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Abstract

Semantic segmentation of medical images provides an important cornerstone for subse-

quent tasks of image analysis and understanding. With rapid advancements in deep learn-

ing methods, conventional U-Net segmentation networks have been applied in many fields.

Based on exploratory experiments, features at multiple scales have been found to be of

great importance for the segmentation of medical images. In this paper, we propose a scale-

attention deep learning network (SA-Net), which extracts features of different scales in a

residual module and uses an attention module to enforce the scale-attention capability. SA-

Net can better learn the multi-scale features and achieve more accurate segmentation for

different medical image. In addition, this work validates the proposed method across multi-

ple datasets. The experiment results show SA-Net achieves excellent performances in the

applications of vessel detection in retinal images, lung segmentation, artery/vein(A/V) clas-

sification in retinal images and blastocyst segmentation. To facilitate SA-Net utilization by

the scientific community, the code implementation will be made publicly available.

Introduction

Since manual and dense labeling of a large number of medical images is time-consuming,

tedious and prone to inter- and intra-observers, automatic methods for medical image seg-

mentation have been rapidly emerging. These methods lead to accurate and reliable solutions

that could improve clinical workflow efficiency and support health-care decision making by

allowing quick and automatic extraction of useful quantitative information.

Good representation capabilities, efficient inference, and filter sharing make convolutional

neural networks (CNN) the de facto standard for image segmentation. Full convolutional net-

works (FCN) [1] demonstrated good semantic segmentation performance on the Pascal VOC

dataset. U-Net [2] and U-Net variants models have been successfully used in segmenting bio-

medical images of neuronal structures. In particular, MultiResUNet [3] achieved the best seg-

mentation accuracy for neuronal structures in electron microscopy. Recently, both FCN and
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U-Net have achieved semantic segmentation performance that closely matches the radiologist

performance in many tasks [4–10].

In recent years, many U-Net variants have been devised for different tasks of medical image

segmentation. Fu et al. [4] adopted a conditional random field (CRF) to extract multi-stage

features for improving vessel detection outcomes. The M-Net [5] architecture, a variant of

U-Net, was proposed for joint segmentation of the optic disc and cup by augmenting U-Net

with deep supervision and multi-scale inputs. Alom et al. [6] proposed RU-Net, a U-Net vari-

ant equipped with recurrent convolution. Ozan et al. [7] improved the U-Net performance

with an attention mechanism. Simon et al. [8] proposed the Tiramisu architecture in which

dense blocks convolutions replace the U-Net convolutional layers. Other CNN variants, such

as PSPNet [9] and DeepLab [10], were introduced to achieve superior performance on bench-

mark tasks of semantic segmentation. Despite the emergence of the afore-mentioned variants,

U-Net is still the most common architecture for medical image segmentation, essentially as its

encoder-decoder organization (together with its skip connections) does not hinder efficient

information flow, and its performance does not deteriorate at low data regime.

U-Net and U-Net like models has been showing impressive potential in segmenting medi-

cal images, but the performance of these models will be poor when the target organ exhibits

large shape and size variations among patients. Therefore, design good multi-scale features for

medical images segmentation is essential. However, creating multi-scale representations

requires feature extractors to use receptive fields of considerable variations to give a detailed

account of parts, objects, or context at all possible scales. The natural way for CNNs to extract

coarse-to-fine multi-scale features is to utilize a convolutional operator stack. Such inherent

CNN capability of extracting multi-scale features leads to good representations for handling

numerous medical image analysis tasks.

To handle the problem of scale variations, Adelson et al. [11] intuitively leveraged multi-

scale image pyramids, and a technique that is quite common in approaches based on hand-

crafted features [12, 13] and CNN features. There is a concrete evidence [14, 15] that multi-

scale feature learning could be beneficial for deep-learning detectors [16, 17]. The sensitive

nonlinear iterative peak (SNIP) algorithm [18, 19] achieves scale normalization by selectively

picking training objects of suitable dimensions for each image scale. This algorithm avoids

objects of extreme scales, i.e., small or large objects under relatively smaller or larger scales,

respectively. However, the computationally high inference times of the image pyramid meth-

ods make these methods practically infeasible. The CE-Net [20] architecture employs Dense

Atrous Convolution (DAC) blocks to create a multi-scale network for better medical image

understanding. Atrous/Dilated convolution [10] expands convolutional kernels by carrying on

convolution at sparsely sampled positions. Dilated convolution is frequently utilized in seman-

tic segmentation to account for large-scale contextual information [21, 22]. However, it still

suffers from some potential shortcomings, for example, it may cause some pixels never partici-

pate in the calculation, which is not friendly to pixel-level prediction. In addition, although the

dilated convolution guarantees a larger receptive field with no additional parameters, it is

extremely unfriendly for some small objects that do not need such a large receptive field.

Moreover, in comparison to the conventional FCN, ResNet-101 [23] has 23 residual blocks

(with 69 convolutional layers) of Dilated FCN which require 4 times more computational

operations and memory resources, while 3 residual blocks (with 9 convolutional layers) need

16 times more resources. Recently, Res2Net [24] has been constructed as individual residual

blocks where each block has hierarchical residual connections. Res2Net adopts a granular-

level representation of multi-scale features and enlarges the receptive field range for every net-

work layer. Yet, without exploiting information at different scales, many pieces of redundant

information are also transmitted to large-scale features.
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Motivated by the afore-mentioned approaches, we make the following key contributions:

• We propose a new scale-attention deep learning network (SA-Net) based on the residual

module and attention module, which could segment the different medical images effectively.

• To capture more multi-scale features to better comprehend the structure and function of dif-

ferent tissues in a medical image, an effective Scale-Attention (SA) module is introduced.

• The proposed method is tested in lung segmentation, retinal vessel detection, artery/vein (A/

V) classification and blastocyst segmentation tasks. The experimental results demonstrate a

superior performance on various tasks compared to the competing methods.

The remainder of the paper is structured as follows. We outline the proposed deep learning

framework in Section Methods. The experimental settings are described, and the results and

discussion are presented in Section Experimental evaluation and results. Our key conclusions

are stated in Section Discussion and conclusions.

Methods

This section presents in detail the design of the scale-attention network for medical image seg-

mentation. Firstly, we use a basic U-Net as the backbone network. In addition, we insert a SA

module in the bridge connection of the U-Net, which could extract multi-scale residual fea-

tures for achieve our aim of a scale-attention network for different tissues segmentation in

medical images. Fig 1 outlines the SA-Net framework.

Our main target herein is to obtain a feature map that can be learned to integrate different

scale representations according to different tissue scales in the input medical images. For

example, in the retinal fundus images (Fig 2), the main blood vessels branch into micro blood

vessels, and the blood vessel diameters in the image range from 1 to 35 pixel units. Fig 2 shows

that the micro blood vessels are of very high frequency. Therefore, understanding the huge

scale variations are quite crucial and challenging.

Multi-scale features

In this work, we use the capabilities of Res2Net [24] to learn and understand the image features

at different scales. Instead of extracting features using a group of 3×3 filters as in the ResNet

Fig 1. Diagram of the proposed SA-Net.

https://doi.org/10.1371/journal.pone.0247388.g001
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[23] bottleneck block (as shown in Fig 3(A)), we propose a Res2Net variant with better extrac-

tion capability of multi-scale features, with roughly the same computational cost. The 3×3 filter

groups are replaced with smaller filter groups connected in a hierarchical residual-type man-

ner. As shown in Fig 3(B), after the 1×1 convolution, the features are split into k subsets,

denoted by xi, where i2{1,2,. . .,k}. While all subsets have the same spatial size, the channel

count for each subset is 1/k times that of the input feature map. Each subset xi (except for x1)

has a 3×3 convolution filter Fi().
In SA module, we add the attention module to enforce the scale-attention capability. The

details of proposed attention module are shown in Fig 4. Firstly, a max-pooling and an aver-

age-pooling are used to obtain the global information of each channel, which automatically

highlight the relevant feature channels while suppressing irrelevant channels. Then, their

results are summed and fed into a 1×1 convolutional layer followed by the sigmoid activation

function. Finally, the output result is obtained by multiplying with the input.

Scale-attention module

For the best possible transfer of the useful small-scale field-of-view features to large-scale fea-

tures, we propose a scale-aware (SA) module, as shown in Fig 3(C). This SA module adds the

attention model (Ai()) with the argument yi, as shown in Fig 4. First, we get the attention map

Ai(yi) and concatenate it with xi+1, and then feed the result into Fi(). To decrease the

Fig 2. Visualization of the retinal vessel diameters in the fundus. (a) The raw 1880×2886 image. (b) Diameter of

each point on the skeleton. c) Partially enlarged view of the red area in (b). (d) Histogram of the diameter map for each

point on the skeleton (distance between pixels).

https://doi.org/10.1371/journal.pone.0247388.g002

Fig 3. Comparing the Res2Net and ResNet blocks (with a scale dimension of k = 4): (a) The conventional building

block in CNN variants. (b) Res2Net uses a group of 3×3 filters. (c) The SA module adds the attention module to

enforce the scale-attention capability.

https://doi.org/10.1371/journal.pone.0247388.g003
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parameters while allowing the number of subsets k to increase, we omit the 3×3 convolution

for x1 herein. Thus, yi can be written as:

yi ¼

xi i ¼ 1;

FiðxiÞ i ¼ 2;

Fiððxi; Ai� 1ðyi� 1ÞÞÞ 2 < i � k:

8
><

>:

Each 3×3 convolutional operator Fi() might get information from all feature subsets {xj, j�i}.
When a feature subset xj is processed by a 3×3 convolutional operator, the resulting output may

have an enlarged receptive field compared to xj. The high combinatorial complexity causes the SA

module output to have different numbers and combinations of the receptive field size and scales.

We process the feature subsets in the SA module following a multi-scale approach, where

local and global information is extracted. All subsets are concatenated and processed with 1×1

convolution, with the aim of achieving better fusion of information at different scales. More

effective feature convolution is achieved by this split and concatenation strategy. With the

objective of reducing the parameter count, a feature reuse approach is followed where the con-

volution for the first subset was omitted.

The scale dimension k is used herein as a control parameter. A larger k value might enable

the learning of features with richer receptive field sizes, with insignificant concatenation-

induced overheads in terms of computations and memory usage.

The loss function

We employ an end-to-end deep-learning scheme as our underlying framework. Fig 1 asserts

the need for training the proposed system to predict the segmentation label of each pixel. The

loss is quantified by the commonly-used cross-entropy loss function.

Lce ¼ �
1

n

Xn

i¼1

ðyi log ðy0iÞ þ ð1 � yiÞlog ð1 � y0iÞÞ

while the total loss is defined as:

Loss ¼ Lce þ b � kWk
2

2

where n denotes the number of pixels in the input image, y0 is the predicted output probability

of a foreground pixel, and y is the ground-truth pixel. We use L2 regularization with a weight

of β = 0.0002.

Experimental evaluation and results

Experimental settings

This section introduces the image preprocessing and data augmentation procedures for net-

work training. And also provides ample details about our experimental setup.

Fig 4. Diagram of the attention module. As illustrated, the attention module utilizes both max-pooling outputs and

average-pooling outputs.

https://doi.org/10.1371/journal.pone.0247388.g004
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Data transformations and augmentation are needed during training to avoid model overfit-

ting. In medical imaging, an essential constraint of these transformations is that the output

images must be quite realistic. To increase the training data variability while achieving this

realism, we employ only two-dimensional rotations (through random angles) of each training

batch. In particularly, we realize that the background color and illumination of different fun-

dus images induce a large variability in pixel intensity. This variability is inherent in the train-

ing data. Contrast enhancement could be used to reduce this variability and increase the image

quality in image preprocessing. And the impact of individual differences is avoided by using

gray retinal images instead of color images [2, 25]. In addition, in this study we select the last

epoch when the loss of the training model fluctuates less than 0.01 within 20 epochs as our

final model for testing.

Our system was implemented using an Ubuntu 16.04 operating system, an Intel1 Xeon1

Gold 6148 CPU with a 2.40-GHz processor and 256-GB RAM, NVIDIA Tesla V100 GPU, a

PyTorch backend, and cuDNN 9.0.

Retinal vessel detection

For retinal vessel detection in fundus images, we evaluated our method on two publicly avail-

able datasets. Firstly, we used the 40-images DRIVE [26] dataset, for which two expert human

annotations are available. The first annotation is typically used as the gold standard [4]. The

DRIVE dataset consists of 20 training images and 20 testing images with the resolution of

584×565. Secondly, we examined the 28-images CHASE_DB1 database [27], with images from

both eye sides for each of 14 children. A clear discrimination couldn’t be reached between the

healthy and diseased cases in CHASE_DB1. Thus, we adopted a scheme of stratified k-fold

cross-validation, in which the input data is subdivided into equally-sized k folds, such that one

fold is set for testing, while the other (k-1) folds are set for training. The results of k repetitions

of this process are averaged to get pooled estimates of segmentation metrics. For performance

consistency among cross-validation folds, the same settings and training initialization were

used. For our CHASE_DB1 experiment, four folds were used with 7 images each divided

almost evenly among the two eye sides. The ground-truth segmentation data for CHASE_DB1

was generated using Hoover’s annotations. For the DRIVE images, binary segmentation

masks are publicly available. Field-of-view (FOV) masks for CHASEE_DB1 were manually

created following [28]. Example images and masks for this two datasets are demonstrated in

Fig 5.

For blood vessel detection performance evaluation, several metrics were computed, namely

sensitivity (SE), specificity (SP), accuracy (ACC), Matthews correlation coefficient (MCC),

and the F1 score (F1) [4]. Moreover, for the receiver operating characteristic curve, we com-

pute the area under the curve (AUC) and use it as well to assess the segmentation performance.

For all of these metrics, a perfect detector gives a value of 1. A threshold value of 0.5 was

Fig 5. Samples of the retinal fundus images and their H×W dimensions in pixels. (a) Input images: Left: DRIVE

(584×565); right: CHASE_DB1 (960×999). (b) Manual annotation of the retinal vessels. (c) Binary segmentation masks

of the fundus images.

https://doi.org/10.1371/journal.pone.0247388.g005
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applied to the probability maps to obtain the binary segmentation outputs. Only pixels inside

the field of view were processed.

The performance of SA-Net was compared against relevant algorithms [29–31], in addition

to recently-developed deep learning methods [2, 6, 25, 32–35]. Table 1 shows the comparative

experimental results. Indeed, for DRIVE dataset, SA-Net achieves remarkable performance in

terms of the F1, MCC, SE and AUC metrics, with values of 0.8289, 0.8055, 0.8252 and 0.9822,

respectively. For CHASE_DB1, all of the MCC, SE, ACC, AUC and F1 metrics achieve excel-

lent performance, with values of 0.8102, 0.8199, 0.9665, 0.9865 and 0.8280, respectively. For

visualization results, example outputs are given in Fig 9. For the identification of the blood ves-

sels at different scales, the SA-Net shows more continuous results and the detection of small

blood vessels are especially close to the true labels. These results clearly indicate that devising

the SA-Net architecture with multi-level scale-aware capabilities led to superior retinal vessel

segmentation performance.

Lung segmentation

In this section, we seek to segment the lung structures in 2D CT images. We evaluate SA-Net

on 2D lung CT images provided by the Lung Nodule Analysis (LUNA) competition, in which

two challenges have been made, namely nodule detection and false-positive reduction. The

LUNA dataset contains 534 publically-available images of 512×512 pixels each, and corre-

sponding segmentation masks [36]. We experiment with a cross-validation scheme in addition

to a scheme with 80% training images and 20% testing ones, which same with the CE-Net [20].

Sample CT images are displayed in Fig 6.

The performance metrics used herein are the overlapping error E (defined below), the accu-

racy and the sensitivity [20]. In addition to the average metric values are reported in Table 2.

Table 1. Segmentation performance metrics on two publically available retinal image datasets.

Datasets Method MCC SE SP ACC AUC F1

DRIVE Unsupervised Zhao [29] N/A 0.7420 0.9820 0.9540 0.8620 N/A

Azzopardi [30] N/A 0.7655 0.9704 0.9442 0.9614 N/A

Roychowdhury [31] N/A 0.7395 0.9782 0.9494 0.8672 N/A

Supervised U-Net [2] N/A 0.7537 0.9820 0.9531 0.9755 0.8142

RU-Net [6] N/A 0.7792 0.9813 0.9556 0.9784 0.8171

DE-Unet [25] N/A 0.7940 0.9816 0.9567 0.9772 0.8270

SWT-UNet [32] 0.8045 0.8039 0.9804 0.9576 0.9821 0.8281

BTS-UNet [33] 0.7923 0.7800 0.9806 0.9551 0.9796 0.8208

Driu [34] 0.7941 0.7855 0.9799 0.9552 0.9793 0.8220

CS-Net [35] N/A 0.8170 0.9854 0.9632 0.9798 N/A

SA-Net (Ours) 0.8055 0.8252 0.9764 0.9569 0.9822 0.8289

CHASE-DB1 Unsupervised Azzopardi [30] N/A 0.7585 0.9587 0.9387 0.9487 N/A

Roychowdhury [31] N/A 0.7615 0.9575 0.9467 0.9623 N/A

Supervised RU-Net [6] N/A 0.7756 0.9820 0.9634 0.9815 0.7928

SWT-UNet [32] 0.8011 0.7779 0.9864 0.9653 0.9855 0.8188

BTS-UNet [33] 0.7733 0.7888 0.9801 0.9627 0.9840 0.7983

SA-Net (Ours) 0.8102 0.8199 0.9827 0.9665 0.9865 0.8280

aN/A = Not Available, SWT-UNet shows the vessel segmentation results using fully convolutional neural networks, BTS-DSN gives the segmentation results with the

multi-scale deeply-supervised networks with short connections.

https://doi.org/10.1371/journal.pone.0247388.t001

PLOS ONE A scale-attention network for medical image segmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0247388 April 14, 2021 7 / 14

https://doi.org/10.1371/journal.pone.0247388.t001
https://doi.org/10.1371/journal.pone.0247388


The overlapping error is given by

E ¼ 1 �
AreaðP \ TÞ
AreaðP [ TÞ

where P and T denote the predicted and ground-truth lung segmentations, respectively.

From Table 2, as we can see that SA-Net reaches an overlapping error of 0.035, a sensitivity

of 0.988, and an accuracy of 0.986. These values are better than the corresponding ones

obtained by U-Net. Also, we compare SA-Net with the CE-Net [20] architecture, which pays

more attention to high features. The overlapping error drops by 7.89% from 0.038 to 0.035,

while the sensitivity increases from 0.980 to 0.988. Some examples are also given in Fig 9. As

shown, because of the addition of the SA module, the lung structure can be better identified,

and the segmentation result is more consistent than that of U-Net (which wrongly identifies

non-lung tissues as lung ones). The results further emphasize the significance of our proposed

SA blocks for lung segmentation.

Artery/Vein classification

Our third application is A/V classification in fundus images. Motivated by the lack of a gold

standard that allows objective comparison of approaches for this problem, Qureshi et al. [37]

created a manually-annotated benchmark for A/V classification using the DRIVE dataset. The

labeling was performed by one ophthalmologist and two computer vision scientists. A majority

vote among the three experts was used to decide the ground-truth blood vessel class. Also, as

Fig 6. Sample lung CT images with dimensions of H×W in pixels.

https://doi.org/10.1371/journal.pone.0247388.g006
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described by Hu et al. [38], ground-truth data was produced from the binary vessel segmenta-

tion created by the second expert. In this work, the ground-truth acts as a proxy for A/V classi-

fication by an independent expert. The training and testing subsets were obtained following

the same schemes as those of the blood vessel detection problem, which means that 20 images

are used for training and the remaining 20 are used for testing. The Balance accuracy (BACC),

SEAV, SPAV, F1 score of arteries (F1A) and F1 score of veins (F1V) are used in this section to

evaluate the SA-Net performance. The image and label samples are displayed in Fig 7.

SEAV ¼
TP

TP þ FN

SPAV ¼
TN

FPþ TN

Balance accuracy BACCð Þ ¼
SEAV þ SPAV

2

Where TP is the number of artery pixels correctly classified, TN is the number of vein pixels

correctly classified, FP is the number of vein pixels mis-classified as artery pixels and FN is the

number of artery pixels mis-classified as vein pixels.

In Table 3, the SA-Net result shows better performance. This demonstrates the validity of

our model. As well, it can be seen that the results for veins are better than those for arteries.

This difference is mainly because of the clinical manifestations, i.e., the color of the vein is

dark red, while the arterial blood is light red. Some examples are given in Fig 9. We can see

that the identification of blood vessels on different scales is better whether these vessels are

veins or arteries. Because of the addition of the SA module, SA-Net works better in distin-

guishing arteries and veins, while the confusion between arteries and veins is serious for

U-Net. These results reaffirm the superiority of the SA module in learning images with differ-

ent scales.

Blastocyst segmentation

The fourth application is blastocyst images segmentation. There is a detail introduction to the

human embryo dataset in [40], which has been open sourced. This blastocyst dataset contains

235 blastocyst images collected from time-lapse. Various tissue labels are provided by the

Fig 7. A sample retinal image from the DRIVE dataset and its corresponding artery/vein segmentation map.

https://doi.org/10.1371/journal.pone.0247388.g007
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Pacific Centre for Reproductive Medicine (PCRM). The training set accounts for 85% of all

data while the test set accounts for the remaining 15%. And the division of the training set and

test set is consistent with [41]. The sample is shown in Fig 8.

For blastocyst images segmentation performance evaluation, Jaccard Index, also called

Intersection-over-Union, is utilized to evaluate segmentation performance. The metrics is same

with the Blast-Net [41].

Our method is compared with several classic methods [9, 10, 41, 42]. Table 4 shows the

comparative experimental results. As for Inner Cell Mass (ICM), Blastocoel, Trophectoderm

(TE), Zona Pellucida (ZP) and Background segmentation, it can be seen that SA-Net have

achieved significant improvement performance, which are 83.67%, 89.56%, 77.50%, 90.93%

and 97.52%, respectively. Moreover, from Fig 9 we can see that SA-Net shows better segmenta-

tion performance compared with the basic U-Net. These results also have proved that the addi-

tion of the SA model has better comprehension for the multi-scale structural features of

different organs.

Ablation study

For further assessment of the SA module, we carried on an ablation study on the DRIVE data-

set. The U-Net architecture was used as the baseline model. In one variant, we replaced the

middle skip connections with the bottleneck and ResNet, and with the bottleneck and the SA

module for Res2Net. We then verified the importance of the multiscale and attentional

features.

In Table 5, adding the residual module increases the ACC, AUC and F1 scores to 0.9566,

0.9817 and 0.8244, respectively. We can see that the residual module is indeed very helpful for

improving the learning characteristics. When adding the multi-scale features to the Res2Net

Fig 8. A sample blastocyst image from the blastocyst dataset and its manual label.

https://doi.org/10.1371/journal.pone.0247388.g008

Table 2. Segmentation performance measures for lung image datasets.

Method E ACC SE

U-Net [2] 0.087 0.975 0.938

CE-Net [20] 0.038 0.990 0.980

SA-Net (Ours) 0.035 0.986 0.988

https://doi.org/10.1371/journal.pone.0247388.t002
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learning, it can be found that the sensitivity and F1 scores had a significant increase, while the

other indicators showed no obvious improvements, and even the AUC metric slightly

decreased. After the introduction of the multi-scale scheme, the model ability to understand

the scale features became stronger and the sensitivity became higher. However, some useless

information was inadvertently introduced, resulting in feature redundancy. When we added

our proposed SA module, we can see that all indicators except for the specificity have

increased, among which MCC, SE, ACC, AUC and F1 scores increase to 0.8055, 0.8252,

0.9569, 0.9822, and 0.8289, respectively. These results demonstrate the effectiveness of the pro-

posed scale-attention module to a certain extent.

Discussion and conclusions

The task of segmenting different tissue types in medical imaging is very critical, and good seg-

mentation results are conducive to the analysis of some tasks in later stages. In this paper, we

proposed an end-to-end scale-attention deep learning network, and experiment results show

that SA-Net has achieved superior performance results in retinal vessel detection, lung

Fig 9. Example results for lung segmentation, detection of retinal blood vessels, artery/vein classification and

blastocyst segmentation. From top to bottom: lung segmentation, retinal vessel detection, artery/vein classification

and blastocyst segmentation.

https://doi.org/10.1371/journal.pone.0247388.g009

Table 3. Performances of different A/V classification methods on DRIVE dataset.

Method BACC SEAV SPAV F1A F1V

U-Net [2] 0.9122 0.9145 0.9083 0.7089 0.7586

DoS [39] N/A 0.9190 0.9150 N/A N/A

SA-Net (Ours) 0.9351 0.9345 0.9347 0.7336 0.7802

https://doi.org/10.1371/journal.pone.0247388.t003
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segmentation, artery/vein classification and blastocyst segmentation tasks. More importantly,

it can be seen from the visualization results in Fig 9 that SA-Net shows better performance for

segmentation of different medical images with different scales tissues compared with tradi-

tional U-Net architecture, indicating that SA-Net can better learn the features at different

scales. In this work, the proposed SA-Net achieves effective segmentation in various medical

images, it can be considered as a better model for 2D small-sample medical image segmenta-

tion. While we only explored 2D medical images in this work, we will explore the application

of SA-Net for segmenting 3D medical images and consider reducing the computational cost of

the model in the future.
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34. Maninis K. K., Pont-Tuset J., Arbeláez P., and Van Gool L., “Deep retinal image understanding,” in Int.

Conf. Med. Image Comput. Computer-assisted Interven., Athens, Greece, 2016, pp. 140–148.

35. Mou L., et al., “CS-Net: Channel and Spatial Attention Network for Curvilinear Structure Segmentation,”

MICCAI 2019, LNCS 11764, pp. 721–730, 2019.

36. K. Mader, “Finding and measureing lungs in CT data,” [Online]. Available: https://www.kaggle.com/

kmader/finding-lungs-in-ct-data/data

37. Qureshi T. A., Habib M., Hunter A., and Al-Diri B., “A manually-labeled, artery/vein classified benchmark

for the DRIVE dataset,” in Proc. 26th IEEE Int. Symp. Computer-Based Med. Syst., Porto, Portugal,

2013, pp. 485–488.

38. Hu Q., Abràmoff M. D., and Garvin M. K., “Automated separation of binary overlapping trees in low-con-

trast color retinal images, in Int. Conf. Med. Image Comput. Computer-Assisted Intervention, Nagoya,

Japan, 2013, pp. 436–443.

39. Zhao Y., et al.: Retinal artery and vein classification via dominant sets clustering-based vascular topol-

ogy estimation. MICCAI 2018. LNCS, vol. 11071, pp. 56–64. Springer, Cham (2018).

40. Saeedi P., Yee D., Au J., and Havelock J., “Automatic identification of human blastocyst components

via texture,” IEEE Trans. on Biomed. Eng., vol. 64, no. 12, pp. 2968–2978, Dec 2017. https://doi.org/

10.1109/TBME.2017.2759665 PMID: 28991729

41. Rad R. M., Saeedi P., Au J., and Havelock J., “BLAST-NET: Semantic segmentation of human blasto-

cyst components via cascaded atrous pyramid and dense progressive upsampling,” in 2019 IEEE Int.

Conf. Image Process. (ICIP), Taibei, Taiwan, 2019, pp. 1865–1869.

42. Iglovikov V. and Shvets A., “Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for image

segmentation,” arXiv preprint arXiv:1801. 05746, 2018.

PLOS ONE A scale-attention network for medical image segmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0247388 April 14, 2021 14 / 14

https://doi.org/10.1109/TMI.2004.825627
http://www.ncbi.nlm.nih.gov/pubmed/15084075
https://doi.org/10.1167/iovs.08-3018
https://doi.org/10.1167/iovs.08-3018
http://www.ncbi.nlm.nih.gov/pubmed/19324866
https://doi.org/10.1109/tmi.2006.879967
http://www.ncbi.nlm.nih.gov/pubmed/16967806
https://doi.org/10.1109/TMI.2015.2409024
http://www.ncbi.nlm.nih.gov/pubmed/25769147
https://doi.org/10.1016/j.media.2014.08.002
https://doi.org/10.1016/j.media.2014.08.002
http://www.ncbi.nlm.nih.gov/pubmed/25240643
https://doi.org/10.1109/TBME.2015.2403295
https://doi.org/10.1109/TBME.2015.2403295
http://www.ncbi.nlm.nih.gov/pubmed/25700436
https://doi.org/10.1016/j.ijmedinf.2019.03.015
http://www.ncbi.nlm.nih.gov/pubmed/31029251
https://www.kaggle.com/kmader/finding-lungs-in-ct-data/data
https://www.kaggle.com/kmader/finding-lungs-in-ct-data/data
https://doi.org/10.1109/TBME.2017.2759665
https://doi.org/10.1109/TBME.2017.2759665
http://www.ncbi.nlm.nih.gov/pubmed/28991729
https://doi.org/10.1371/journal.pone.0247388

