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Review

The obligate intracellular bacterium Lawsonia intracellularis 
has been associated with enteric disease in various animal 
species, but it is of greatest importance in pigs.17,18,40,42,72,77  
In 1931, a clinical presentation in pigs, characterized by  
diarrhea, weight loss, and, in some cases, sudden death, was 
described for the first time.7 In 1953, the disease was given 
the name proliferative enteropathy (PE) to reflect the main 
pathologic changes (i.e., proliferation of crypt enterocytes).24 
Since then, PE has emerged as a disease of economic signifi-
cance to the pig industry, causing clinical disease in a wide 
age range of pigs depending on specific manifestations. Eco-
nomic impact assessments vary depending on the country of 
origin and clinical subtype but, overall, they indicate a poten-
tial for significant financial impact if L. intracellularis infec-
tion is highly prevalent.17,40,72,77

Detection of L. intracellularis infection remains a 
 challenge for swine practitioners and producers. Infection 
can be subclinical but, even when clinical signs are appar-
ent, diagnosis of PE may be complicated because several 
pathogens can have similar clinical presentations (e.g., 
Brachyspira hyodysenteriae, Salmonella enterica serovar 
Typhimurium, and porcine circovirus 2 [PCV-2]).3,9,100 The 
scarcity of suitably validated detection tools, together with 
a lack of pathognomonic clinical signs and intermittent 
shedding of bacteria, can hinder confident and meaningful 
diagnosis.

Our review focuses on recent advances in the diagnosis of 
PE. We also compare the value, advantages, and drawbacks 
of detection tools available to the pig production industry, 
to date.

Disease overview

Clinical signs of L. intracellularis infection in pigs have 
been well documented. The disease generally manifests in 1 
of 2 ways clinically, acute PE and chronic PE, or the infec-
tion may remain subclinical.21,65,107

In the most fulminant (and less frequent) acute form of 
PE, L. intracellularis infection can be associated with sudden 
death of pigs > 4 mo old as a result of severe acute hemor-
rhage into the intestinal tract, variably known as proliferative 
hemorrhagic enteropathy or acute PE.60,93 In these severe 
cases, pigs may exsanguinate prior to the development 
of diarrhea, and the only other clinical sign may be pallor. 
However, in more prolonged cases, melena or hematochezia 
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Abstract. Lawsonia intracellularis is an obligate intracellular bacterium associated with enteric disease in pigs. Clinical signs 
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is not well defined, and detection of the infection, especially in the early stages, is still a significant challenge. We review here 
the main approaches used to identify this important but poorly understood pathogen. Detection of L. intracellularis infection 
as the cause of clinical disease is confounded by the high prevalence of the pathogen in many countries and that several other 
pathogens can produce similar clinical signs. A single L. intracellularis–specific ELISA and several amplification assays 
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conclusive diagnosis. There are major gaps in our understanding of L. intracellularis pathogenesis, especially how the host 
responds to infection and the factors that drive infection toward different clinical outcomes. Knowledge of pathogenesis will 
increase the predictive value of antemortem tests to guide appropriate interventions, including identification and treatment of 
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are appreciable.107 The mortality rate for acute PE is 12–50% 
and is more typical in replacement breeder animals.31,55,74,106

The chronic form of PE causes non-hemorrhagic diarrhea 
(i.e., gray-green, semi-solid to liquid feces), weight loss, or 
reduced rates of weight gain in younger pigs, but clinical 
signs are often subtle, and diarrhea may not be present.78 
Affected pigs are 6–16 wk old and are often in suboptimal-
to-poor body condition, with a normal-to-dull demeanor. 
Although widely known as chronic PE, this subtype is also 
termed porcine intestinal adenomatosis, proliferative ileitis, 
or just ileitis.24,93,107 Chronic PE is generally not fatal, and 
recovery within several weeks is the norm.92,107 The mortal-
ity rate is ~2%, and death is generally the result of secondary 
infections. However, fecal shedding of L. intracellularis 
increases the likelihood of pig-to-pig transmission, nega-
tively impacting morbidity, feed conversion rates, treatment 
cost, and time to slaughter.2,17,29,74

Subclinical infection is usually characterized by reduced 
growth rates and increased feed conversion rates, in the 
absence of other clinical signs.21,24,43,84,92,98,106 Although sub-
clinically infected pigs do not usually have diarrhea, they 
still generally have histologic lesions, shed the bacterium, 
and may remain a source of infection for other pigs.11 Studies 
to account for the dichotomous outcome of L. intracellularis 
infection (i.e., subclinical infection vs. overt clinical signs 
[including acute or chronic PE]), are lacking to date.

Lesions

Macroscopic lesions associated with L. intracellularis 
infection can occur at all levels of the intestinal tract. 
Lesions are typically localized in the terminal ileum from 
where they may extend distally to the colon and cecum, or 
proximally to the distal jejunum.37,45,48 The intestinal 
mucosa may become thickened by raised islands of the 
mucosa (originally described as polyps).7 In more severe or 
advanced cases, the islands coalesce, resulting in mucosa 
that has a thickened, corrugated, or cerebriform appearance 
(Fig. 1A). In some cases, there is focal necrosis, with super-
imposed yellow or gray deposits of fibrin and cellular 
debris (Fig. 1B).57 Secondary infection may lead to necrotic 
enteritis, characterized by coagulative necrosis and super-
imposed fibrin. If the pig survives, the necrotic tissue is 
replaced by granulation tissue. This lesion is known as 
regional ileitis or, more colloquially, “hosepipe gut.”94 
Mucosal thickening is common to both the acute and 
chronic forms of PE, but only in acute PE does the intestinal 
content consist of blood, including blood clots, free blood, 
and fibrin, the exact origin of which remains unclear. 
Although highly suggestive of PE, these lesions are not 
solely indicative of L. intracellularis. For example, the 
gross features of PCV-2 enteritis can be very similar to the 
necrotizing form of PE.46 Pigs may also be infected in the 
absence of macroscopically appreciable lesions, or lesions 
may be small and focal, and thus are easily overlooked 

postmortem.36 Diagnosis may also be hampered if PE is 
masked or complicated by other diseases, such as salmonel-
losis or swine dysentery.78,100

The microscopic lesions of PE are very characteristic and 
generally pathognomonic, unless mild, infrequent, or com-
plicated by secondary or concomitant infections. The lesions 
have been well characterized and, in short, consist of hyper-
plasia of crypt enterocytes with the formation of elongated, 
dilated, and branching crypts. The hyperplasia is accompa-
nied by increased mitoses and a reduction in, or complete 
loss of, goblet cells (Fig. 1C; i.e., loss of differentiation of 
the mucosal epithelial population).6,57 Crypt hyperplasia is 
not specific, however, and can occur as a nonspecific 

Figure 1. Lawsonia intracellularis infection and associated 
lesions. A. Pig ileum from a case of acute proliferative enteropathy 
(PE). The lumen is filled with clotted blood, and the exposed mucosa 
is markedly thickened and corrugated. B. Pig ileum from a 
case of acute PE. The blood clot has been removed to expose the 
highly corrugated mucosa. A severe case of chronic PE would 
appear similar grossly, lacking only the intraluminal blood clot. 
C. Dramatic enterocyte hyperplasia in an intestinal crypt from a 
case of PE, in which there is also goblet cell depletion. H&E. 400×. 
D. PK15 cells infected with L. intracellularis, which is labeled with 
a specific monoclonal antibody and detected with AlexaFluor594 
(red; arrows). PK15 actin is labeled with phalloidin-495 (green), 
and nuclei are labeled with DAPI (blue). Immunofluorescence with 
confocal microscopy. 400×.
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reactive or regenerative change in the face of mucosal injury 
or ulceration.14,86

Immunology

Understanding the host immune response against a specific 
pathogen can help in the development of specific laboratory 
tests. A review summarizing the current knowledge of the 
porcine immune response to L. intracellularis and the poten-
tial applications of this response for diagnostic purposes was 
published in 2020.83 We aim to put the timing of these 
responses into the context of their value for detection of the 
infection in relation to clinical signs and direct detection of 
the pathogen (Fig. 2).

Innate immunity is the first line of defense and, in pigs, 
the first signs of a general inflammatory response are 
expected 2–3 d post-infection (dpi).68 In chronic PE, the 
absence of an inflammatory response including the relative 
dearth of immune cells in affected areas could be a conse-
quence of bacterial inhibition.75,91 In contrast, during acute 
PE, some authors have described an immune response charac-
terized by increased numbers of macrophages in the mucosa, 
as well as high levels of proinflammatory cytokines.65,66 
The reason for these differences is unknown.19,30,65,82,91,105

The cell-mediated immune response to L. intracellularis 
is poorly defined. However, type 1 cytokine levels are often 
altered; for example, increased levels of interferon-gamma 
(IFN-γ), IL-6, IL-10, transforming growth factor–beta 
(TGF-β), and tumor necrosis factor–alpha (TNF-α) have 
been reported.82,112 Insights into the L. intracellularis–
specific IFN-γ–producing cell responses have been pub-
lished using the enzyme-linked immunospot (ELISpot) 
assay for IFN-γ detection, as well as the use of IFN-γ receptor 
knockout mice.28,30,83,91,95,112 These studies have concluded 
that IFN-γ is elevated in infected pigs from 10 dpi, peaking 
at 20 dpi, earlier than other cytokines (Fig. 2B). They have 
also demonstrated that IFN-γ plays a role in the control of 
L. intracellularis infection, given that mice lacking IFN-γ 
receptors are unable to control infection.28,95 These cytokine 
changes may be of use diagnostically in the future if faster 
and more inexpensive tools to detect them become avail-
able, but defining L. intracellularis infection specifically 
with such readouts alone would be impossible unless unique 
signatures are demonstrated.25

With respect to humoral immunity, specific antibodies 
have been detected in the sera, intestinal mucosa, and feces 
of pigs experimentally infected with L. intracellularis.30 
Antibodies were also detected in oral fluids in pigs naturally 
infected with L. intracellularis.4,39,103 Circulating and/or 
fecal antibodies may have some potential for diagnostic pur-
poses, as they may indicate previous exposure to L. intracel-
lularis. Furthermore, in the case of vaccinated and field 
infections, the main antibody isotypes are IgG, IgM, and IgA 
and, hence, based on antibody types or levels, differentiation 
between vaccinated and naturally infected pigs is not 

possible.82 Lawsonia-specific IgG and IgM responses can be 
detected in serum 2 wk after infection (Fig. 2B). They peak at 
3–4 wk and remain detectable for up to 13 wk post-
infection.31,82 IgG responses may result from active infec-
tion, vaccination, or colostrum intake.31,33,82,90 On the other 
hand, although IgA has been observed in feces, the concen-
tration of IgA bears no relationship to the concentration of 
serum IgG.19,30,82 The mechanism by which IgA is involved 
in bacterial clearance is unknown.30,82

In vitro culture of L. intracellularis

L. intracellularis is an obligate intracellular, straight or 
curved, gram-negative, non–spore-forming bacillus in the 
Desulfovibrionaceae family.26 There is a strong correlation 
between the presence of the organism in the apical cytoplasm 
of crypt enterocytes and the development of lesions.57,76,92,93 
The diagnosis of many bacterial infections involves bacterial 
culture,27 but culture has never been an option for L. intra-
cellularis. Even when unadulterated by fecal material or 
competing gut flora, in vitro propagation of L. intracellularis 
is extremely difficult and remains a primary research hurdle. 
Only a few laboratories have the required in vitro culture 
systems available to satisfy the specific growth requirements 
of this organism. Briefly, the culture method, optimized from 
the first descriptions, comprises an anaerobic tri-gas mixture 
(80% nitrogen, 10% hydrogen, 10% carbon dioxide) that is 
used to generate strict atmospheric requirements.58 Further 
optimization resulted in an alternative method using Origi-
nal Space Bags (Storage Packs) inflated with the gas mix-
ture rather than the use of a conventional anaerobic jar.108  
L. intracellularis can be cultured in PK15 cells (porcine  
kidney epithelial cells) and imaged by immunofluorescence 
(Fig. 1D).

Common tools for detection of  
L. intracellularis

Histochemical, immunohistochemical, and  
in situ hybridization techniques

There are several methods for confirming the presence of 
L. intracellularis bacteria, antigens, or nucleic acids in 
formalin-fixed or frozen tissue sections (Fig. 2A). Post-
infection, up to 5 d of intracellular proliferation may be 
required for bacteria to reach levels that are detectable 
using these methods, although antigen can be detected 
until at least 14 dpi.10,37,106

Warthin–Starry silver stain

In 1920, a silver nitrate–based stain was first developed for 
improved detection of spirochetes.110 The Warthin–Starry 
(WS) histologic stain works on the ability of spirochetal organ-
isms to absorb silver from solution, given their distinctive 
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double-layered envelope (diderm).12 By confirming the 
localization of the bacterium within the intestinal crypt cells, 
the WS stain is a cost-effective, often frontline, method for 

confirming L. intracellularis infection. The WS stain is read-
ily available in most veterinary diagnostic laboratories.12,41 
However, the disadvantages of the WS stain include low 

Figure 2. Detection of Lawsonia intracellularis infection. A. Time post-infection of detection of infection by each technique. Boldfaced 
techniques are those most widely used in veterinary diagnostic laboratories globally. dpi = days post-infection. B. Graphic representation 
of the course of L. intracellularis infection, clinical signs, immune reaction, and adaptive immune response. Solid blue line = clinical signs 
with interventions. Dashed blue line = clinical signs without interventions. Orange line = IFN-γ detection. Solid black line = fecal shedding 
detection without interventions. Dotted black line = fecal shedding detection with interventions. Green line = total antibody response.
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specificity (e.g., L. intracellularis cannot be distinguished 
from other curved bacilli, such as Campylobacter spp.), 
reproducibility, and repeatability.41

Immunohistochemistry and 
immunofluorescence

Immunohistochemistry (IHC) and immunofluorescence  
(IF) are similar tests based on the same principle but using 
different labeling methods. IHC has been well-reviewed 
in the general veterinary literature.15,88,89 IHC detection of  
L. intracellularis antigen is an established research and 
diagnostic tool.53,101 The test result can be visualized using a 
chromogen, most commonly 3,3′-diaminobenzidine, which 
serves as a substrate for the catalyst horseradish peroxidase. 
In practice, IHC applies mainly to formalin-fixed, paraffin-
embedded tissue. The IF test, which uses a fluorescent label, 
is less applicable to routine use given the requirement for 
fluorescence microscopy.22,88

IHC was first described for use in PE in 1987, several 
years before the organism was classified and accepted as 
a novel genus and species.73 Specifically, L. intracellu-
laris bacteria (“Campylobacter-like organisms”) were 
detected in the intestinal mucosa and fecal smears from 
infected pigs and hamsters using a mouse monoclonal 
antibody (mAb) generated by immunizing mice with L. 
intracellularis that had originated from pigs with acute 
PE. This approach has subsequently formed the basis of 
what is now a commonly used technique for PE diagnosis; 
over the years, other groups have generated their own 
mAbs (Table 1).32,73 These antibodies can be used to detect 
organisms in fecal smears, and in formalin-fixed and 
fresh-frozen tissues, with the major benefit that they facil-
itate co-location of causative organisms and lesions in tis-
sues. In 2005, a new mAb (Law-1-DK) was developed 
against a 21-kDa molecule that was resistant to proteinase 
K digestion, suggesting a non-protein target.8 This anti-
body has since been used to detect L. intracellularis in 
feces and infected tissues, and there is also a commercial 
mAb (Moab a-Lawsonia intracellularis; Bio-X Diagnostics) 

that improves the accessibility of the technique for diag-
nostic laboratories.8,45

IHC and IF methods have proven to be the most reliable 
tests for the postmortem diagnosis of PE.13,41,45,49,56 One 
study using ileal samples from slaughterhouse pigs reported 
IF sensitivity of 89% and specificity of 97%, in addition to 
high agreement compared to PCR.36 Similarly, another study 
comparing IHC with Warthin–Starry silver and routine 
hematoxylin and eosin staining concluded that IHC was 
superior to both and an excellent test overall, with a sensitiv-
ity of almost 87% when compared to PCR, the gold standard 
in that study.36 Disadvantages of these antibody-based tech-
niques are that they require specialized equipment and 
appropriately trained staff to analyze and interpret, contribut-
ing further to costs. However, the main advantage of both IF 
and IHC over PCR is that they can confirm the presence of 
Lawsonia within histologic lesions.

In situ hybridization

In situ hybridization (ISH) using L. intracellularis–specific 
oligonucleotide probes allows a comparable, if more expen-
sive, approach to IHC,45 and can be used on fixed tissue 
samples from infected pigs, similar to IHC. However, one 
study also found that fluorescent ISH (FISH) was more 
vulnerable to the effects of autolysis compared to IF when 
testing formalin-fixed porcine intestinal tissue samples, 
effectively reducing assay sensitivity.45 Similarly to IHC, 
ISH requires specialized equipment and technical knowl-
edge. Nonetheless, both IHC and ISH techniques are con-
sidered gold standards in the diagnosis of PE.45

Detection of antibodies against  
L. intracellularis

As noted previously, IgG and IgM antibodies against L. intra-
cellularis can be detected from ~14 dpi (Fig. 2B), and IgG has 
been shown to persist for at least 13 wk post-infection.31 
Demonstration of antibodies against L. intracellularis can be 
interpreted in 3 ways: 1) pigs are actively infected and have 

Table 1. Histochemical and immune-based tests used in the diagnosis of proliferative enteropathy.

Assay Clinical samples tested Comments Reference

WS staining Tissue Fails to distinguish Lawsonia intracellularis from 
Spirochaetes, Campylobacter spp., or other curved rods

Warthin and Starry110

IHC Tissue, fecal smear Nonspecific, stains several surface proteins McOrist et al.73

Tissue Specific against outer membrane antigen Guedes and Gebhart32

Tissue Specific against L. intracellularis surface antigen (LsaA) McCluskey et al.70

Ag ELISA Tissue Colorimetric reaction; not specific; no longer commercially 
available

Lebret et al.61

IF Serum IgG anti LI-N343 Collins et al.16

ELISA Serum Svanovir L. intracellularis/Ileitis-Ab Jacobson et al.44

Ag = antigen; IF = immunofluorescence (IF) assay; WS = Warthin–Starry.
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developed a humoral immune response; 2) pigs have received 
antibodies passively through colostrum; and 3) pigs were vac-
cinated against L. intracellularis. Any combination of these 3 
scenarios is also possible, so meaningful interpretation of 
serology results can be difficult unless samples are compared 
over time or are collected in a cross-sectional manner from 
different age groups. To date, serum is the most commonly 
used sample type, and the only commercial kit (Svanovir 
L. intracellularis/Ileitis-Ab; Boehringer Ingelheim Svanova) 
that detects total immunoglobulins without differentiation of 
IgA, IgM, or IgG.

ELISA

Several ELISAs have been developed for the detection of 
L. intracellularis antibodies in serum.16,44,54,61 Most are com-
petitive ELISAs, the major advantage of which is their ability 
to selectively detect the antibody recognized by the plated 
antigen, even in crude or impure samples. To date, only one com-
mercial kit is available (Svanovir L. intracellularis/Ileitis-Ab; 
Table 1).44,109 This test is unable to quantify the response 
against L. intracellularis, and sensitivity may vary depend-
ing on the value of percent inhibition (PI) selected; at PI = 35, 
the test sensitivity is 72% and the specificity reaches 93%.44 
Lawsonia-specific serum antibody responses, IgG and IgM, 
can be detected in serum 2 wk after infection (Fig. 2B); 
they peak at 3–4 wk and remain detectable for up to 13 wk 
post-infection.31,82

Indirect fluorescent antibody test

The indirect fluorescent antibody test (IFAT) was first 
described for the detection of IgG antibodies in serum of pigs 
exposed to L. intracellularis.32,59 Briefly, serum samples are 
applied to a plate to which L. intracellularis–infected McCoy 
cells have been fixed. Following incubation and a series of 
washes, a detection antibody labeled with a fluorophore is 
added to the plate. Serial dilutions of serum samples are used 
to determine the concentration of antibodies directed against 
L. intracellularis. One disadvantage of IFAT is the need for a 
specialized fluorescence microscope. Furthermore, the gen-
eration of infected culture monolayers in slides for the test 
can require 5–7 d.58 The principal advantage of IFAT is that 
results are measured as titers, which can be considered semi-
quantitative.

Immunoperoxidase monolayer assay

The immunoperoxidase monolayer assay (IPMA) is similar 
to the IFAT except that a colorimetric change is produced by 
the breakdown of a chemical substrate by a peroxidase con-
jugated to the secondary antibody. The major advantage of 
IPMA is that the resulting brown stain, unlike a fluorescent 
label, can be evaluated using a more readily available light 
microscope. Another advantage is that the brown stain is 

usually more stable and lasts longer than fluorescent stains, 
which fade over time and must be protected from light. The 
principal disadvantages of both IFAT and IMPA are nonspe-
cific staining (IFAT more so than IPMA), low repeatability 
and reproducibility, and the highly subjective interpretation 
of results.34,36,61 Although IPMA and IFAT are considered the 
most specific techniques for detection of L. intracellularis 
seroconversion compared to the commercial and other 
research ELISAs, IPMA and IFAT both require a source of 
infected cells.20,35,67 Thus, there is the need to culture L. 
intracellularis in vitro, which remains one of the persistent 
challenges in PE research.20,35,56,67 Another drawback is that 
these tests can only detect infection >21 dpi, long after the 
appearance of clinical signs and establishment of L. intra-
cellularis shedding (Fig. 2B).31

Molecular detection

Amplification techniques, such as standard PCR, real-time 
PCR, and loop-mediated isothermal amplification (LAMP), 
offer potentially rapid and sensitive ways to demonstrate 
the presence of L. intracellularis DNA or RNA in sam-
ples (Fig. 2A). The assays are commonly applied to fecal 
samples, rectal swabs, or intestinal samples (Table 2, 
Fig. 2).50,62,64,81,97,99,111 Pigs experimentally infected with 
L. intracellularis are expected to show L. intracellularis 
shedding in feces by 7 dpi and may sustain shedding of the 
bacterium for up to 10 wk after infection (Fig. 2B).31,96 The 
gene target commonly used is the 16S ribosomal DNA gene 
(16S rDNA),64 although aspA99 and dnaA111 have also been 
used as markers for L. intracellularis.42,64,111 Various primer 
pairs have been used for detection of L. intracellularis 
(Table 2). “In situ” amplification in tissue samples has also 
been reported and could potentially be a good candidate to 
substitute for tissue IHC.80

Molecular methods are capable of more rapid and accu-
rate antemortem detection of L. intracellularis during the 
first stages of infection, but their reported sensitivities and 
specificities span a wide range.85,87 Two innovative amplifi-
cation assays have been developed for the detection of  
L. intracellularis. The first is a real-time LAMP assay that 
allows quantification of bacteria in a single 60-min reaction, 
targeting a conserved region of the 16S rDNA gene.62 The 
second assay, initially described in early 2019, is a detection 
assay that combines an isothermal recombinase polymerase 
amplification of the L. intracellularis dnaA gene with the 
visual observation of the results using a lateral-flow dipstick 
containing streptavidin-coated colloidal gold.111 These new 
approaches allow more rapid detection and could potentially 
be developed as point-of-care tests for use on-farm. Further-
more, a multiplex PCR has been used to simultaneously 
detect specific combinations of L. intracellularis, B. hyo-
dysenteriae, Mycoplasma spp., and Salmonella serovars.23,78

Although some complex samples, such as feces, can con-
tain contaminants that can inhibit amplification,52,79 this can 
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be overcome with careful selection of extraction methods. 
Indeed, nucleic acid extraction is a critical step to allow the 
advantages of amplification techniques to be brought to 
“farm-side” use. New opportunities are emerging and driv-
ing the development of innovative techniques for better on-
site testing. One example is the use of a cellulose-based filter 
paper that retains nucleic acids.69,113 This allows quick and 
clean on-site nucleic acid purification for amplification 
methods, such as the ones mentioned above. The next step 
for a truly on-farm amplification process will be the use of 
portable amplification systems. During 2020, the improve-
ment in biosensor technology has made this type of system 
emerge and improve significantly.38,47,63

Although these devices will become useful for field  
veterinarians, there is still a need to improve the systems by 
better dealing with the various environmental conditions that 
swine veterinarians encounter in the field, such as highly 
variable temperatures, moisture, dust, biosecurity issues, 
availability of suitable facilities, sample processing, or the 
overall processing time from sample collection to result 
reading. Aside from the well-recognized and previously 
mentioned disadvantages of PCR, another issue is the inabil-
ity to differentiate pathogenic strains of L. intracellularis 
from the live attenuated vaccine strain (Enterisol Ileitis; 
Boehringer Ingelheim Vetmedica). No such test is yet avail-
able, but comparative genomic studies may help define 
robust differences that can be exploited. Laboratory methods 
that can differentiate infected from vaccinated animals 
(DIVA) have been developed for other swine pathogens, 
such as pseudorabies virus (Suid alphaherpesvirus 1), classi-
cal swine fever virus (Pestivirus C), foot-and-mouth disease 

virus, and Salmonella.5,102,104 Some of these methods target 
specific markers that are added to vaccine formulations at the 
time of manufacture, ensuring a route for distinguishing vac-
cinated from naturally infected animals by serology.1,71 To 
date, there are no markers in commercial L. intracellularis 
vaccines, but the design of an amplification method based on 
the genomic differences between the Boehringer Ingelheim 
Vetmedica vaccine and wild-type strains would be an inter-
esting approach for the development of a L. intracellularis 
DIVA method.

Summary

L. intracellularis remains an important bacterial pathogen in 
pigs, and PE remains a challenge to diagnose. At a practical 
level, diagnosis is tightly associated with the possible inter-
ventions available for the infection, with antimicrobial treat-
ments used and a commercial vaccine available. Nevertheless, 
given that the impact of L. intracellularis infection varies 
widely in countries and between farms, it would not neces-
sarily be beneficial to target L. intracellularis by blanket use 
of vaccines. In addition, the global drive toward reducing 
antimicrobial use will also deter prophylactic use of anti-
biotics for this infection. Hence, accurate diagnosis of PE 
remains important to rule out other infections with similar 
gross presentations and to enable appropriate advice on vac-
cination and antimicrobial treatment to be given, especially 
when more serious outbreaks occur.

Histochemical, IHC, and ISH techniques are invaluable 
for confirming L. intracellularis infections, but these require 
tissue samples at postmortem, extended time to process the 

Table 2. Reported PCR techniques used to detect Lawsonia intracellularis DNA.

PCR type Primers
Target 
gene

Sensitivity/limit 
of detection

Clinical samples 
tested (n) Reference

Conventional F: 5′-CAGCACTTGCAAACAATAAACT-3′ aspA 94.1% Feces (18) Suh et al.99

R: 5′-TTCTCCTTTCTCATGTCCCATAA-3′ 88.2%  
F: 5′-GATGAAAGCCTGCTGCACGGA-3′ ubiE 97.3% Feces (150) Nathues 

et al.81
R: 5′-GTCTTGTTGAAGCTATGGAACCTG-3′

Conventional 
and nested

F: 5′-TATGGCTGTCAAACACTCCG-3′ aspA 103–104 LI/g Feces and 
mucosal 
scraps (18)

Jones et al.51

R: 5′-TGAAGGTATTGGTATTCTCC-3′
NF: 5′-TTACAGGTGAAGTTATTGGG-3′
NR: 5′-CTTTCTCATGTCCCATAAGC-3′

Real-time 
PCR

F: 5′-GCGCGCGTAGGTGGTTATAT-3′ 16S Feces (204) Lindecrona 
et al.64

R: 5′-GCCACCCTCTCCGATACTCA-3′  
F: 5′-GCGCGCGTAGGTGGTTAT-3′ 16S 102 LI/g Feces (113) Ståhl et al.97

R: 5′-GCCACCCTCTCCGATACTCA-3′
RPA-LFD 

assay
F: 5′-AAATCCAAAAGTCGA GTATCTAACTGCGG-3′ dnaA 104 LI/g Feces (150) Wu et al.111

R: 5′-TAAAAACCCAGAGCAAAATCGTGATACCAGGCG-3′
Real-time 

LAMP 
assay

FIP: 5′-GCATTCACCCGAGCATGCTGA-AGTCTGCAAC-3′ 16S 101 pg/sample Feces (136) Li et al.62

(F1c-F2): 5′-TCGACTCCAT-3′
F3: 5′-GCATCTCAGTCCGGATTGG-3′
B3: 5′-CTTGTTACGACTTCACCCCA-3′
BIP: 5′-GTACACACCGCCCGTCACAC-3′
(B1c-B2): 5′-GTAGACGACTGCCTCGATTG-3′

LAMP = loop-mediated isothermal amplification; RPA-LFD = recombinase polymerase amplification–lateral-flow dipstick.
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samples, and require specialist skills to interpret the results. 
In turn, this makes diagnosis exclusive to a limited number 
of veterinary practices and diagnostic and research centers. 
By comparison, both serologic and pathogen detection assays 
can indicate past or current presence of the bacteria, respec-
tively. However, they cannot be used unambiguously to 
define the etiology of the intestinal disease. Serologic assays 
for L. intracellularis are therefore applied mainly to measure 
the impact of vaccination treatments, determine when infec-
tion takes place, and examine prevalence.39,103

Although our review demonstrates that good progress is 
being made on ways to identify L. intracellularis infection 
antemortem, with the potential for the development of pen-
side tests, we still need to understand the interactions that 
lead to the different clinical presentations in pigs so that 
diagnosis can quickly predict the likelihood and severity of 
an outbreak and appropriate action can be taken swiftly. 
Thus, we highlight the need to develop tools to improve the 
diagnosis of L. intracellularis disease, in relation to patho-
gen load and the immune response of the pig, as well as 
improve measurement of the efficacy of disease control 
actions on farms.
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