of persistence and latency in M. tuberculosis [21]. Although

hypoxic microenvironments are an important feature of tubercu-

losis granulomas in guinea pig, rabbit, and nonhuman primate
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models of the disease, this feature is not present in mouse models

[22], pointing to a link between host-specific factors and latency.

In addition to these models, there are established protocols to

cultivate the pathogen in artificial low-oxygen conditions in order

to create in vitro persistence models [23]. These models,

characterized by low-oxygen conditions, exhibit gene expression

profiles distinct from those obtained under normoxic conditions

[24–28]. The immediate response to hypoxic stress is partially

governed by the dosR gene, which encodes a transcription factor

essential for the hypoxic persistence of mycobacteria [29]. In

particular, Park and coworkers measured changes in gene

expression under hypoxia of wild type M. tuberculosis H37Rv and

its DdosR deletion mutant compared to normoxia [25]. Although

this work established the connection of the dosR regulator to the

hypoxic response, reviewing the list of differentially expressed

genes provides a limited view of what the dosR-initiated gene

expression pattern entails in terms of M. tuberculosis metabolic

adaptation to hypoxia.

A systems-level understanding of metabolism requires the

identification and reassembly of the constituent components

(metabolites, reactions, transport, and uptake processes) and

methods to analyze metabolic phenotypes [30–34]. The most

robust and advanced systems biology reconstruction and analysis

techniques focus on metabolism. In particular, genome-scale

metabolic networks for M. tuberculosis are composed of hundreds of

distinct but interconnected chemical reactions, each processing

particular metabolites that, taken together, ultimately allow the

cell to function and grow [35,36]. Metabolic network reconstruc-

tions of M. tuberculosis have been used to identify genes essential for

growth [35,36], study the importance of mycolic acid production

[37], model quantitative drug-dose response [38,39], deconstruct

metabolic responses [40], and identify metabolic adaptations to

different in vitro, ex vivo, and in vivo host conditions [41,42].

Traditional metabolic network analysis results in a general

description of a cell’s steady state metabolism and typically

represents an idealized version of the cellular metabolic program

under exponential growth conditions. As such, the network

description does not take into account different protein or

expression levels of individual metabolic genes in the network.

Gene expression data captures the transcriptional state of a cell

in a particular biological state and it is challenging to interpret this

partial information with respect to an altered metabolic program.

The strength of a transcriptional approach is that we can capture a

specific snapshot of the cell without elaborating the underlying

signaling and gene regulatory networks. The weakness is that the

transcriptional state is not a direct readout of the metabolic

enzyme concentrations that perform metabolic reactions. Efforts

to connect transcriptional levels to metabolic activity in network

models of metabolism have focused on correlating absolute

expression levels to metabolite flows [37,43,44], completely

suppressing reactions based on pre-defined changes in relative

expression levels [45], or establishing protocols for generating

condition-specific metabolic signals of changes in metabolite

production based on multiple microarray data sets [40]. Here,

we introduce a new method that relies on relative gene expression

levels between a metabolically well-characterized reference state

(e.g., exponential growth under normoxic conditions) and a

perturbed state of interest (e.g., reduced growth under hypoxic

conditions). Although this method ultimately relies on a correla-

tion between gene transcription levels and enzymatic activity, in

contrast to previous methods [37,43,44], we rely on individual

relative relationships between a reference condition and a

condition of interest for each gene. It allows for a continuous

flow of metabolites, even for down-regulated enzymes, and

accommodates variability in biomass composition. This latter

feature overcomes the restriction of constraint-based models that

the biomass composition remains fixed under the studied

conditions, as biomass variability occurs for several bacterial

species under different growth conditions [46–48].

Thus, based only on the differential gene expression data from

M. tuberculosis H37Rv under hypoxic conditions [25], we mapped

out the metabolic response to low-oxygen stress. The model

correctly predicted lower oxygen uptake, a lowered ATP pro-

duction rate, and a higher hypoxic growth rate as compared to its

DdosR deletion mutant, indicating that the presence of the dosR

gene was essential for the pathogen to adapt to hypoxia [49–51].

We also predicted that hypoxia induces the production of cell-wall

metabolites and alters the biomass composition of M. tuberculosis

[50,51]. Importantly, our model indicates that the glucose-

processing glycolysis pathway and the reductive side of the

tricarboxylic acid (TCA) cycle contribute to the adaptation of M.

tuberculosis to hypoxia [16,52] and could serve as a drug target for

the elimination of this pathogen in latent disease states.

Results

An example network
Figure 1 illustrates the integration of microarray data and

a metabolic network description for a small example network

that contained six metabolites (A–F), two uptake reactions, six

enzymatic reactions, and one biomass reaction. In this set, we were

given a metabolic network capable of producing biomass for the

reference condition and the gene expression ratios for each

metabolic reaction between the reference and the new condition.

Given relative gene expression ratios, the approach initially con-

structed a set of normalized relative fluxes for each metabolic

reaction in the reference state (Figure 1, Step I) and then

introduced the altered gene expression (Figure 1, Step II) as soft

constraints on these fluxes (Figure 1, Step III). The soft constraints

allowed the system to adjust the flow of metabolites as calculated

from the entire network to the given altered gene expression state.

The procedure then established new flux ranges for all reactions

by minimizing violations of the constraints introduced by the gene

expression data, modifications to the biomass, and alterations in

the uptake reactions (Figure 1, Step IV). The final metabolic

network approximated the altered metabolic state. In the example

Author Summary

Mycobacterium tuberculosis latently infects one-third of the
human population and is responsible for millions of deaths
worldwide every year. The ability of the pathogen to
persist in the human population stems from its capacity to
adapt to host-induced stresses and adjust its metabolism
to different host environments. We have developed a
novel model to interpret M. tuberculosis H37Rv metabolic
adjustment by combining gene transcription data with a
genome-scale metabolic network model. Using our model,
we were able to identify the changes in the metabolic
program associated with hypoxia, predict phenotypic
change, and determine the critical metabolic enzymes
and pathways that are required for pathogen survival. In
particular, we predicted the switch in the tricarboxylic acid
cycle from an oxidative to a reductive path. The altered
importance of different metabolites and pathways under
hypoxic conditions may provide guidance for designing
novel, adjuvant drug therapies for clearing persistent and
latent infections.

Modeling Metabolic Adaptations
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Figure 1. Schematic description of integrating a small example metabolic network with gene expression data. Construction of the
altered metabolic state used gene expression data to constrain and alter the reference fluxes obtained from a metabolic network compatible with the
reference condition. The example network contained six metabolites (A–F), two uptake reactions, six enzymatic reactions, and one biomass reaction.
In the reference condition, the biomass function contained equal amounts of metabolites E and F, set to 1.0 millimoles per gram dry weight of the
organism (mmol/gDW), and the uptake rates for the metabolites A and B were each assigned an upper limit of 2.0 mmol/(h?gDW). In Step I, we
obtained the minimum and maximum fluxes under the optimal biomass production rate via flux variability analysis and calculated the average
normalized flux for the reference metabolic network. In Step II, the gene expression ratios were mapped to their corresponding reactions. In Step III,
we initially set constraints for reactions that were associated with altered gene expression values. These constraints were based on the normalized
reference network with the biomass production rate set to one and resulted in increased normalized fluxes through reactions related to up-regulated
genes (reactions ARB and DRF) and decreased fluxes related to down-regulated genes (reaction CRD). Because biological activities other than
gene transcription can influence reaction fluxes, we introduced a set of non-negative slack variables (L1, L2, and L3) to account for possible violations
of the constraints. In Step IV, we further performed a number of optimizations subject to the constraints from the previous step and obtained a new
minimum and maximum normalized flux for each reaction. We first minimized the overall violation of the developed constraints in the form of the
sum of the slack variables (highest priority). We then minimized the modifications in the biomass objective function and those in the upper limits of
metabolite uptakes (medium priority), and, last, we minimized and maximized each reaction flux (lowest priority). Finally, in Step V, we constructed
the new metabolic state by calculating the new average normalized flux for each reaction as the mean of its new minimum and maximum fluxes. This
metabolic state was representative of the new condition and in this case was associated with altered uptake rates, pathway preferences, and an
altered biomass composition.
doi:10.1371/journal.pcbi.1002688.g001
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network, the new condition was compatible with 1) increased

(decreased) uptake of metabolite A (B), 2) preferred metabolite flow

through reaction BRD over the reaction path BRCRD, 3)

increased metabolite flow in reaction BRD even though the gene

expression of the enzyme catalyzing this reaction was unchanged,

and 4) increased content of metabolite F in the biomass objective

function. A detailed description of the procedure is given in the

Materials and Methods Section and the rationale for constructing

a relative gene expression methodology is further articulated in the

Discussion Section. We performed an initial validation of our

approach by successfully predicting experimentally measured

reaction fluxes from two separate laboratories. These studies

examined metabolic fluxes in yeast grown on four different carbon

sources [53] and 13C flux changes upon removal of the gcn4 global

regulator gene under histidine starvation conditions [54] (see

Supplemental Text S1).

Phenotypic metabolic changes of M. tuberculosis H37Rv
under hypoxia

The persistence of M. tuberculosis in human granulomas is partly

due to its ability to adapt to a condition of low oxygen availability

[23], a process that requires the transcription factor gene dosR

[19]. We modeled an altered metabolic state of M. tuberculosis in

response to moving from the reference state of normoxia to an

altered hypoxic state as defined by its transcriptional state. We

used the iNJ661m metabolic network of M. tuberculosis H37Rv

[42], an enhanced version of the original iNJ661 network [35] that

retains the correct predictions of growth rates of H37Rv in

different media and includes several reactions missed in iNJ661,

e.g., in the methylcitrate cycle pathway. We integrated this

network with microarray data that included gene expression ratios

for both induced and repressed mRNA gene transcription for wild

type M. tuberculosis H37Rv, as well as for the DdosR deletion

mutant, associated with the transfer from normoxic air to hypoxic

nitrogen gas with 0.2% oxygen (1.5 mm Hg) [25]. Furthermore,

based on experimentally determined normoxic growth [19] and

ATP concentrations in culture [49] as well as the fact that the dosR

gene does not directly encode an enzyme in the metabolic

network, we assumed that the normoxic metabolic state was

equivalent between the two strains, and thus we used the same

network for the normoxic simulation. Using the metabolic

network/gene-expression integration model, we predicted hypox-

ia-induced changes in important phenotypes (oxygen uptake, ATP

production, growth), biomass composition, and fluxes through the

central carbon metabolism for both wild type M. tuberculosis

H37Rv and its DdosR deletion mutant. We used the observed

changes in experimental phenotypes to qualitatively validate and

indicate the utility of the proposed method [37,43].

Figure 2 shows the predicted normalized oxygen uptake rates

and ATP production rates for both wild type M. tuberculosis H37Rv

and the corresponding DdosR mutant under normoxia and

hypoxia 2 hours after switching to a condition of 0.2% oxygen.

The oxygen uptake rates in Figure 2A were normalized by each

strain’s biomass production rate, for the different conditions, using

the results in Supplemental Table S1 calculated as described in the

Materials and Methods Section. While the normoxic conditions

between the two strains were equivalent by construction, the

hypoxic predictions between the two strains were quite different.

The predicted wild type hypoxic oxygen uptake rate was sub-

stantially lower than the corresponding normoxic prediction,

indicating that the wild type strain had the ability to substantially

decrease its oxygen demand. At the same time, we only predicted a

modest hypoxia-induced decrease in ATP production, suggestive

of this strain’s ability to maintain its energy production under

low-oxygen stress. These predictions are qualitatively supported

by experimentally observed lower ATP concentrations [16] for

the wild type strain under hypoxia compared to normoxia. The

hypoxic predictions for the DdosR strain differed substantially from

the wild type predictions, suggesting that the deletion mutant was

not able to modulate its metabolism to adapt to hypoxic

conditions. In particular, the wild type normalized oxygen uptake

rate was considerably lower than in the DdosR strain under

hypoxic conditions, indicating that the deletion mutant was less

able to adapt to the low-oxygen stress than the wild type per unit

biomass. Because the deletion mutant is not able to grow efficiently

under hypoxia, its overall ATP production rate is relatively lower

than that for the wild type (Figure 2B). The predicted lower

hypoxic ATP level and slower oxygen depletion in the DdosR

mutant compared to the wild type have also been observed

experimentally [49].

The inability of the DdosR strain to adapt to the low-oxygen

environment is reflected in the difference in growth characteristics

between the wild type and deletion mutant strains [49]. To test

whether the strain- and condition-specific metabolic networks

contain this growth information, we created corresponding in silico

cellular growth predictions using an exponential growth model.

We parameterized this model based on calculated growth rates

and estimated lysis rates determined by fitting to the experimental

cell concentrations of the wild type strain (see Materials and

Methods for details). Figure 2C shows the experimentally

determined M. tuberculosis cell concentrations during a 200-day

growth period in which oxygen was depleted around day five,

marking the onset of hypoxic growth [49]. This figure also shows

the in silico-modeled cell concentrations of the two strains in the

normoxic (days 0–5) and early hypoxic (days 5–60) stages of

growth, and allows us, by inspection, to qualitatively estimate the

time periods during which our model could capture the growth

pattern of M. tuberculosis. The results for the wild type strain

indicated that the model successfully reproduced the growth of

this strain up to day 60. After this period, additional cellular

reprogramming in response to extended hypoxia occurs [55], a

response that is not dependent on dosR and represents further

biological and metabolic adaptations not modeled here. The

model results for the DdosR mutant provided relatively accurate

prediction for the first 12 days. After this initial period, the model

begins to break down, presumably due to additional biological and

metabolic factors not modeled by the initial dosR gene reprogram-

ming response.

To ascertain the robustness and specificity of our approach,

we conducted in silico experiments to gauge the influence of

fluctuations in the gene expression data and determine whether

the metabolic predictions were specific to the expression data or

the metabolic network per se.

To address fluctuations in the data, we created simulated gene

expression data sets where all differential gene expression values

were sampled from their corresponding normal distribution

defined by their observed means and standard deviations [25].

For each data set, we calculated its hypoxic oxygen uptake rate,

allowing us to re-construct a probability distribution of the hypoxic

oxygen uptake rates for the wild type strain that is compatible with

the given fluctuations of the experimental gene expression data.

Figure 3 shows that 98% of the predicted oxygen uptake rates

were centered on the hypoxic rate predicted using the mean

experimental expression data, indicating that our predicted

oxygen uptake was robust to fluctuations in gene expression

measurements. Conversely, when we distributed the expression

data randomly across genes in the metabolic network, the

distribution of uptake rates was far from the originally predicted

Modeling Metabolic Adaptations
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Figure 2. Phenotypic characteristics of wild type Mycobacterium tuberculosis H37Rv and DdosR under normoxia and hypoxia. (A) The
predicted normalized oxygen uptake rates of Mycobacterium tuberculosis H37Rv and the DdosR deletion mutant under normoxia and hypoxia. The
oxygen uptake rates were normalized by each strain’s biomass production rate. Supplemental Table S1 gives the biomass production rates of each
strain under different conditions, which were calculated as described in the Materials and Methods Section. We based the metabolic network models
of the hypoxic state on differential gene expression data associated with the change from normoxic air to hypoxic nitrogen gas with 0.2% oxygen
(1.5 mm Hg) after 2 hours [25]. The wild type metabolic response involved reducing its oxygen requirement to cope with the low-oxygen stress,
while the DdosR deletion mutant was not capable of adjusting. (B) The predicted ATP production levels for the same systems as in panel A showed a
slight reduction for the wild type and a much larger decrease for the DdosR deletion mutant in response to hypoxia. Note that the ATP production
rates were not normalized so to facilitate a direct comparison with the experimental data in Refs. [16] and [49]. (C) The modeled growth characteristic
of the wild type and DdosR deletion mutant were compared with the corresponding experimental data [49]. Following the experimental data
presentation, the x-axis plots two different time intervals, 0–20 and 20–200 days, using two different time scales. The initial aerobic growth phase for
the first 5 days was followed by a slight decrease in cell concentration upon switching to hypoxic conditions on day 5. Our metabolic model
interpretation was also compatible with a slight decrease in cell concentration for wild type and a substantial decrease for the deletion mutant.
Because the gene expression data was compatible with the immediate hypoxic response, the validity range of the metabolic model cannot be
expected to capture genotypic and phenotypic adaptations beyond an initial adaptation. Here, the calculated growth reductions for the wild type
and DdosR deletion mutant mimicked the experimental data up to days 60 and 12, respectively.
doi:10.1371/journal.pcbi.1002688.g002
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hypoxic value. This indicated that the predicted decrease in

oxygen uptake stemmed directly from the specific changes in the

gene expression data and was not an arbitrary result associated

with random fluctuations in the metabolic network itself.

Together, these results highlighted the strengths and limitations

of using a model-based interpretation of metabolic adaptations as

captured by differential gene expression data. The model correctly

predicted the overall growth phenotype associated with the

changed gene expression program, but if the gene expression

program was subject to further changes, the model could not

capture this without additional expression data.

Changes in biomass composition of M. tuberculosis
H37Rv under hypoxia

Through the model interpretation of altered gene expression via

the metabolic network, we predicted hypoxia-induced changes in

biomass composition in both wild type M. tuberculosis H37Rv and

the DdosR mutant. The prediction qualitatively indicated whether

hypoxia induced an increase, decrease, or no change in each

metabolite’s biomass composition. Figure 4 shows the number of

biomass metabolites in different biochemical categories predicted

to increase and decrease due to hypoxia (Supplemental Table S2

provides the detailed list). For example, the figure indicates that, in

the wild type strain, the biomass composition for five nucleotides

(labeled as NUC in Figure 4) was predicted to increase under

hypoxia while that for seven amino acids (AA in Figure 4) was

predicted to decrease. Nearly half of the wild type predictions were

associated with increased biomass composition of metabolites

related to cell-wall components, such as mycolates (MYC),

phosphatidyl-myo-inositol mannosides (PIM in Figure 4), and

peptidoglycans (PTD in Figure 4) [56,57]. These results were

compatible with the experimentally observed thickening of the cell

walls of mycobacteria during entry into hypoxia-induced dorman-

cy [50,51]. Other predictions for the wild type strain included

increased nucleotide and decreased amino acid biomass compo-

sition, observations that are currently unsupported but should be

the subject of future studies. When changes in biomass compo-

sition occurred for the DdosR mutant, they were similar to the wild

type strain. However, the number of metabolites that were

predicted to change for DdosR was slightly smaller than that for the

wild type one (42 vs. 51), and the biomass compositions of two

MYC-related metabolites that increased under hypoxia in the wild

type strain actually decreased in DdosR. These results implied that

the dosR gene played a role in the modulation of biomass

composition, but not as a sole regulator of biomass accumulation.

To further test the ability of our approach to alter biomass

composition, we qualitatively predicted the biomass changes of

Mycobacterium bovis upon transfer from a fast chemostat growth

condition [36] to a slow growth condition [58] (see detailed results

in Supplemental Text S2).

Flux changes through central carbon metabolism of M.
tuberculosis H37Rv under hypoxia

Given that the metabolic network model provides detailed

information of all metabolic fluxes, we examined the resulting

hypoxia-induced changes associated with the carbon central

metabolism of wild type M. tuberculosis H37Rv and its DdosR

deletion mutant in more detail. Figure 5 shows that, in the wild

type, the metabolite flux through the pathway associated with

glucose utilization increased substantially while that through the

glycerol utilization pathway decreased. Concomitantly, the flux

through the reductive side of the TCA cycle increased consider-

ably while that through the oxidative side only increased

moderately. Conversely, the results for the DdosR strain indicated

only a slight overall decrease in these fluxes. Thus, as captured by

our integrated metabolic network model, without the dosR gene

the organism fails to adapt its metabolism to cope with low-oxygen

stress. Boshoff and coworkers recently confirmed the importance

of fermentation in latent hypoxic M. tuberculosis by analyzing

metabolite isotopes in the central carbon metabolism to identify

the usage of the reductive TCA cycle under anaerobic conditions

[16].

The altered flux distribution in the TCA cycle was also

accompanied by altered extracellular secretion rates. In particular,

the increased flux associated with succinate production at the

bottom of the TCA cycle in Figure 5 produced an excess of

succinate, which was secreted. We calculated that the hypoxic

succinate secretion and accompanying H+ efflux was six times

larger than the normoxic value of 9.1 millimoles per gram of dry

weight of the organism (mmol/gDW). This was in qualitative

agreement with experimentally observed succinate accumulation

and acidification in the medium in which M. tuberculosis H37Rv is

cultured under hypoxia [16].

We further characterized the altered metabolic state of the wild

type strain associated with hypoxia by calculating which metabolic

genes were essential for adaptation to hypoxic conditions. We

defined these genes as those predicted to be nonessential under

normoxia, i.e., removing them from the metabolic network did not

prevent the organism from accumulating biomass, but became

essential under hypoxia. Figure 6 shows that these genes were

either in the glycolysis pathway or in the reductive side of TCA

Figure 3. Variations of oxygen uptake of wild type Mycobacte-
rium tuberculosis H37Rv are compatible with experimental
fluctuations. The solid vertical bars indicate the wild type normoxic-
and hypoxic-normalized oxygen uptake rates based on our integrated
metabolic network model and correspond to the same values given in
Figure 2A. We calculated the distribution of uptake values by sampling
each expression value from a normalized distribution based on its mean
and standard deviation and calculating the resultant uptake rates. This
distribution, labeled ‘‘Fluctuations’’ in the graph, captured the
experimental gene expression variability and was centered on the
value derived from using the mean expression values. In contrast, the
distribution labeled ‘‘Random selection’’ was derived from randomizing
all gene expression data and was far away from either the normoxic or
hypoxic conditions. This confirmed that the gene expression data
carried sufficient information to guide the metabolic network model to
describe the organism’s adaptations under hypoxia. The units are mmol
per gram dry weight of Mycobacterium tuberculosis.
doi:10.1371/journal.pcbi.1002688.g003
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cycle, confirming that the two pathways were required for the

hypoxic survival of M. tuberculosis. We further noted that due to the

increased secretion of succinate mentioned above, the dctA gene

that encodes for the succinate transporter was also predicted to

become essential under hypoxia. This suggests that disruption of

these pathways could prevent hypoxic adaptation and render the

pathogen more susceptible to alternative antibiotic treatments.

Many CO2-fixating microbes utilize the reductive TCA cycle

[59], but for hypoxic M. tuberculosis grown in glucose-supplemented

Middlebrook 7H9 [25] or Dubos [16] media, the primary reason

for utilizing glucose under reductive conditions is to maintain

redox balance under low-oxygen availability. Under normoxia, M.

tuberculosis oxidizes glucose and glycerol to carbon dioxide via

glycolysis and the TCA cycle. At the same time, the oxidized forms

of the redox intermediaries are converted to reduced forms in

order to maintain chemical balance. Thus, the cell converts

nicotinamide adenine dinucleotide (NAD), nicotinamide adenine

dinucleotide phosphate (NADP), and flavin adenine dinucleotide

(FAD) to the reduced forms of NADH, NADPH, and FADH2,

respectively. Under normoxia, the cell maintains this balance by

utilizing the constant supply of oxygen from the environment.

Under hypoxia, to maintain balance of the redox intermediaries

M. tuberculosis must decrease the reduction of NAD, NADP, or

FAD and preferentially select pathways that convert the reduced

forms back to the oxidized forms. Thus, in our model, hypoxic M.

tuberculosis preferred glucose utilization because it reduces less

NAD to NADH as compared to glycerol utilization and, as shown

in Figure 5, and increased the flux through the reductive TCA

cycle, as this pathway converts NADH and FADH2 back to NAD

and FAD, respectively.

Discussion

We developed a novel approach to interpret changes in gene

expressions in terms of an altered metabolic program. Given a

known reference state, we used changes in gene expression

associated with a new state to construct a corresponding condi-

tion-specific metabolic state. This state captured the metabolic

adaptations that the organism executed through an altered gene

expression program. We modeled this adaptation via a metabolic

network that characterizes nutrient uptake adjustments, alterations

in preference of metabolic pathways, and changes in biomass

composition. We implemented this approach to model the

immediate change from aerobic to anaerobic conditions for M.

tuberculosis and calculate its metabolic adaptations based only on

differential gene expression data. Importantly, we derived our

condition-specific metabolic states from gene expression data,

which are widely available, and not protein abundances, which are

rarely available.

Integrating gene expression data and metabolic
networks

There are a number of related methods that use gene expression

data to modify the flow of metabolites in a metabolic network.

These methods differ in their implementation of how transcription

levels of different genes are connected to the reaction fluxes

Figure 4. Classification of biomass metabolites predicted to change under hypoxia. Our metabolic network model predicted different
adjustments in the biomass composition of wild type Mycobacterium tuberculosis and the DdosR deletion mutant under hypoxic stress. We classified
these metabolites into the following categories: amino acids (AA), cofactors (COF), mycolates and related derivatives (MYC), nucleotides (NUC),
phosphatidyl-myo-inositol mannosides (PIM), precursors of peptidoglycan (PTD), and other (OTHER). The pie charts indicate the numbers of
metabolites that changed in each category. In total, the wild type was associated with 51 changes and the DdosR deletion mutant with 42 changes.
The top-right portion in each chart represents the metabolites that were predicted to increase under hypoxia, while the bottom-left portion
represents those predicted to decrease. Supplemental Table S2 provides detailed information for all predicted biomass composition changes.
doi:10.1371/journal.pcbi.1002688.g004
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Figure 5. Predictions of hypoxia-induced changes in fluxes through central carbon metabolism. The left panel shows the flux ratios, i.e.,
the ratios of reaction fluxes under hypoxia to those under normoxia, of wild type Mycobacterium tuberculosis H37Rv and the right panel shows those
of the DdosR deletion mutant. If the normoxic flux of a reaction was close to zero, we did not calculate the flux ratio for this reaction due to the
numerical uncertainty associated with creating the corresponding ratio. The results indicated that the wild type strain activated glucose processing
pathways and the predominant reaction flow was on the reductive side of the tricarboxylic acid (TCA) cycle. Conversely, the DdosR deletion mutant
was not able to cope under hypoxic conditions as evident by an overall reduced activity in the TCA cycle. NAD, nicotinamide adenine dinucleotide;
NADP, nicotinamide adenine dinucleotide phosphate; FAD, flavin adenine dinucleotide. NADH, NADPH, and FADH2 are the reduced forms of NAD,
NADP, and FAD, respectively. NAD(P), NAD or NADP; NAD(P)H, NADH or NADPH.
doi:10.1371/journal.pcbi.1002688.g005
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associated with the corresponding translated protein enzymes

catalyzing the reactions. All methods deal differently with the

general lack of a perfect correlation between transcriptional levels

and protein concentrations and, hence, the lack of a direct one-to-

one correspondence between expression values and reaction fluxes

[60]. For example, in the Gene Inactivity Moderated by

Metabolism and Expression (GIMME) procedure developed by

Becker and Palsson [43], reactions that are associated with

transcription levels lower than a fixed threshold are blocked. The

method developed by Shlomi et al. [44] extended this approach by

additionally forcing fluxes through reactions associated with high

transcriptional levels. To avoid the determination of these some-

what arbitrary thresholds, the E-flux method introduced by Colijn

et al. [37] uses transcriptional levels as the upper limits for the

corresponding reaction fluxes. This method establishes such upper

limits by using the absolute gene expression data to compute the

relative changes of genes within the same treatment condition. In

the Metabolic Adjustment by Differential Expression (MADE)

method developed by Jensen and Papin [45], reaction fluxes are

completely removed or unlimitedly allowed based on the cor-

responding relative gene expression levels between two conditions.

The drawback of such a binary on/off approach is the lack of the

ability to directly capture a gradual flux increase or decrease from

the transcriptional data.

Condition-specific models based on reference and
treatment conditions

Our approach combined different aspects of the above methods

by using the concepts of a reference and a treatment condition.

For a treatment condition, our assumption was that an existing

metabolic network could generate a set of reference fluxes

characteristic of the reference condition and that the mRNA

transcription data was reflective of the differential gene expression

between the reference and treatment conditions. We used the

relative expression changes to introduce soft constraints and limits

on the relative flux changes, avoiding the introduction of arbitrary

thresholds at the price of a more complex optimization problem.

Regardless of whether an enzyme functions in either parallel or

serial reaction paths in the metabolic network, we captured the

notion that if there was a significant change in the expression level

of a metabolic gene, it was very likely associated with an attempt to

change the related reaction flux, although such a change is not

required. In addition, we allowed the biomass composition to

change in response to the treatment condition.

The advantage of this procedure was the general ability to

account for all individual gene expression alterations and provide a

detailed interpretation of the metabolic adjustments that capture

gradual flux increases or decreases, without using any arbitrary

threshold or assuming any correlation between absolute gene

expression data and the upper limits of reaction fluxes across

different genes under each condition. The disadvantages were in

the formulation of a more complex optimization problem and the

requirement of the availability of an existing metabolic network

for the reference condition and the corresponding differential

gene expression data between this reference condition and the

treatment condition of interest.

Strengths and limitations of using relative changes in
gene expression levels

In our approach, we made use of differential gene expression

data of the changes in the transcriptional program between a well-

defined reference condition and a perturbed state. Because both

mRNAs and proteins are under control of several different, but

possibly correlated, processes, such as transcriptional and post-

transcriptional control, degradation, ribosomal capacity, availabil-

ity of the appropriate metabolites, and energy levels, the relative

mRNA level of a gene is not necessarily directly proportional to

the concentration of its corresponding protein [61]. However,

relative changes in mRNA levels have been shown to be correlated

to protein abundance in several studies of Saccharomyces cerevisiae

(yeast) and prokaryotic bacteria. In yeast, the observed correlations

Figure 6. Genes predicted to be essential for Mycobacterium
tuberculosis H37Rv to adapt to hypoxia. Shown are the genes
predicted to be nonessential under normoxia but essential under
hypoxia for the wild type strain. Given the metabolic state shown in
Figure 5, the genes predicted to be essential for hypoxic adaptation
were mostly located in the glucose/glycerol processing pathways and
on the reductive side of the tricarboxylic acid (TCA) cycle. dctA, Na+/H+-
dicarboxylate symporter; eno, enolase; fba, fructose-bisphosphate
aldolase; frdA, frdB, frdC, frdD, fumarate reductase; gap, glyceralde-
hyde-3-phosphate dehydrogenase; gpm, phosphoglycerate mutase;
pfKA, pfkB, phosphofructokinase; pgk, phosphoglycerate kinase; ppgK,
polyphosphate glucokinase; sdhA, sdhC, sdhD, succinate dehydroge-
nase; tpi, triosephosphate isomerase.
doi:10.1371/journal.pcbi.1002688.g006

Modeling Metabolic Adaptations

PLOS Computational Biology | www.ploscompbiol.org 9 September 2012 | Volume 8 | Issue 9 | e1002688



between changes in mRNA level and protein abundance ranged

from modest correlations between 0.2 and 0.5 [62–64] to a high of

0.7 [65–67]. Furthermore, these studies highlight the dependence

of these values on the states of the studied organism, e.g., S.

cerevisiae growing under steady state conditions shows a higher

correlation between mRNA levels and protein abundance than

under transient conditions [66]. In a study of Escherichia coli with a

mutation in the pgi gene, transcription levels and corresponding

protein abundance of the central metabolism genes changed in a

correlated manner, with a coefficient of 0.81 [67]. Importantly,

even in the studies that found weak correlations [62–64], the most

strongly differentially expressed genes frequently displayed chang-

es in mRNA level and protein abundance in the same direction.

This has been verified in recent studies exploring transcriptomic

and proteomic differences in both eukaryotic and prokaryotic

single-celled organisms, with 88% [68] and 97% [69] of the genes

with significantly altered transcription levels displaying changes in

protein abundance in the same direction for S. cerevisiae and

Haemophilus influenzae, respectively.

Thus, a formulation that uses a relative change correlation from

one steady state to another could provide a practical approach

under certain circumstances without requiring full knowledge of

all possible regulatory mechanisms that govern the relationship

between mRNA level and protein abundance. Our approach was

based on the assumption that if the transcriptional mRNA level for

a gene changes from a reference ref to an altered condition new, the

limit of the corresponding normalized reaction flux catalyzed by

the corresponding protein was bound by the ratio of [protein]new/

[protein]ref. We approximated this ratio by [mRNA]new/[mRNA]ref+L,

where the mRNA levels are taken from microarray experiments

and L indicates a slack variable that allows for possible violation

of the assumption. The method further assumes that the

reference state is associated with a functioning metabolic

network description that allows for steady state flux through

its metabolite reactions and biomass accumulation. In addition,

we assumed that the new state captured by the altered gene

expression levels could also be described by a steady state

approximation. This makes our model suitable for interpreting

gene expression data that describes a transition from one stable

condition to another one. In the case studied here, the

immediate response of M. tuberculosis H37Rv to hypoxia, the

model adaptations appear to be reliable for at least seven days

after the insult. Longer-term adaptations that are dependent

upon different gene expression programs, e.g., as in the

extended hypoxic response, would have to be modeled by data

directly associated with that state.

Metabolic adaptations associated with changing from an in vitro

environment, where careful characterization of metabolism is

possible, to an in vivo environment, where experimental data on

metabolism would be more difficult to obtain, could be modeled

based solely on differential gene expression measurements.

Conversely, the metabolic model interpretation would not be

suitable for creating tissue- or cell-specific metabolic networks

based on the current overall human metabolic network recon-

struction [70] because these use absolute rather than relative

enzyme concentrations. However, if a cell-specific metabolic

network exists that is amenable to constraint-based modeling,

such as flux balance analysis (FBA), a change in the gene

expression program of these cells due to some perturbation would

be an excellent candidate for applying our methodology.

Hypoxic adaptations of M. tuberculosis
The case study of modeling the immediate metabolic adaptation

of M. tuberculosis H37Rv to hypoxia based on an existing metabolic

network for normoxic conditions and relative gene expression

changes under hypoxic conditions highlighted the type and

amount of information that could be extracted from our modeling

approach. Phenotypic effects of the hypoxia-induced gene

expression program due to low-oxygen stress included adjusting

the metabolism to a lower rate of oxygen uptake, lowering ATP

utilization, altering biomass composition, increasing cell wall

production, engaging the glucose-processing glycolysis pathway,

and accommodating anaerobic respiration by using the reductive

side of the TCA cycle. The dosR gene controlled this gene program

and the gene expression profile of the deletion mutant DdosR

revealed that it did not accommodate these metabolic adaptations.

The mutant was less fit and displayed a substantially reduced

growth rate under these conditions compared to the wild type

strain. These predictions are supported by observations from

previous experimental studies [49–51] and the recent confirmation

of the importance of the reductive branch of the TCA cycle for

latent tuberculosis [16]. The hypotheses regarding the altered

importance of different enzymes under hypoxic conditions can be

tested with gene knockout studies and, if validated, these enzymes

may serve as novel drug target candidates for eliminating latent

tuberculosis. In addition to the in vitro-based work presented here,

our approach is ideally suited to elucidate the metabolic responses

of M. tuberculosis to other stressors, such as nitric oxide [19] and

carbon monoxide [20], as well as metabolic adaptations to animal-

model-specific microenvironments [22].

Materials and Methods

M. tuberculosis HR37v metabolic network and gene
expression data

We used the in vitro iNJ661m metabolic network of M. tuberculosis

H37Rv [42], an enhanced version of the original iNJ661 network

[35], as the reference network to describe cellular metabolism

under normoxic growth conditions. The original iNJ661 model

was augmented with reactions and metabolites involved in biotin

synthesis, fumarate and succinate synthesis, and the methylcitrate

cycle and minor changes to the biomass function were made. The

iNJ661m network contains 663 genes, 838 metabolites, and 1,049

reactions and correctly predicts growth rates of normoxic H37Rv

in different media. We used microarray data measured in triplicate

from Park et al. [25] as the source for differential gene expression

associated with the transcriptomic alteration two hours after the

transfer from normoxic air to hypoxic nitrogen gas with 0.2%

oxygen (1.5 mm Hg) for both wild type M. tuberculosis H37Rv and

the DdosR deletion mutant [25]. Out of the 501 genes that showed

a more than 1.8-fold change, 96 appeared in the metabolic

network, 16 of which were down-regulated and 80 were up-

regulated.

Integrating a reference metabolic network and
differential gene expression data

Figure 1 shows the overall scheme for integrating a given

metabolic network compatible with a reference condition and a set

of differential gene expression data describing mRNA transcrip-

tion changes going from the reference state to the new state. Our

method depended on developing a set of constraints (Steps I–IV)

that take into account the known metabolic reference conditions

and possible alterations in metabolite flow through any given

reaction associated with an expression change to produce a

metabolic representation of these constraints (Step V).

Step I. In this step, we first performed a flux variability

analysis (FVA) [71,72] to calculate the minimum and maximum

fluxes through each reaction i under an FBA-predicted optimal
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biomass production rate. Further, we solved an optimization

problem to obtain a set of reference fluxes xi,ref for each reaction i

normalized by the optimal biomass production rate (see Supple-

mental Text S3 for details). This reference flux distribution

satisfied all necessary constraints and was close to the means of the

normalized minimum and maximum fluxes (i.e., the minimum

and maximum fluxes divided by the reference optimal biomass

production rate [36]). Therefore, this reference state is represen-

tative of the reference condition, in our case M. tuberculosis growth

under normoxic conditions, and should be a good starting point

for determining alterations in fluxes in the perturbed hypoxic state

based on altered gene expressions. The renormalization of the

fluxes with the optimal biomass growth rate was necessary to

transform the optimization from a non-linear to a linear problem

and improve numerical stability. In applications of the method in

which experimentally measured reference fluxes are available,

these could instead be used as reference fluxes.

Step II. We associated gene expression ratios with reaction

ratios according to the gene-protein-reaction relations in the

metabolic network. If only one gene was associated with a

metabolic reaction i, the expression ratio of this gene was assigned

to the reaction ratio Ri. If several genes were jointly required for a

reaction i to take place, the reaction ratio Ri was assigned to the

geometric mean of the expression ratios of the genes. This

formulation captured the condition that all reaction ratios were

required. If any one of several genes was sufficient for a reaction i

to occur, the reaction ratio Ri was assigned to the arithmetic mean

of the expression ratios of the genes. This formulation captured the

condition that, at a minimum, any one reaction ratio was required.

If a gene (or genes) was associated with several reactions, we used

the above rules to construct a reaction ratio and assign this ratio to

the overall normalized flux of these reactions.

Step III. Given the values for xi,ref and Ri obtained above, we

developed a set of constraints to incorporate the effects of altered

gene expression on the metabolic network (uptake rates U,

reaction fluxes x, and biomass composition c). We summarized

these constraints in Equations 1–6 (a complete technical descrip-

tion is provided in Supplemental Text S4) and describe their most

important features below:

Dxi Dƒ(RizLi)Dxi,ref D reaction i with Riv1 ð1Þ

Dxi D§(Ri{Li)Dxi,ref D reaction i with Riw1 ð2Þ

X

i

Smixi{cm,ref (1zaz
m {a{

m )~0 each metabolite m ð3Þ

cm,ref 1zaz
m {a{

m

� �
§cmin each metabolite m ð4Þ

xiƒUi,ref (1zbz
i {b{

i ) each uptake reaction i ð5Þ

xL
i ƒxiƒxU

i each reaction i ð6Þ

Constraints 1 and 2 describe how gene expression changes

could affect reaction fluxes in our model, with the special cases of

reversible and irreversible reaction fluxes treated more fully in

Supplemental Text S4. If the gene(s) related to a reaction i was

down-regulated (Ri,1), we attempted to decrease the absolute

value for xi, the normalized flux through the reaction, to the level

of Ri|xi,ref| (the converse holds for up-regulated genes). To allow

for possible violations of the corresponding constraints, we

introduced non-negative slack variables Li to modulate the flux

level constraints.

Constraints 3 and 4 account for possible modifications in the

biomass objective function and determine the new biomass

composition cm,new. Constraint 3 represents the mass balance of

each metabolite, where Smi denotes the stoichiometric coefficient

for metabolite m in reaction i, cm,ref represents the original

coefficient of this metabolite in the biomass objective function,

and the non-negative variables az
m and a{

m indicate the possible

increase and decrease, respectively, of the coefficient. The biomass

modification was further constrained to a lower limit cmin for each

metabolite (Equation 4). The biomass coefficient under the new

condition cm,new was equal to cm,ref (1+az
m 2a{

m ).

Constraints 5 and 6 determine the upper limit of the

normalized flux of each uptake and intracellular reaction flux.

Ui,ref denotes the upper limit in the reference condition, which is

equal to the original upper limit in the original metabolic network

divided by the reference optimal biomass production rate, and

the non-negative variables bz
i and b{

i indicate the possible

increase and decrease in the normalized limit. The new upper

limit Ui,new was determined as Ui,ref (1zbz
i {b{

i ). The normal-

ized flux through a non-uptake reaction, xi, was constrained

between its lower (xL
i ) and upper bounds (xU

i ) determined from

corresponding original lower and upper bounds in the original

reference metabolic network divided by the reference optimal

biomass production rate.

Step IV. Subject to the developed constraints, we minimized

the sum of the slack variables (SLi) and then minimized the

modifications in the biomass objective function (az
m and a{

m ) and

in the upper limits of the metabolite uptakes (bz
i and b{

i ). Finally,

we obtained the minimum and maximum normalized flux

through each reaction. Additional technical details are provided

as Supplemental Text S5.

Step V. We obtained a distribution of the normalized fluxes

under the new condition, xi,new, by solving an optimization

problem similar to the problem S5–S8 in Supplemental Text S3.

In particular, we minimized the sum of the absolute differences

between xi,new and means of the minimum and maximum fluxes

calculated in Step IV, subject to all necessary constraints

(Constraints S11–S20 with the determined values for minimum

SLi, az
m , a{

m , bz
i , and b{

i and the limiting oxygen uptake reaction

flux, see Supplemental Text S4 and S5 for details). If the

corresponding reference flux xi,ref was not equal to zero, we

constructed a flux ratio with respect to the new condition as the

absolute value of the ratio of xi,new to xi,ref.

Model construction, data processing, and simulations were

carried out in MATLAB (2011b, MathWorks, Natick, MA) using

the COBRA toolbox [73]. The metabolic models (in MATLAB

format) and parameter sets for simulating both wild type and the

DdosR deletion mutant are provided as Supplemental Protocol S1.

Analysis of fluctuations and randomization of gene
expression data

We performed 500 Monte Carlo simulations to calculate the

distribution of normalized oxygen uptake rates of the wild type

strain based on experimentally determined gene expression

fluctuations. In each simulation, we randomly generated an

expression value for each gene based on its assumed normal
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distribution with mean and standard deviation corresponding to

the experimental wild type values [25], and used Steps I–V to

calculate the normalized oxygen uptake.

We also performed another set of 500 simulations to calculate

the oxygen uptake rates for randomized gene expression data sets.

In these simulations, we assigned an expression value for each gene

by randomly selecting a value from the experimental data set [25]

and used Steps I–V to calculate the normalized oxygen uptake rate

for each randomized gene set.

Calculation of cell concentrations during normoxic and
hypoxic growth

We calculated the cell concentrations of wild type M. tuberculosis

H37Rv and the DdosR deletion mutant under normoxic (days 0–5)

and early hypoxic (days 5–60) conditions to compare the model

predictions with experimentally determined growth characteristics

[49]. Using the initial cell concentrations [49], we solved the

following ordinary differential equation:

dX

dt
~24(m{d)X , ð7Þ

where X indicates the cell concentration of M. tuberculosis, t

denotes time in days, and m and d represent biomass production

rate and lysis rate, respectively, in units of h21. The value for m
differed between the strains of M. tuberculosis (wild type and

DdosR) under the two growth conditions (normoxic and

hypoxic), while we assigned d one uniform value and assumed

that this value was the same for both strains. The parameters of

this equation were determined from matching the calculated

growth of the wild type strain to the experimental values. We

first performed an FBA of the iNJ661m network [42] to

calculate the wild type wt strain’s normoxic n biomass

production rate mwt,n and then determined the value of d by

reproducing the experimental normoxic cell concentrations.

Given d, we further matched the calculated cell concentrations

under hypoxia of the wild type to determine the hypoxic h

biomass production rate mwt,h. To estimate the growth rate of

the DdosR mutant, we assumed an inverse proportionality

between normalized oxygen uptake rate and biomass produc-

tion rate. Thus, we set the normoxic biomass production rate

mDdosR,n to be equal to that of the wild type strain mwt,n, and

obtained the hypoxic rate of the mutant mDdosR,h via the

following equation:

mDdosR,h~
Owt,h

ODdosR,h

:mwt,h, ð8Þ

where Owt,h and ODdosR,h denote the calculated normalized

oxygen uptakes of the wild type and DdosR strains under

hypoxia, respectively. Supplemental Table S1 provides all

condition- and strain-specific values for the biomass production

rate m and lysis rate d.

Identification of metabolic genes essential for M.
tuberculosis to adapt to hypoxia

We identified a metabolic gene as being essential for adaptation

to hypoxia if we predicted that this gene was nonessential under

normoxia but essential under hypoxia. To determine gene

essentiality under normoxia, we performed an FBA to predict

the biomass production rate for the wild type strain and for each

individual metabolic gene deletion mutant. We modeled deletion

mutants by removing all reaction(s) related to the deleted gene. If

the ratio for the biomass production rate of a single-gene deletion

mutant to wild type was greater than a threshold (0.10), we

categorized the metabolic gene as nonessential under normoxia.

Similarly, if the ratio for the biomass production rate calculated

under hypoxia (as approximated in Equation 8) was less than the

threshold (0.10), we categorized the corresponding gene as

essential under hypoxia. All calculated ratios were either .0.25

or ,0.01 and the choice of 0.10 was thus robust with respect to

differentiating ratios close to zero from those significantly higher

than zero.
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