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Adults struggling with low reading skills are underserved by limited available treatments.

While brain stimulation techniques such as transcranial direct current stimulation (tDCS)

has the potential to improve a variety of cognitive functions, little work has been done

examining its potential to treat reading disabilities. Research on the effects of tDCS on

reading abilities has been somewhat inconsistent perhaps in part due to discrepancies

between studies in the nature of the tasks. In the current study, we examined the effect

of tDCS to the left inferior parietal lobe (L IPL) on two reading tasks in low-to-average

readers. We compared performance on a sight word efficiency (SWE) task and a rhyme

judgment task before and after either stimulation to the L IPL, right superior parietal lobe

(R SPL), or sham stimulation. Readers who received stimulation to the L IPL showed

greater improvements on the SWE task, but less improvement on the rhyme judgment

task compared to the R SPL and sham groups. This study demonstrates for the first time

both a positive and negative effect of stimulation under the same stimulation parameters

within the same participants. The results highlight the need to consider multiple tasks

when assessing the potential of using tDCS as a treatment.

Keywords: reading intervention, transcranial direct current stimulation, parietal lobes, sight word efficiency,

rhyming

INTRODUCTION

Over the last decade, interest in using brain stimulation techniques as a therapeutic tool to treat
cognitive impairment in adults has received increasing attention (Dubljević et al., 2014). Brain
stimulation is a non-invasivemethod using electrical currents to alter the firing potential of neurons
in the affected area. While there are a variety of techniques that can be used to stimulate the
brain, two primary techniques are transcranial magnetic stimulation (TMS) and transcranial direct
current stimulation (tDCS). TMS delivers a larger current and is thought to cause neurons to
fire (Ridding and Rothwell, 2007) while tDCS delivers a much smaller current and is believed to
change the membrane potential of neurons (Nitsche et al., 2008; Priori et al., 2009) Both techniques
have been used to enhance performance on tasks involved in a variety of cognitive processes in
healthy and impaired adults (Miniussi et al., 2008; Nitsche et al., 2008;Williams et al., 2009; Nitsche
and Paulus, 2011; Krause and Cohen Kadosh, 2013). While the evidence for brain stimulation
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improving function in healthy adults has been somewhat
controversial (see Horvath et al., 2015 but also Price et al., 2015),
its use as a treatment in patient populations with brain injury has
been promising (Fregni and Pascual-Leone, 2007; Miniussi et al.,
2008; Wong and Tsang, 2013).

More recently, research using brain stimulation to treat
learning disorders, such as dyslexia and dyscalculia, has been
called for (Cohen Kadosh et al., 2013; Krause and Cohen Kadosh,
2013; Vicario and Nitsche, 2013). While those with learning
disorders do not have frank insult to the brain, they are believed
to have altered brain activation in key brain regions when
compared to typical adults (Pugh et al., 2001; Price and Ansari,
2013; Norton et al., 2014; Kucian and von Aster, 2015). The
case for using neuromodulation to treat learning disorders is
thus conceptually straightforward; stimulation to modify the
activity in a brain region shown to be integral to the cognitive
process of interest and differentially activated in the disordered
population should normalize activation in that region and
therefore normalize performance. However, identifying the brain
regions integral to the process is not trivial, particularly in the
case of reading.

Neuroimaging research has identified several brain regions
that show altered function in individuals with dyslexia that
may serve as potential targets of brain stimulation. Three brain
areas in particular have consistently shown altered functionality
compared to typical readers—the inferior frontal gyrus (IFG),
temporo-parietal areas, and occipito-temporal areas (Richlan
et al., 2009, 2011). Meta-analysis of neuroimaging studies
suggest the IFG may be hyperactive in adults with dyslexia as
a compensatory region, while temporo-parietal and occipito-
temporal areas may be hypoactive, reflecting impaired processing
during reading. Brain stimulation could be used to either enhance
potential compensatory regions in an attempt to strengthen these
networks or enhance areas that are consistently underactive in
people with dyslexia in an attempt to normalize their function.

So far, neuromodulation studies examining the tool’s potential
to improve reading ability have stimulated regions shown to be
underactivated in poor readers, and all have had some success
(Costanzo et al., 2012, 2013; Turkeltaub et al., 2012; Heth and
Lavidor, 2015; Thomson et al., 2015). However, the exact nature
of the reading improvements has been somewhat inconsistent
across studies. Turkeltaub et al. (2012) first demonstrated the
potential for tDCS to be used as a treatment for low-to-average
readers by showing improved reading fluency after stimulation
to the left superior temporal gyrus (STG) compared to sham
stimulation. These findings were corroborated by Costanzo et al.’s
TMS studies (Costanzo et al., 2012, 2013) that found TMS to
the left STG increased real word reading speed and text reading
accuracy in both dyslexic and average readers. However, a later
tDCS study by Thomson et al. (2015) was inconsistent with
the findings of Turkeltaub et al. (2012). Thomson et al. (2015)
stimulated an overlapping, but slightly superior region to that
stimulated in Turkeltaub et al. (2012) in average readers and
found that right hemisphere stimulation led to improvements on
real word reading ability, not left hemisphere.

The Costanzo et al.’s TMS studies (Costanzo et al., 2012,
2013) showed that the particular section of the temporo-parietal

region that is stimulated leads to specific results. In contrast to
the increases in real word reading following STG stimulation
mentioned above, stimulation to the more superior temporo-
parietal cortex, specifically, the left inferior parietal lobe (L
IPL), led to increases in pseudoword reading. While the lack of
improvements in real word reading, the ultimate goal of reading
therapy, is discouraging, stimulation to the IPL and surrounding
areas merits further investigation. In particular, tDCS to the
more superior aspects of the temporo-parietal cortex may lead
to greater gains in reading ability compared to the precisely
targeted stimulation of TMS given the diffusivity of tDCS. The
superior portion of the temporo-parietal cortex including not
just IPL, but also the angular gyrus (AG) and supramarginal
gyrus (SMG), have been specifically related to smaller-grained
grapheme-to-phoneme mapping (Pugh et al., 2000; Simos et al.,
2001; Booth et al., 2003; Jobard et al., 2003; Cao et al., 2006; Bitan
et al., 2007b; He et al., 2013), which developmental and cross-
linguistic studies of reading suggest is important for the initial
development of the reading network (Pugh et al., 2000; Cao et al.,
2006, 2015; Richlan et al., 2011;Martin et al., 2015). Therefore, we
propose that facilitation of small-grain grapheme-to-phoneme
processing via modulation of activation in superior portions
of the temporo-parietal cortex may lead to gains in multiple
aspects of reading ability including reading fluency and improved
grapheme-phoneme mappings in low-to-average ability adults.

This hypothesis is supported by second language learning
studies with adults (Hashimoto and Sakai, 2004; Mei et al.,
2014) and reading remediation studies with children (Temple
et al., 2003; Simos et al., 2007; Meyler et al., 2008; Rezaie et al.,
2011b) and adults (Eden et al., 2004) that show greater ability
related gains in superior vs. inferior temporo-parietal cortex.
Further, functional connectivity between the IPL in particular
and regions involved in orthographic processing such as the
fusiform gyrus (FG) has been demonstrated to be related to
word reading ability (Koyama et al., 2011; Simon et al., 2013).
Developmental studies have suggested that the strength of the
connection between grapheme-to-phoneme processing regions
such as the IPL and the orthographic processing regions such as
the FGmay be critical for the specialization of these orthographic
processing regions, in line with interactive specialization models
of development that have been extended to reading (Johnson,
2001; Schlaggar and McCandliss, 2007; Price and Devlin, 2011).
Indeed, dyslexic readers tend to have reduced connectivity
between these two regions compared to controls. In contrast,
there is little evidence suggesting the connectivity between the
STG and FG is crucial for reading ability (Horwitz et al., 1998;
Pugh et al., 2000; Booth et al., 2008; Cao et al., 2008; Quaglino
et al., 2008; van der Mark et al., 2011; Finn et al., 2014).

In order to test the hypothesis that tDCS to superior portions
of the temporo-parietal cortex will lead to reading improvement
for low ability readers, we stimulated the left IPL in low-to-
average readers andmeasured their improvement on two reading
tasks; single word reading efficiency and a rhyme judgment
task. Both require the use of phonological and orthographic
information, but in different ways. Single word reading efficiency
requires articulating the phonological output from orthographic
input. This skill has been shown to be related to both overall
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word reading ability and the ability to decode words based on
grapheme-to-phoneme mappings (Adlof et al., 2006; Vellutino
et al., 2007; Barth et al., 2009). Despite the orthographic
processing component, neuroimaging studies have suggested that
this skill is most related to parietal areas including the IPL
and AG (He et al., 2013) typically implicated in grapheme-
phoneme mappings, compared to areas involved in whole-word
orthographic mappings. Further, training studies have shown
that instruction in grapheme-to-phoneme mapping results in
improvement in single word reading fluency (Ashmore et al.,
2002; Simos et al., 2007) and these gains are related to activation
in parietal areas (Rezaie et al., 2011a,b). The rhyme judgment
task, in contrast, does not require articulation. Rather it requires
the activation and memory of phonological representations,
sometimes in the face of conflicting orthographic information.
For this reason, this task is a measure of phonological working
memory and the strength of the grapheme-to-phoneme maps
needed to be activated to complete the task accurately. Behavioral
studies have shown the rhyming task to be related to reading
ability (Maclean et al., 1987; Ziegler and Goswami, 2005;
Kovelman et al., 2012) and neuroimaging studies have shown
activation in the left IPL to be related to ability on this task (Booth
et al., 2003; Hoeft et al., 2006; Bitan et al., 2007a). Together,
both tasks provide measures of orthographic and phonological
processing that are related to activation in the left IPL. By using
these two tasks, we can address how tDCS affects both the mental
manipulation and articulation of phonological representation
and therefore have a broader picture of what abilities can be
impacted by tDCS.

METHODS

This study was carried out in accordance with the
recommendations of the University of Texas at Austin
Institutional Review Board with written informed consent
from all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki.

Participants
In total, 100 right-handed 18–35 year-old native English speakers
with normal or corrected-to-normal vision were screened
for below average reading ability (<100 standard score) as
determined by the Sight Word Efficiency (SWE) subtest of the
Test of Word Reading Efficiency (TOWRE; Torgesen et al.,
1999) in line with Turkeltaub et al. (2012). All participants
reported no history of neurological disorder, psychiatric disorder,
significant head trauma, hearing loss, substance abuse, seizure or
migraine, metal implants, and current pregnancy. Of the initial
100, 54 participants scored below average, however, 14 did not
complete both days of the experiment, and were therefore not
included in the sample. An additional four participants were
excluded for scoring<50% accuracy on behavioral measures. The
remaining participants had at least average (>80 standard score)
intelligence as measured by the Wechsler Abbreviated Scale of
Intelligence (WASI; Wechsler, 2008). Scores on the SWE ranged
from 74 to 99 pre-stimulation (within two standard deviations of
50th percentile performance of 100). Participants were randomly

assigned to one of three groups, L IPL, right superior parietal
lobe (R SPL), or Sham. Assignment to the R SPL group was done
as part of an additional experiment not reported here. For the
current experiment, the R SPL group served as a stimulation
control condition in which participants received stimulation to
a non-target region which complemented the no stimulation
control condition fulfilled by the Sham group.

Of those who met all performance criteria, 11 (7 female)
received real stimulation to the L IPL, 14 (6 female) received sham
stimulation, and 11 (9 female) received real stimulation to the R
SPL. Due to an imbalance in the run orders in the sham group,
four participants were randomly eliminated for a final sample of
10 (4 female). One-way ANOVAs revealed no significant effects
of group on all group characteristics and baseline measures as
reported in Table 1.

Procedure
Participants took part in a single-blind, sham and stimulation
controlled study comparing pre- and post-stimulation
performance on two measures of reading ability: single word
reading efficiency and rhyme judgment. Participants completed
two sessions that took place 3–5 days apart. During the first
session, participants completed standardized tests and baseline
assessments of reading ability. During the second session,
participants received either sham or real stimulation for 20 min,
after which they completed an alternate form of the reading
ability measures using different sets of stimuli. Alternate forms
of the tasks were counterbalanced across participants.

Transcranial Direct Current Stimulation
Direct current was administered using a battery-driven DC
stimulator device (NeuroConn) via two saline-soaked electrodes
(5 × 5 cm; 25 cm2). The anode electrode was placed over either
the L IPL (P3) or R SPL (CP4) according to the international 10–
20 system for electroencephalography (EEG) electrode placement
(Herwig et al., 2003). The cathode (return) electrode was placed
over the contralateral supraorbital frontal region. This montage
allows the source of effects of stimulation to be more reliably
attributed to the anodal stimulation of the target site instead
of the cathodal stimulation of the reference site, as suggested
by Turkeltaub et al. (2012). During real stimulation, 1.5 mA

TABLE 1 | Participant demographics and mean (SD) for performance for

each participant group.

L IPL R SPL Sham

Age (years) 26.8 (5.5) 25.2 (3.5) 26.2 (4.9)

Gender (f) 7 8 4

IQ 112.1 (10.9) 111.0 (11.70) 109.3 (9.9)

Pre-single word reading 88.5 (8.4) 88.1 (7.6) 89.2 (7.9)

Pre-rhyme judgment RT (ms) 854 (124) 972 (147) 998 (193)

Pre-rhyme judgment accuracy (%) 91.6 (7.0) 88.4 (9.5) 87.9 (12.0)

IQ measured by Wechsler Abbreviated Scale of Intelligence. Single Word Reading was

measured by the Sight Word Efficiency subscale of the Test of Word Reading Efficiency.

IQ and Single Word Reading have µ = 100, σ = 15.
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of current (current density 0.06 mA/cm2) was delivered for
20 min. During sham stimulation, the machine ramped up to
1.5 mA for 30 s, then extinguished over a 5 s fade-out. Using
this procedure allows participants to feel the initial sensations
(e.g., tingling or itching) associated with stimulation without any
after-effects of stimulation being induced (Nitsche and Paulus,
2000). These stimulation parameters replicate the parameters
used in Turkeltaub et al. (2012) and are within the safety limits
established in prior studies on humans and animals (Iyer et al.,
2005; Nitsche et al., 2008; Bikson et al., 2009).

Experimental Tasks
Single Word Reading Efficiency
Word reading efficiency was measured via the SWE subtest
of the TOWRE. This test is a measure of ability to read real
words accurately and quickly. Participants were given 45 s to
read aloud as many of 104 words as possible. A standard score
is determined by the number of words read correctly within 45
s, and this score was used as the metric of single word reading
efficiency.

Rhyme Judgment Task
The ability to map orthography to phonology and phonological
working memory were assessed with a rhyme judgment task
in which participants were presented with a series of visual
word pairs and asked to indicate whether the words rhymed or
not. Word pairs were designed to manipulate orthographic and
phonological similarity to ensure participants could not rely on
orthography alone and phonological representations had to be
used to accurately complete the task. There were two congruent
conditions in which word pairs had either similar orthography
and phonology (e.g., CAGE-RAGE) or not (e.g., TRIAL-FALL),
and two incongruent conditions in which word pairs had either
similar orthography but dissimilar phonology (e.g., PINT-MINT)
or dissimilar orthography but similar phonology (e.g., GRADE-
PAID) pairs. Each condition had 12 trials for a total of 48 trials in
each session.

All words weremonosyllabic, having neither homophones nor
homographs andwerematched across condition for written word
frequency in children (Zeno, 1995) and the sum of written bigram
frequency (Balota et al., 2007). Stimuli used in each version of
the task were matched on average stimuli length, frequency,
number of orthographic neighbors, and number of phonological
neighbors (Balota et al., 2007).

Participants were asked to respond as quickly and as
accurately as possible. The first word was presented for 800 ms
followed by a 200 ms inter-stimulus interval and the presentation
of the second word. Participants could respond as soon as the
second word was presented up to 2500 ms after the onset of
the word. After the participant responded, a red fixation cross
appeared signaling the inter-trial interval. The task was self-
paced and participants were able to control when the next trial
began. Average reaction times (RT) to correct trials trimmed to
include only responses within 2.5 standard deviations from an
individual’s average reaction time were used as the metric of
rhyme judgment ability due to ceiling effects on accuracy.

Analysis
Performance on each experimental task was submitted to a 3
(Stimulation group; L IPL, Sham, R SPL) × 2 (Time; Session 1,
Session 2)mixed-model ANOVA in order to determine whether a
measure showed a Group× Time interaction. Planned follow-up
tests were conducted using separate 2 (Stimulation group; L IPL,
Sham or R SPL) × 2 (Time; Session 1, Session 2) mixed-model
ANOVAs to examine potential Group × Time interactions for
the L IPL group compared to the two control groups (Sham, R
SPL) separately.

RESULTS

Single Word Reading
The 3 × 2 ANOVA revealed a significant main effect of
Time [F(1, 29) = 24.68, p < 0.001] and significant Group ×

Time interaction [F(2, 29) = 4.41, p = 0.021], indicating that
although all groups showed changes in their performance over
time, the groups differed in the magnitude of these changes.
Follow-up tests revealed the L IPL group showed significantly
greater improvement compared to the Sham group [F(1, 19) = 7,
p = 0.016] and a trend toward greater improvement compared
to the R SPL group [F(1, 20) = 4.22, p = 0.053]. One sample
t-tests indicated that the L IPL and R SPL groups’ improvement
was significantly greater than 0 [L IPL: t(10) = 4.17, p < 0.005;
R SPL: t(10) = 2.37, p < 0.05], while the Sham group did
not show improvement [t(9) = 1.72, p > 0.1] see Table 2 and
Figure 1. The results of the current study result in an effect
size (Cohen’s d) of 1.57 for L IPL stimulation, greater than
the 0.46 for left STG stimulation found by Turkeltaub et al.
(2012).

Rhyme Judgment
All participants performed well on the rhyme judgment task
as indicated by high accuracy at Time 1 and Time 2. A 3
× 3 ANOVA did not reveal a main effect of Time or any
Group × Time interactions (p > 0.1). One sample t-tests
for each group individually showed that no group’s gain in
accuracy was significantly greater than 0 (p > 0.1). These
findings indicate that there was neither a practice effect nor
an effect of stimulation on accuracy, possibly due to ceiling
effects.

The 3 × 2 ANOVA again revealed a significant main effect
of Time [F(1, 29) = 28.9, p < 0.001] and significant Group
× Time interaction [F(2, 29) = 4.13, p = 0.026], indicating a
change over time, but a group difference in the magnitude of
the change. Follow-up tests showed the Sham group experienced
significantly greater improvements in RT compared to the L IPL
group [F(1, 19) = 7.27, p= 0.014]. However, the R SPL group was
not significantly different from either the Sham group [F(1, 19) =
2.62, p > 0.1] or the L IPL group [F(1, 20) = 1.69, p > 0.1]. Post-
hoc one-sample t-tests, though, indicate that both the Sham and
R SPL groups’ improvement was significantly greater than 0 while
the L IPL group did not improve [Sham: t(9) = 2.54, p = 0.006;
R SPL: t(10) = 2.31, p = 0.044; L IPL: t(10) = 1.74, p > 0.1] see
Table 2 and Figure 2.
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TABLE 2 | Mean (SD) on reading measures pre- and post-stimulation.

L IPL R SPL Sham

Pre Post Pre Post Pre Post

Single word reading 88.5 (8.4) 98.8 (14.3) 88.1 (7.6) 92.2 (8.3) 89.2 (7.9) 91.7 (8.2)

Rhyme judgment RT (ms) 854 (124) 811 (142) 972 (147) 885 (141) 998 (193) 820 (99)

Rhyme judgment accuracy (%) 91.7 (7.0) 94.7 (7.5) 88.4 (9.5) 89.6 (10.6) 87.9 (12.1) 90.0 (9.0)

Single Word Reading has µ = 100, σ = 15.

FIGURE 1 | Change in Single Word Reading Efficiency pre- and

post-stimulation for each group. A significant Group × Time interaction

indicates the L IPL group showed significantly greater improvement than the R

SPL and Sham groups. Error bars indicate one standard deviation.

DISCUSSION

The goal of the current study was to assess whether stimulation
of the L IPL improves multiple aspect of reading for low-to-
average readers by measuring its impact on two tasks that tap
into different subskills of reading. While L IPL stimulation did
result in gains in single word reading efficiency, it resulted in
relative impairment on the rhyme judgment task, demonstrating
for the first time a significant positive and negative effect on
two different tasks with the same stimulation parameters within
the same group of participants. Although our results indicate
stimulation to the L IPLmay be a good site for improving reading
fluency for low-to-average readers, the lack of improvement on
the rhyme judgment task warrants caution in advocating the left
IPL as a site to improve several aspects of reading.

The positive influence of L IPL stimulation on reading fluency
measures for low-to-average readers was consistent with our
hypothesis. Although there was a main effect of time, indicating
there was a general practice effect for all groups, the L IPL
stimulation resulted in greater improvement than the Sham or
R SPL stimulation. Our finding that stimulation to the IPL
led to greater improvements for low-to-average readers than
previous reports of stimulation to the STG (Turkeltaub et al.,
2012) are in line with studies indicating that single word reading
fluency abilities depend on grapheme-to-phoneme mapping
skills supported by the superior aspects of the temporo-parietal
cortex (Ashmore et al., 2002; Simos et al., 2007; Rezaie et al.,

2011a,b; He et al., 2013). This finding suggests that improvements
in single word reading can result from increased grapheme-to-
phoneme mapping abilities, even in adults. However, it should
be noted that montage differences between the current study
and that by Turkeltaub et al. (2012) could also account for the
difference in effect size between the two studies. Turkeltaub et al.
(2012) used a bilateral montage, meaning that the cathode or
reference electrode was placed on the contralateral hemisphere
(i.e., right STG). The results of that study cannot be attributed
solely to facilitation of the left hemisphere, and the effects could
have been due to alteration in the balance between the two
hemispheres or even to inhibition of the right hemisphere. In
contrast, in the current study, the cathode electrode was placed
on the contralateral forehead. While we cannot rule out that
the effects in the current study were due to inhibition of the
frontal lobe, it is more reasonable to conclude that the effects are
due to the modulation of activation in the stimulation site and
surrounding areas. As Turkeltaub et al. (2012) themselves point
out, it could be that unilateral stimulation may be more beneficial
than bilateral stimulation. Further research should explore how
montage affects the behavioral consequences of stimulation.

Our results that left hemisphere stimulation leads to
improvement in SWE is in contrast to Thomson et al. (2015)
who found that right, but not left, hemisphere stimulation led to
behavioral improvements. These conflicting results are likely due
to the difference in populations used in each study. In keeping
with the Turkeltaub et al. (2012) findings that stimulation only
led to improvements in low-to-average readers, the current study
only used readers who had below average performance on the
TOWRE. However, Thomson et al. (2015) used participants with
a wide range of reading abilities. Because individual differences in
skill have been shown to have an effect on the behavioral changes
induced by tDCS, including individuals with a large range of
reading abilitymay have diluted the effects for the left hemisphere
stimulation in the Thomson et al. (2015) study. Future research
should examine how individual differences in reading ability
affect the impact of tDCS on behavioral performance.

In contrast to the expected results of tDCS on the SWE,
the negative effect of L IPL stimulation on improvement on
the rhyming judgment task in low-to-average readers was
unexpected. Previous neuroimaging work with both children
and adults has shown that increases in activation in the left
IPL are associated with better performance on the rhyming
task (Hoeft et al., 2006; Bitan et al., 2007a; Cao et al., 2015).
If anodal stimulation to the L IPL did increase activation in
that area as hypothesized, the stimulation group should have
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FIGURE 2 | Change in Rhyme Judgment performance pre- and

post-stimulation for each group. A significant Group × Time interaction

indicates the Sham group showed significantly greater improvement than the L

IPL and R SPL groups. Error bars indicate one standard deviation.

shown increases in performance following stimulation. However,
research with anodal stimulation to the IPL in the context of
working memory has shown that stimulation actually impairs
performance relative to sham, particularly in low performers
(Jones and Berryhill, 2012; Sandrini et al., 2012). Specifically,
Sandrini et al. (2012) showed that anodal stimulation abolished
practice effects on a working memory task. These findings are
in line with the results of the current study; while the L IPL
stimulation group did not perform worse after stimulation,
they did not demonstrate practice effects as seen in the sham
group. The rhyming task involves phonological working memory
when the phonological representation of the first word must
be held in mind until the second word is presented and the
two phonological representations can be compared to make a
rhyme decision. Therefore, the effects of stimulation on working
memory abilities may have prevented improvements on the task.
Previous work examining the effect of stimulation to the parietal
lobes has suggested that stimulation interferes with working
memory by creating an imbalance of activation between the two
hemispheres and interfering with the natural inter-hemispheric
inhibition that occurs in the absence of stimulation (Sparing
et al., 2009; Sandrini et al., 2012; Park and Friston, 2013; Krause
and Cohen Kadosh, 2014). Inter-hemispheric inhibition may
explain the seemingly contradictory results of the current study.
As reading skills develop, activation during reading becomes
more lateralized to the left hemisphere with the right hemisphere
playing a decreasing role in reading (Turkeltaub et al., 2003;
Eden et al., 2004; Shaywitz et al., 2004). Simulation causing
disruptions to inter-hemispheric inhibition may thus be less
likely to affect single word reading abilities, and therefore, we can
expect improvements on single word reading tasks such as those
seen in the current study. However, previous research has shown
that low-to-average and dyslexic readers tend to have more
bilateral activation during reading tasks with a phonological
working memory component (Milne et al., 2002; Illingworth and
Bishop, 2009; Xu et al., 2015). Given that the subjects in the
current study were all low-to-average readers, it could be the case
that the disruption to inter-hemispheric inhibition in the parietal

lobes was particularly detrimental to their phonological working
memory abilities, preventing the expected practice effects on
the rhyming task. Our findings highlight the importance of
considering the impact that individual differences may have on
neural processing and subsequently the effects of tDCS.

From a clinical perspective, perhaps the most important
finding from the current study is that tDCS can positively
impact one skill while negatively impacting another. Our results
underscore the importance of including multiple tasks that
potentially tap into different underlying cognitive processes
in order to assess whether the potential costs of stimulation
outweigh the potential gains. Assessing multiple tasks becomes
especially important when considering whether tDCS should be
recommended as a treatment. In the current study, the cost in
practice effect on speed during a rhyme judgment task is probably
worth the gains seen in single word reading for low-to-average
readers; accuracy was not affected and speed did not decrease
after stimulation. However, this population was low-to-average
in skill, not impaired. The cost to benefit ratio may increase as
reading skill decreases. Further studies examining how individual
differences impact the effects of tDCS on multiple reading tasks
are needed before being able to advocate for tDCS as a treatment
for reading disabilities.

Further, our findings that tDCS had a differential effect on
two aspects of reading in low-to-average readers has implications
for the design of future tDCS studies. In the current study, both
tasks were reading-related, but the differences between tasks in
the working memory component are in line with the literature
that anodal tDCS does not have the expected positive effect on
working memory abilities. These results support the idea that
tDCS can affect cognitive processes differently, depending on
how the target or surrounding brain area is involved in a given
cognitive process. Future research is still needed to determine
the circumstances in which the conventional idea that anodal
stimulation leads to enhancement of activation and behavior
while cathodal stimulation leads to inhibition of activation and
behavior holds true (De Berker et al., 2013; Bestmann et al.,
2015). When selecting target sites, the areas’ involvement in
multiple cognitive processes should be considered. The impact of
stimulation on each of these processes should then be examined
so that we might better understand whether tDCS can influence
cognitive processes differently.

Limitations
The current study used a between subjects design, meaning
that the different stimulation groups were composed of different
individuals. While the groups were equated on task behavioral
abilities, it is virtually impossible to equate them on all factors that
could potentially impact the effects of stimulation. For example,
other research groups have shown that individual differences
in physiological measures such as skull thickness, and levels of
certain hormones and neurotransmitters such as GABA, can
affect the way stimulation affects an individual (Krause and
Cohen Kadosh, 2014). Additionally, measures of non-reading
related neurocognitive abilities were not collected. It is possible
that differences in other cognitive processes between the two
groups may have affected results. While the current study did
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not control for such measures, the use of random assignment to
group and ensuring the group was matched on task performance
should minimize potential confounds from these factors.

Finally, as with all tDCS studies, without the use of
neuroimaging techniques such as structural or functional
magnetic resonance imaging (fMRI), we are unable to confirm
that the stimulated area was in fact the targeted area. Individual
differences in anatomymay have led to differences in howwell the
stimulation site aligned with the brain regions that are actually
used to perform the tasks. Similarly, due to the distributed
effects of tDCS we cannot make strong conclusions about
whether the results are due to stimulation to the targeted region
or surrounding and connected regions without neuroimaging
measures. Future research with tDCS would benefit from using
neuroimagingmethods to havemore precisely located targets and
a better understanding of the locations that were actually affected
in order to develop the most effective treatment methods.

CONCLUSIONS

Our study provides important cautionary evidence for the use
of tDCS as a treatment for low reading ability. Although
stimulation to the left IPL led to greater improvements in reading
fluency than those previously demonstrated with a different

stimulation site (2012), we also found a negative effect on
another subcomponent of reading in low-to-average readers,
i.e., rhyming two visually presented words. These positive and
negative effects on two different subcomponents of reading were
demonstrated using the same stimulation parameters within
the same participants. These results stress the need for further
research examining the effect of a set of stimulation parameters
on complementary skills so that potential users of tDCS as
a therapy can accurately weigh the costs and benefits of the
treatment.
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