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Abstract

Regulation of microtubule dynamics is essential for many cell biological processes, and is likely to 

be variable between different subcellular regions. We describe a computational approach to 

analyze microtubule dynamics by detecting growing microtubule plus ends. Our algorithm tracks 

all EB1-EGFP comets visible in an image time-lapse sequence allowing the detection of spatial 

patterns of microtubule dynamics. We use spatiotemporal clustering of EB1-EGFP growth tracks 

to infer microtubule behaviors during phases of pause and shortening. The algorithm was 

validated by comparison to manually tracked, homogeneously labeled microtubules, and by 

analysis of the effects of well-characterized inhibitors of microtubule polymerization dynamics. 

We used our method to analyze spatial variations of intracellular microtubule dynamics in 

migrating epithelial cells.

Index Terms

Microtubules; dynamic instability; end-binding protein; feature detection; particle tracking; 
geometric clustering

Introduction

Microtubules are polymers of α/β-tubulin dimers that stochastically switch between phases 

of growth and shortening. These dynamics are generally reported by four parameters: the 
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rates of growth and shortening and the frequencies of switching between these phases, 

referred to as catastrophes and rescues1. Conventional analysis of intracellular microtubule 

dynamics involves microinjection2 or expression of fluorescently labeled tubulin3 to 

homogenously label the microtubule network, and time-consuming, computer-assisted hand-

tracking of individual microtubule ends over time2,4. Although computational modeling has 

improved the efficiency and reliability of this method5, the analysis remains limited to 

microtubules near the cell periphery, where ends of labeled microtubules can be observed 

over sufficient periods of time. Sub-stoichiometric labeling6 allows microtubule observation 

deeper in the cell and could permit end tracking relative to the microtubule lattice, but the 

identification of microtubule ends and filaments in this context is an unresolved challenge; 

to date, only a few papers describe hand-measured data from limited numbers of 

microtubules4,7.

An alternative strategy to visualize microtubule polymerization utilizes proteins that 

specifically recognize a structural property of growing microtubule plus ends, such as 

fluorescently-tagged End Binding Proteins 1 and 3 (EB1- or EB3-EGFP) 8–10. The 

exponential decay of available binding sites results in the characteristic comet-like 

fluorescence profiles of EGFP-tagged EBs. Fast turnover11 causes rapid loss of EB 

fluorescence from non-polymerizing microtubule ends and rapid appearance of EB comets 

when microtubules start growing.

Here, we describe a computational strategy to extract microtubule growth rates from EB1-

EGFP time-lapse image sequences and introduce an approach to infer parameters of 

microtubule dynamics in pause and shortening phases without visible comets. We detect 

EB1 comets, track the comets to measure microtubule growth rates, and spatiotemporally 

cluster EB1 growth tracks into more complete trajectories, which include inferred shortening 

and pause phases (Supplementary Fig. 1). This method allows analysis of a large population 

of intracellular microtubule ends in a spatially unbiased manner. Software packages 

implementing these algorithms are available at lccb.hms.harvard.edu and as Supplementary 

Software 1.

Results

EB1-EGFP Comet Detection and Tracking

To identify EB1-EGFP comets in each frame of a time-lapse sequence (Fig. 1a), we 

calculated the difference of two Gaussian (DoG) transformations with standard deviations σ1 

and σ2 adjusted to enhance the band of image frequencies associated with EB1-EGFP 

comets (Supplementary Note 1 and Fig. 1b). We used unimodal thresholding12 to remove 

background pixels (Supplementary Note 2 and Fig. 1c) and individual objects likely 

corresponding to EB1 comets were then generated by connected component labeling of the 

thresholded DoG image (Fig. 1c). To discriminate against selected objects that are not true 

comets, we selected by template matching objects that conform to the average shape of EB1-

EGFP comets (Supplementary Note 3 and Fig. 1d). For both thresholding steps, user-defined 

coefficients k1 and k2 were introduced to adjust the automatically detected threshold if 

required for specific imaging conditions. All adjustable parameters are summarized in 

Supplementary Table 1. Because the average EB1 comet shape is determined for each 
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image, the detection is robust against variations throughout the time-lapse sequence, for 

example during acute application of microtubule polymerization inhibitors that reduce the 

polymerization rate (Fig. 1d). A list of EB1 comets was thus obtained for each frame (Fig. 

1e), including the position of the object centroid, the magnitude of EB1-EGFP comet 

eccentricity and the angular direction of its main axis.

To validate the detection algorithm, the positions of ~120 hand-detected EB1-EGFP comets 

were compared to automatically detected objects for different pairs of σ2 and k1 because 

these parameters are most sensitive to imaging conditions (Fig. 1f). Because the detection 

algorithm is sensitive to image intensity variations at the size scale of EB1-EGFP comets, in 

confocal images in which a low EB1-EGFP signal is evident along the length of 

microtubules, k1 was increased to k1 > 2 to avoid a large number of false positive detections. 

In widefield images, however, in which EB1-EGFP along the microtubule lattice is 

obfuscated by out-of-focus light, the default pixel intensity threshold of k1 = 1 worked 

robustly (Supplementary Fig. 2).

The detection error was quantified by the percentage of false positives (100(1-M/D)) and the 

percentage of false negatives (100(1-M/G), where D is the number of computer-detected 

comets, G is the number of hand-selected comets, and M is the number of matches between 

those two sets). There was low correlation between σ2 and false positive detections over 

most of the range of σ2 values tested. Similarly, false negative detections did not follow a 

clear trend, but a shallow minimum was evident around σ2 = 4 indicating that detection was 

most successful when σ2 matched the expected length scale of EB1-EGFP comets (Fig 1f). 

The detection performance was similar in widefield images, and was largely independent of 

the precise shape of the comet as the algorithm was successfully applied to other plus-end 

tracking proteins (Supplementary Fig. 2). Detection was also largely insensitive to simulated 

high frequency pixel noise (Supplementary Fig. 3). A small number of undetectable EB1-

EGFP comets is expected in every image due to proximity or overlap, which results in 

objects that do not pass the template matching of the detection algorithm. However, these 

events should not introduce a systematic error in the detected EB1-EGFP comet population. 

Moreover, temporary comet occlusion is largely compensated by subsequent growth track 

clustering.

The elongated shape of EB1-EGFP comets implies that the comet centroid is systematically 

located behind the very tip of the microtubule. For growth rate measurements this offset is 

irrelevant as long as it remains constant over time. To assess the magnitude of potential 

temporal variation in the offset we determined the difference between computationally-

defined EB1-EGFP comet positions and manually detected intensity maxima, which co-

localize with the microtubule tip. As expected, the difference increased with comet 

eccentricity (Fig. 1g). Perpendicular to the microtubule direction it was small (0.49 ± 0.94 

pixel) and below the accuracy of manual detection. For highly elongated comets, the 

difference was 2.95 ± 1.26 pixel along the direction of the microtubule (Fig. 1h); we 

estimated that the standard deviation of this difference was sufficiently small to have minor 

impact on the analysis of microtubule growth (Supplementary Note 4). Because the 

elongation of the EB1-EGFP comet depends on the rate of microtubule growth10, we 

expected a positive correlation between comet eccentricity and speed. Indeed, we found that 

Matov et al. Page 3

Nat Methods. Author manuscript; available in PMC 2011 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the fastest comets had a high eccentricity, although the distribution also included many 

slower comets with equally high eccentricity (Fig. 1j). In contrast, no obvious correlation 

existed between eccentricity and EB1-EGFP peak intensity (Fig. 1k). Overall, this indicates 

complex kinetics of EB1 interactions with microtubule ends or fluctuations of microtubule 

end structures in cells.

Detected EB1-EGFP comets were tracked using a Kalman filter-based multi-object tracking 

algorithm13 (Supplementary Note 5 and Fig. 2). As expected for random switching from 

growth to shortening, the track lifetime follows an exponential decay14 with a mean lifetime 

τ = 3.6 frames (Fig. 2d). Because the number of tracks with a lifetime of 2 frames was 

higher than expected, we suspected that a significant subpopulation of very short tracks 

resulted from detection or tracking errors. Analysis of the variance of the growth rate 

histogram as a function of minimal lifetime further indicated a very high standard deviation 

for short tracks (Fig. 2e). Thus, subsequent analysis only included growth tracks with a 

lifetime of 4 frames and greater. To evaluate the combined performance of the detection and 

tracking algorithms we compared computer-generated tracks with simulated differences in 

spatial (Supplementary Fig. 4) and temporal resolution (Supplementary Fig. 5). We found 

that the algorithm performed robustly at magnifications that satisfy the Nyquist sampling 

criterion (effective pixel size of <100 nm), and that a temporal sampling of 1–2 frames s−1 

was sufficient to achieve good track reconstruction of microtubule growth.

EB1-EGFP Growth Track Cluster Assignment

Microtubules are stiff15 and over the short time intervals used to observe microtubule 

polymerization dynamics they translocate little. As a result, microtubule shortening, rescues 

and pauses predominantly occur along the path defined earlier by the growing microtubule 

end. Thus, time-shifted, nearly parallel EB1-EGFP tracks with significant spatial overlap 

have a high probability of belonging to the same microtubule. To detect events of 

microtubule shortening and pausing in addition to the microtubule growth directly visible in 

EB1-EGFP sequences and to infer parameters of their associated dynamics, we developed a 

computational scheme to cluster tracks that fulfill defined geometrical and temporal 

constraints based on a priori assumptions about intracellular microtubule behavior (Fig. 3a).

Given an EB1-EGFP growth track terminating at time t, we considered all track initiations in 

the interval [t+1, t+Tmax] in cones with a forward opening angle ϕ = ±45° and a backward 

opening angle ρ = ±10° as candidate links that could potentially represent a continuation of 

the terminated growth (forward link) or shortening (backward link), respectively. The 

narrow backward cone reflects the tendency of microtubules to shorten along the preceding 

growth trajectory4. For each candidate link we then calculated the maximal allowable 

distance for forward (Cfwd) and backward gaps (Cbwd) as:

(1)

(2)
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Vmax represents the 95th percentile of the speed distribution from all participating growth 

tracks, and Δtgap is the time between termination and initiation of the two candidate tracks. 

Equation (1) assumes that short time gaps mainly result from temporary occlusion of 

growing microtubule ends due to noise, overlap, or out-of-focus motion, where the comet 

reappears at a distance proportional to the growth rate and Δtgap. Long time gaps more likely 

represent bona fide pauses. During such pauses a microtubule end undergoes a random walk 

of short growth and shortening events, and the comet reappears at a distance proportional to 

the square root of time points without detectable EB1-EGFP comet. In equation (2), γ takes 

into account that microtubule shortening is generally faster than growth3,4. VmedTmax, where 

Vmed is the median of the growth track speed distribution, safeguards against the 

combinatorial explosion of candidate links in dense EB1 comet fields. Furthermore, 

candidate links were considered only when the directional change αi,j between the two 

associated tracks was less than αmax = 60° (Fig. 3b), because microtubules rarely bend more 

than 60° over short distances16.

From the set of candidate links that fulfilled the distance and angular criteria we then 

selected the largest possible subset of links with overall minimal cost using linear 

assignment17,18. The cost for an individual candidate link ci,j was defined as

(3)

which gives preference to pairs of tracks in close proximity (δi,j), with a low bending angle 

(αi,j), and with small transversal shifts (βi,j). Although the methods currently used may 

generate some false positive links, the selection is fairly robust because all tracks compete 

for links simultaneously. In a typical EB1-EGFP time-lapse sequence, each growth track 

termination associated with ~200 candidate links that fulfilled the temporal (Tmax) and 

angular criteria (ϕ, ρ and αmax). Applying the distance cutoffs (Cfwd and Cbwd) reduced this 

to an average of 3 competing track initiations. As expected, the majority of links were 

positioned in the cell periphery where microtubules more frequently switch between growth 

and shortening (Fig. 3c, d).

Forward gaps during which EB1-EGFP comets are invisible could be due to periods of 

pause or very slow growth during which the EB1-EGFP signal becomes too dim to be 

detected, or due to very fast-growing EB1-EGFP comets that are temporarily out-of-focus. 

We therefore calculated the forward gap speed vfwd as the distance between the last point in 

the terminating track and the first point in the linked growth track divided by the gap 

duration (Fig. 3a, c). Typically, less than 15% of the forward gaps had a speed larger than 

the slowest 30% of the growth tracks. This indicated that most forward gaps represented true 

microtubule pausing. A small forward translocation is expected even for true pause events 

because of the latency of detectable EB1-EGFP comet formation at the end of a newly 

growing microtubule (Supplementary Note 6). Similar to forward gaps, backward gaps 

contain information about microtubule shortening events, and as above we calculated a 

backward gap speed vbwd (Fig. 3d). Of note, the histograms of both vfwd and vbwd sharply 

decayed towards the last bin below the maximally allowable velocity. This is an indication 
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that the distance cutoffs in Eq. (1) and (2) were set sufficiently large to capture the majority 

of clusters of aligned growth tracks (Fig. 3c, d).

Algorithm Validation

To evaluate the performance of growth track clustering, we recorded dual-wavelength time-

lapse sequences of cells expressing both EB1-EGFP and mCherry-tubulin (Fig. 3e). Because 

mCherry-labeled microtubules were too dense in the cell interior to directly observe 

dynamic ends (Supplementary Fig. 6), we hand-tracked 19 microtubules in a peripheral cell 

region in which microtubule ends were clearly visible (Fig. 3f and Video 2). Detection and 

tracking of EB1-EGFP comets was accurate as indicated by the overlap of hand- and 

computer-tracked growth (Fig. 3f and Video 3).

Although clustered growth tracks and hand-tracked microtubule trajectories were similar, 

qualitative comparison showed that many shortening events were missed (Fig. 3g). This was 

expected because the clustering algorithm cannot detect shortening that is not preceded or 

followed by a growth track within the distance and angle criteria. However, a high 

percentage of false negatives is acceptable as long as the population of microtubules 

analyzed is sufficiently large and unbiased to provide a representative readout of overall 

microtubule dynamics. To quantitatively test this, we compared hand-tracked rates of 

growth, pause, and shortening, and pause durations to those obtained by computational 

analysis. Importantly, the definition of growth, pause, and shrinkage events by hand-tracking 

relies on user-defined judgment as to when a microtubule undergoes a change in velocity. 

The definition of these events by growth track clustering relies on the detection of EB1-

EGFP comets as molecular markers of microtubule growth. Therefore, prior to a comparison 

of hand- and computer-tracking, the hand-tracked measurements had to be corrected to 

account for the differences in assumptions (Supplementary Note 7).

Even after these corrections, hand-tracked growth and shortening rates were significantly 

higher than the computer-inferred rates (Table 1). This deviation originated in the 

fundamentally different definitions of growth, pause, and shortening events in hand- and 

computer-tracking. Specifically, computer-tracked growth events contain a subset of events 

where the microtubule end moves very slowly without loss of the EB1-EGFP comet. In 

hand-tracked trajectories such events would be classified as pauses. Similarly, computer-

inferred backward gaps contain very slow events that would be classified as pauses in hand-

tracked trajectories, in addition to phases of true microtubule shortening. We determined a 

threshold for a computer-generated growth track or backward gap to be accepted as a 

significant growth or shortening event by analysis of the velocity distribution of forward 

gaps, which includes both pauses and gaps due to unobserved growth events (Supplementary 

Note 8). This filtering resulted in excellent agreement between computer-inferred and hand-

tracked growth and shortening rates (Table 1). Thus, although comparisons between 

computational analysis and hand-tracking cannot be made directly, reasonable assumptions 

about the limitations of both methods confirmed that the growth and shortening rates we 

inferred are representative of microtubule polymerization dynamics. A discrepancy between 

computer-inferred and hand-tracked pause durations remained (Table 1), likely due to the 

latency of EB1-EGFP comet formation and disappearance (Supplementary Note 6). Thus, 
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pause durations inferred by the clustering algorithm are not directly comparable to hand-

tracking of homogenously labeled microtubules. Similarly, because shortening events 

interrupted by pauses will be combined into a single phase, the computer-inferred vbwd is not 

a direct measure of the microtubule depolymerization rate. Nevertheless, we expect that 

molecular conditions that change microtubule polymerization dynamics will result in 

relative changes of these computer-inferred parameters.

The clustering algorithm also generated erroneous connections between growth tracks not 

belonging to the same microtubule. To quantify the frequency of such events, we overlaid 

clustered trajectories generated with two different stringencies onto to mCherry-tubulin and 

EB1-EGFP channels (Videos 4–6) and verified computer-assigned growth, pause, and 

shortening phases, as well as catastrophes and rescues. Within the region analyzed (Fig. 3e), 

the software accumulated 475 microtubule growth tracks lasting at least 4 frames. At the less 

stringent parameter set (ϕ=45°, α=60°) 329 tracks clustered into 118 trajectories with an 

average lifetime of 17 seconds. For the more stringent parameters (ϕ=15°, α=15°) 226 tracks 

clustered into 91 trajectories with a 14 second average lifetime. Only 8% of the trajectories 

were identical between the two analyses, indicating the sensitivity of the clustering process 

in selecting viable track connections (Fig. 3g). Because of the high microtubule density, 

about half of the computer-assigned events could not be observed clearly. However, if we 

only considered events that we could visually confirm as true or false, our algorithm showed 

good performance (Supplementary Table 2). As expected, the high stringency parameter set 

was more accurate, and with both parameter sets, the software more robustly connected 

microtubule growth tracks interrupted by pause rather than shortening events. However, the 

better performance at high stringency comes at the expense of less data, which bears the risk 

that some of the heterogeneity of microtubule behavior is lost.

We next tested whether the computational analysis detected well-characterized responses to 

pharmacological microtubule dynamics inhibitors. At low concentrations, nocodazole 

inhibits both growth and shortening rates and increases the time microtubules spend in 

pause19, and we detected statistically significant effects on these parameters at 

concentrations as low as 10 nM (Fig. 4a–c). Similarly, low taxol concentrations reproduced 

published effects20 (Fig. 4d–f). This demonstrates that although our computational analysis 

is sufficiently sensitive to detect expected differences in microtubule polymerization 

dynamics. In addition, the results obtained with two different clustering parameter sets were 

similar, indicating that false positives are sufficiently low so as to not significantly affect 

correctly clustered microtubule growth tracks.

Effects of microtubule acetylation and spatial cues

Armed with our new software tool, we examined two long-standing questions in the field: 

first, we tested whether tubulin acetylation21 alters microtubule polymerization dynamics. 

We treated cells with Trichostatin A (TSA), a broad specificity histone deacetylase inhibitor 

that inhibits the tubulin-specific deacetylase HDAC622 (Fig. 5a). We could not detect 

statistically significant differences in microtubule dynamics when cells were treated with 

TSA alone. However, in cells simultaneously incubated with 50 nM nocodazole the inferred 
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shortening rate in TSA-treated cells decreased significantly (Fig. 5b). This indicates that 

tubulin acetylation may protect microtubules from nocodazole-induced depolymerization.

Second, we examined spatial gradients of intracellular microtubule dynamics. We and others 

have reported that microtubules grow more slowly at the cell edge23,24. We thus determined 

the distance from the cell edge at which the difference in the median microtubule growth 

rate between the edge and interior microtubule populations was largest. In three cells 

analyzed, this distance varied between 3.7 μm and 6.4 μm (Fig 5c, d). The median growth 

rate in the cell body was 19.7–22.7 μm/min compared to 16.6–17.1 μm/min closer to the cell 

edge. The inferred shortening rate was not significantly different (Fig. 5e) but at the cell 

edge a larger fraction of the links between growth tracks were backward links (44–60% in 

comparison to 35–43% in the cell interior), consistent with the observation that peripheral 

microtubules more frequently switch between growth and shortening23,25.

We recently reported that GSK3β inactivation may be required for spatial microtubule 

dynamics regulation in migrating epithelial cells24, but we did not measure significant shifts 

in the spatial gradient of growth rates between control cells and cells expressing 

constitutively active GSK3β(S9A). Here, we first confirmed this result using our new 

method for identifying spatial gradients in microtubule dynamics (Fig 5f). Our clustering 

algorithm then revealed a large decrease in catastrophe probability at the cell edge and a 

decrease in the percentage of time microtubules spent in the shortening phase (Fig. 5g–i). 

This demonstrates that GSK3β regulates specific aspects of microtubule polymerization 

dynamics and is consistent with the hypothesis that GSK3β inactivation increases cell edge 

microtubule interactions with the cortical cytoskeleton24. Importantly, the clustering 

algorithm was able to detect these differences even though growth and shortening rates in 

the cell edge of control and GSK3β(S9A)-expressing cells were not significantly different.

Discussion

We present a framework for the analysis of intracellular microtubule polymerization 

dynamics based on automatic tracking of a microtubule plus end marker such as EB1-EGFP, 

and geometric clustering of growth tracks. Because we never observed growing 

microtubules without associated EB1, and no condition has been reported that selectively 

removes EB1 from a subset of growing microtubule ends, EB1-EGFP is a faithful reporter 

of the entire intracellular microtubule population. Since EB1-EGFP overexpression may 

influence microtubule dynamics by enhancing growth rates26, stabilizing microtubules 

against catastrophes27, or by disrupting the localization of other plus end-tracking 

proteins28, it is important that our algorithm allows comet detection at low expression levels. 

The algorithm may be used with other plus end markers such as EGFP-CLIP-170, allowing 

independent experimental validation. In addition, because a universal EB1-binding motif has 

been identified29, artificial plus end trackers will likely be available soon that only 

minimally affect microtubule dynamics.

Because EB1-EGFP only labels growing microtubules, microtubule behavior has to be 

interpolated when microtubules stop growing. We introduced several assumptions about the 

average behavior of microtubules, including maximum rates, allowed angles for direction 
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changes, and the observation that microtubules shorten along the track previously defined by 

the growing end, to link growth tracks probably belonging to the same microtubule. The 

linking was designed to prefer exclusion of uncertain events. Thus, our algorithm produces a 

relatively low number of false positives, but a high number of false negatives. We estimate 

that only 20–30% of pause and shortening events are captured.

Although we have performed an extensive validation of our clustering algorithm by visual 

comparison with time-lapse sequences that included homogeneously labeled microtubules, 

we currently have no formal way to quantify the frequency of clustering errors. This is an 

important caveat because different imaging conditions or different intracellular densities of 

growing microtubule ends may affect clustering efficiency. Thus, when using this method, 

thorough experimental controls must be performed to avoid the propagation of systematic 

errors (Supplementary Note 9). It is also important to note that measurements inferred by 

cluster analysis are not directly comparable to traditionally reported parameters of 

microtubule dynamics because the assumptions underlying both analysis methods are 

fundamentally different. For example, terminal shortening cannot be detected by our 

approach, and backward gaps may include pauses and short growth phases that do not 

produce a detectable EB1-EGFP comet. Nevertheless, our data show that large numbers of 

growing microtubule ends measured throughout the cell reveal robust and spatially 

differentiated variations in microtubule polymerization behavior between experimental 

conditions. Our approach will thus complement and enhance conventional analysis, which 

typically reports the dynamics of very few microtubules tracked at the cell edge.

There is no mathematical reason precluding the adaptation of our approach to the analysis of 

microtubule dynamics in more physiological three dimensional cell culture systems. In fact, 

the generalization of tracking and clustering has already been demonstrated in a study of 

kinetochore dynamics in mitotic spindles30. Detection of highly eccentric EB1-EGFP 

comets in 3D will be more complex because of the unequal optical resolution in lateral and 

axial directions. Thus, the comet shape in 3D will depend on microtubule orientation, and 

the detection bandpass filter used here will have to be replaced by more sophisticated, 

orientation invariant methods. However, full 3D analysis will also require faster acquisition 

at sufficient temporal and axial resolution and further development of brighter, more 

photostable fluorescent probes. However, the ease of EB1-EGFP imaging makes our method 

attractive for high-content screening applications, in which microtubule dynamics may be 

relevant indicators of cell state.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. EB1-EGFP Comet Detection
(a) Spinning disk confocal image of a cell expressing EB1-EGFP. (b) Difference of two 

Gaussian (DoG) transformation applied to image in a). (c) Accepted pixels (white) after 

unimodal intensity thresholding; The plot (right) shows the histogram of normalized DoG 

intensities; grey lines illustrate construction of the unimodal threshold; dashed red line, 

automatic threshold; solid red line, threshold modified for confocal images. (d) Average 

EB1-EGFP comets in a control and nocodazole-treated cell. (e) Positions and orientation of 

accepted comets (yellow lines, overlaid on raw image) based on automatic thresholding. The 

plot (right) shows the histogram of the normalized least squares difference between 
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individual comet images and the average of all comets in this frame. (f) Contour plots show 

detection error (top, false positives; bottom, false negatives) as a function of σ2 and k1. The 

white cross indicates the detection parameters used in (a) ([σ1, σ2, k1, k2] = [1, 4, 2.5, 1]. (g) 

Displacement of computer-detected EB1-EGFP comet position relative to hand-detected 

microtubule end as a function of comet eccentricity (g) and as a function of orientation 

relative to the microtubule direction (h). Only comets with an eccentricity e > 0.8 (~70% of 

the total comet population in this image) were used in (h). Solid circle, mean displacement; 

error bars, s.d. (n = 95) (j, k) EB1-EGFP comet eccentricity (j) and intensity (k) are plotted 

versus comet speed.
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Figure 2. EB1-EGFP Object Tracking
(a) Maximum intensity projection of EB1-EGFP time-lapse sequence (75 frames, 0.4 s 

frame−1). Growing microtubule ends appear as bright tracks. Scale bar, 10 μm. (b) 

Computer-generated growth tracks (yellow) with a minimum lifetime of 4 frames. (c) 

Histogram of growth velocities. The red line is the maximum search radius. (d) Histogram 

of growth track lifetimes. Red line, least-squares fit of a single exponential decay excluding 

the first data point. (e) Mean growth rates as a function of minimum growth track lifetime. 

Grey area, standard deviation.
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Figure 3. EB1-EGFP Growth Track Clustering
(a) Schematic of growth track clustering. Green and red cones, spatiotemporal search space 

for candidate links to subsequent growth tracks at the end of a terminating growth track. 

Grey tracks with an initiation point inside a cone are not selected for linking by the 

clustering algorithm; gray tracks with an initiation point outside any cone do not participate 

in the clustering. vg, growth rate derived from EB1-EGFP tracks; vfwd and vbwd, inferred 

velocities of forward (blue) and backward (red) gaps, respectively; tx defines the time point 

of initiation or termination of a growth track. (b) Variables defining the cost of a candidate 

link between growth tracks. (c, d) Overlay of forward gaps (c) and backward gaps (d) on a 

maximum intensity projection of EB1-EGFP time-lapse sequence (97 frames, 0.6 s 

frame−1). Blue, slow gaps; red, fast gaps. Insets, histograms of forward (c) and backward (d) 

gap speeds and unimodal thresholds used to reject fast (c) and slow (d) gaps. (e) Image of 

cell expressing mCherry-tubulin and EB1-EGFP. Boxes indicate image regions used for 
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validation. Scale bar, 10 μm. (f) Left, hand-tracking of 19 microtubules in region 1 indicated 

in (e). Periods of growth (green), shortening (red), and pauses (blue) are shown; middle, 

hand-tracked (green) and computer-tracked (yellow) growth; right, hand-tracked shortening 

overlaid on the EB1-EGFP maximum intensity projection of the entire sequence. (g) Track 

clusters obtained by two different settings for the cone openings. Color coding for lines, 

circles (growth track start) and asterisks (growth track and gap ends) as in (a).
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Figure 4. Effects of Microtubule Inhibitors
(a, d) Growth rates, (b, e) inferred shortening rates using two different sets of clustering 

parameters and (c, f) times spent in growth and pause as a function of (a–c) nocodazole, and 

(d–f) taxol concentration. The shaded areas in c and f indicate the standard deviation, and 

the grey area in the taxol experiment indicates unreliable results due to very few growing 

microtubules (< 5–10% of control), which resulted in low clustering efficiency. Data is 

pooled from n = 3 cells for both experiments; distributions comprise n > 3000 measurements 

for each concentration except those in the gray areas. Statistical significance of the 

difference between concentrations is determined by a permutation t-test (see Methods).
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Figure 5. Effects of Tubulin Acetylation and Spatiotemporal microtubule Regulation in 
Migrating Cells
(a) Immunofluorescence staining of acetylated microtubules in control and Trichostatin A-

treated cells. (b) Growth and shortening rates in the presence of the indicated compounds. 

Data pooled from n = 3 cells (each distribution comprises n > 3000 measurements) and 

tested by permutation t-test (see Methods). (c) Computed growth tracks overlaid on a 

maximum intensity projection of an EB1-EGFP time-lapse sequence at the edge of a cell 

monolayer (77 frames, 0.4 s frame−1). Growth tracks are color-coded by growth rate as 

indicated; the dashed white line indicates the leading edge. (d) Difference in median growth 

rate of microtubule populations in the cell body (red) and cell edge (blue) as a function of 

distance from the edge. The plot below shows the regionally separated histograms of growth 

rates. (e) Growth and inferred shortening rates in the cell body and at the cell edge. (f) 
Growth and (g) inferred shortening rates, (h) catastrophe probability (estimated as the 

fraction of backward links in the total population of links), and (j) the time spent shortening, 

in regions of the cell edge compared to the cell body in control and GSK3β (S9A)-

expressing cells. (e – g) Data pooled from n = 6 cells (distributions comprise n > 3000 

measurements) and tested by permutation t-test (see Methods). Scale bars, 10 μm.
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Table 1
Comparison between computer-inferred and hand-tracked microtubule dynamics

Both computer-inferred rate measurements using EB1-EGFP comet tracking and cluster analysis and hand-

tracked microtubule trajectories of homogeneously labeled microtubules were adjusted to make the underlying 

assumptions more comparable as explained in the text. Pauses per microtubule are not initially defined in 

segment-by-segment hand-tracked data sets. Values are means ± standard deviation.

Growth (μm min−1) Shortening (μm min−1) Pause (μm min−1) Pause duration (sec)

Computer-inferred (raw) 16.8 ± 7.4
n = 2799

17.6 ± 14.7
n = 775

7.2 ± 5.2
n = 704

6.9

Computer-inferred (corrected) 18.7 ± 7.4
n = 2351

24.4 ± 14.3
n = 499

4.6 ± 2.4
n = 517

8.2

Hand-tracked (raw, segment-by-segment) 21.7 ± 8.4
n = 582

39.4 ± 22.6
n = 283

Hand-tracked (corrected, head-to-tail) 19.1 ± 7.4
n = 122

24.9 ± 12.8
n = 70

4.3 ± 3.4
n = 105

3.0
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