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Abstract: Digital image correlation (DIC) for displacement and strain measurement has flourished
in recent years. There are integer pixel and subpixel matching steps to extract displacement from a
series of images in the DIC approach, and identification accuracy mainly depends on the latter step.
A subpixel displacement matching method, named the double-precision gradient-based algorithm
(DPG), is proposed in this study. After, the integer pixel displacement is identified using the coarse-
fine search algorithm. In order to improve the accuracy and anti-noise capability in the subpixel
extraction step, the traditional gradient-based method is used to analyze the data on the speckle
patterns using the computer, and the influence of noise is considered. These two nearest integer
pixels in one direction are both utilized as an interpolation center. Then, two subpixel displacements
are extracted by the five-point bicubic spline interpolation algorithm using these two interpolation
centers. A novel combination coefficient considering contaminated noises is presented to merge these
two subpixel displacements to obtain the final identification displacement. Results from a simulated
speckle pattern and a painted beam bending test show that the accuracy of the proposed method
can be improved by four times that of the traditional gradient-based method that reaches the same
high accuracy as the Newton–Raphson method. The accuracy of the proposed method efficiently
reaches at 92.67%, higher than the Newton-Raphon method, and it has better anti-noise performance
and stability.

Keywords: displacement measurement; digital image correlation; subpixel matching; gradient-based
algorithm; linear combination

1. Introduction

Using displacement, strain, and vibration-based measurements, structural damage
detection and integrity assessment have become popular in the last two decades [1]. The
displacement response of a structure exhibits a potential to more accurately detect damage
since it directly reflects the structural overall stiffness [2]. However, displacement measure-
ment is very difficult to apply for realistic engineering structures due to the expensive cost
such as the global navigation satellite system, or incapable requirements such as stationary
reference points. Fortunately, a camera-based vision measurement, namely digital image
correlation (DIC), has emerged in recent years as a promising alternative to these aforemen-
tioned displacement measurement technologies [3]. This approach can provide a relatively
continuous measurement on the patterned area of a structure and can be called a full-field
measurement technique, essentially within the entire line of sight of the cameras, and DIC
has been widely used in different fields [4,5].

Digital image correlation (DIC) is an optical measurement technique that works based
on gray-scale variations of continuous patterns. There are two main steps to implement
DIC for displacement extraction: integral pixel and subpixel level matching. A multitude
of integral pixel algorithms, such as the coarse-fine search and diamond search, have been
proposed [6], and the performance of these methods has been satisfactorily verified by
tests [7]. Chen et al. proposed an adaptive point cloud correction algorithm designed to
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optimize the point cloud structure after image stitching of a multi-camera and improve the
accuracy of surface reconstruction [8]. Tang et al. applied the algorithm to the dynamic real-
time detection of surface deformation and full-field strain in recycled aggregate concrete-
filled steel tubular columns [9,10]. Rizo-Patron used DIC to accurately identify the modal
parameters of rotating helicopter rotor blades [11]. Since digital images record discrete
grayscale information, no matter how the defined correlation function is utilized for the
correlation search, the translation of the subset can only be carried out in the unit of integer
pixel; therefore, displacement resolution is limited and cannot meet the requirement for
detecting damage in many cases.

Subpixel displacement extraction, which is performed based on the results of the
integral pixel level identification, is considered a key technique to improve DIC-based
measurement resolution. A sea of subpixel matching algorithms based on correlation coef-
ficients has been presented, such as curved fitting [12], cross search [13], Newton–Raphson
(N–R) [14], and gradient-base (GB) methods [15]. Among these approaches, the frequently
utilized algorithms are the N–R and GB methods [16]. The N–R algorithm implements an
iterative procedure through optimizing a non-linear correlation function to acquire accu-
rate subpixel extraction. Nevertheless, one inherent limitation or computational burden
is that the Hessian matrix must be re-evaluated and inverted in every iterative proce-
dure [17,18]. The GB method utilizes the gray gradient or the statistical properties of
micro-regions to obtain the subpixel displacement [19,20], hence, the calculation efficiency
is superior to the N–R method. The accuracy of the GB method, however, is lower than the
N–R algorithm [21].

Although the GB method has the advantage of fast calculation, its accuracy gradually
decreases with the increase of image noise. This paper is motivated by this feature of the
GB method to try to find a subpixel algorithm that can inherit the high efficiency of the GB
method while having the characteristics of high precision. Furthermore, the accuracy of
the GB method is greatly affected by the gray gradient, and the gray gradient is usually
acquired from the bicubic spline interpolation algorithm using five-point pixels, whose
accuracy is determined by the center selection of interpolation. While feasible points as
the interpolation center have been given in the integral pixel matching step, there is still a
paradox of which point is the optimal center. To address this problem, the double precision
gradient-based (DPG) method, which is a subpixel matching algorithm with high efficiency
and precision, is proposed in this study. Two interpolation functions that take the nearest
neighborhood integer points as the center of the interpolation are implemented to acquire
the corresponding subpixel displacement. A weight coefficient is introduced and then
the identified displacement is linearly combined to obtain the final subpixel matching
result. One advantage of the proposed DPG method is that it not only maintains high
computational efficiency but also improves the accuracy of the conventional GB method.
Furthermore, the DPG method shows a good anti-noise capability because the influence of
noise is considered during interpolation.

This paper starts with a brief description of traditional integral pixel and subpixel
matching methods in Section 2. The proposed DPG method for subpixel matching is then
presented in Section 3. In Section 4, a numerical simulation and an experimental test are
conducted to verify the proposed method. Finally, the conclusions are given in Section 5.

2. Matching Algorithm for DIC
2.1. Integral Pixel Level Matching

The basic principle of the standard GB method is to track the same subimage (or subset)
located in the reference image and deformed images to retrieve the full-field displacement.
Typically, a unified Cadier coordinate system is established for the reference and deformed
images as shown in Figure 1. For a pixel in the reference image, marked as the point P, a
subset with (2M + 1) × (2M + 1) pixels centered at point P is chosen, where M is radius of
the subset. Correspondingly, a stochastic point is picked as the initial search point P′ in
the deformed image, and a target subset with (2M + 1) × (2M + 1) pixels centered at P′ is
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selected as the target subset. A pre-defined correlation ZNSSD criterion is then performed
to assess the similarity between these two subsets. For its good accuracy and anti-noise
capability, the standardized covariance cross-correlation coefficient C(•) is mostly used and
can be defined as [22],

C(u, v) =
M

∑
x=−M

M

∑
y=−M

 f (x, y)− fm√
M
∑

x=−M

M
∑

y=−M
[ f (x, y)− fm]

2
− g(x + u, y + v)− gm√

M
∑

x=−M

M
∑

y=−M
[g(x + u, y + v)− gm]

2


2

(1)

where x,y are position of the point P along x-y direction in the coordinate system, respec-
tively; u and v are displacement between point P and P′ along x-y direction, respectively;
f (x, y) and g(x + u, y + v) are the gray values of the subset in the reference and deformed
image, respectively; and gm and fm are the ensemble averages of the selected subset in
reference and target subset, respectively.
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The (u,v) with maximum C(u,v) is considered the true displacement for point P. Thus, 
the process of integral pixel level matching is actually to search an optimal matching sub-
set in the deformed image. Several integral pixel search algorithms are proposed to deter-
mine the parameter M and the search procedure for efficient matching, such as coarse-
fine, three steps, and diamond search methods [23]. The coarse-fine algorithm was 
adopted in this paper because it is the most commonly used integral pixel search algo-
rithm and has been successfully verified in many fields [24]. The procedure of this algo-
rithm includes: firstly, according to the pre-estimated displacement, determine the search 
area with a random P' point in the deformed image as the center, and use Equation (1) to 
find the translation solution upt and vpt with the global maximum correlation coefficient in 
the search area. Secondly, take upt and vpt t as the initial value, assuming that the shear 
deformation parameters ∂upt/∂y and ∂vpt/∂x are zero, estimate the tensile or compression 
deformation parameters ∂upt/∂x and ∂vpt/∂y, and use the same search strategy as the first 
step until the optimal solution ∂upt/∂x and ∂vpt/∂y are found. Finally, use the upt, vpt, ∂upt/∂x 
and ∂vpt/∂y obtained in the first two steps as initial values, use the previous search method 
to find the optimal solutions ∂upt/∂y and ∂vpt/∂x. The first-order mapping function is used 
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The (u,v) with maximum C(u,v) is considered the true displacement for point P. Thus,
the process of integral pixel level matching is actually to search an optimal matching subset
in the deformed image. Several integral pixel search algorithms are proposed to determine
the parameter M and the search procedure for efficient matching, such as coarse-fine, three
steps, and diamond search methods [23]. The coarse-fine algorithm was adopted in this
paper because it is the most commonly used integral pixel search algorithm and has been
successfully verified in many fields [24]. The procedure of this algorithm includes: firstly,
according to the pre-estimated displacement, determine the search area with a random
P’ point in the deformed image as the center, and use Equation (1) to find the translation
solution upt and vpt with the global maximum correlation coefficient in the search area.
Secondly, take upt and vpt t as the initial value, assuming that the shear deformation
parameters ∂upt/∂y and ∂vpt/∂x are zero, estimate the tensile or compression deformation
parameters ∂upt/∂x and ∂vpt/∂y, and use the same search strategy as the first step until
the optimal solution ∂upt/∂x and ∂vpt/∂y are found. Finally, use the upt, vpt, ∂upt/∂x and
∂vpt/∂y obtained in the first two steps as initial values, use the previous search method to
find the optimal solutions ∂upt/∂y and ∂vpt/∂x. The first-order mapping function is used
to combine upt, vpt, ∂upt/∂x, ∂vpt/∂y, ∂upt/∂y, and ∂vpt/∂x to get the integral pixels up and
vp. The detailed procedure of the coarse-fine algorithm can be found in reference [23].

It should be noted that the minimal unit in a digital image is one pixel; the displace-
ment identified from integral pixel level matching is an integer multiple of one pixel, that
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is, the acquired u and v are integer numbers. To further improve the registration resolution,
the subpixel matching algorithm has to be implemented.

2.2. Subpixel Level Matching Based on Gradient-Based (GB) Method

The gradient-based (GB) method was first developed by Davis and Freeman as an
optical flow method [25]. Based on the basic assumption of the GB method, the subset rigid
body translation exists when the subset is small enough, that is,

f (x, y) = g(x + u + ∆x, y + v + ∆y) (2)

where ∆x and ∆y are the subpixel displacements along the x-y direction, respectively. After
neglecting the high-order terms, the first-order Taylor’s expansion of function g(•) yields

g(x + u + ∆x, y + v + ∆y)
= g(x + u, y + v) + ∆x · gx(x + u, y + v) + ∆y · gy(x + u, y + v)

(3)

where gx, gy are the first-order derivatives of intensities at the center of the best matching
subset in the target image. According to reference [26], Equation (3) can be solved using
the least squares technique with the following closed form:

[
∆x
∆y

]
=

[
∑ ∑ (gx)

2 ∑ ∑ (gx · gy)

∑ ∑ (gx · gy) ∑ ∑ (gy)
2

]−1

·
[

∑ ∑[( f − g)gx]

∑ ∑
[
( f − g)gy

] ] (4)

where gx(x + u,y + v) and gy(x + u,y + v) are abbreviated as gx and gy, respectively for
simple expressions. f (x,y) and g(x + u,y + v) are substituted by simple description f and g,
respectively. Equation (4) indicates that the key step to acquire the subpixel displacement
depends on the gradient operators gx and gy.

Since the value of grayscale intensity function g(•) is only available at the integer pixel
point, the interpolation scheme is usually adopted to acquire gradient value for gx and gy.
The Not-a-Knot interpolation algorithm, one of the bicubic spline interpolation algorithms
using five-point pixels, is used to compute the gradient operators in this paper as shown in
Figure 2. Details about this algorithm can be found in reference [27]. After ∆x and ∆y are
obtained using Equation (4), the total displacement for point P along x and y direction are
u + ∆x and v + ∆y, respectively.
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(a) (b) 

Figure 2. Bicubic spline interpolation diagram: (a) the discrete grayscale points of integral pixel;
(b) the bicubic spline interpolated graph. Notes: The negative pixel in this figure does not mean that
it is absolutely negative, but only represents relative position.

3. Double Precision Gradient-Based Method for Subpixel Matching
3.1. Gradient-Based Subpixel Matching Method

Although the gradient-based method has the advantage of high efficiency for subpixel
matching, Pan pointed out that the accuracy should be improved using additional steps [26],
especially when the true subpixel displacement is far away from the interpolation center.
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This phenomenon is related to accuracy reduction using an extrapolation technique since
the accurate gx and gy in Equation (4) can only be acquired around the interpolation
center. To solve this problem, the best matching integral pixel point is selected as the
center for the bicubic spline interpolation. However, the accuracy of the calculated subpixel
displacement will decrease unacceptably when the subpixel distance is farther than 0.5 pixel.
This phenomenon can be explained using the following numerical simulation.

An 8-bit speckle pattern with a resolution of 256 × 256 pixels was obtained using
the iterative spatial-gradient based algorithm [20], as shown in Figure 3a. Ten translated
images were generated with an equal distance in x direction, corresponding to a shift
of 0.1 pixels between two successive speckle images. Thus, only subpixel displacement
extraction in x direction was considered here. A total of 576 (24 × 24) points located
in the intersection of grid of 10 pixels were chosen to calculate subpixel displacement,
that is, the distance between each point was 10 pixels, as shown in Figure 3a. Moreover,
two adjacent integral pixels (here 0 represents the left pixel and 1 denotes right pixel) to
each point were employed as the interpolation center, and then subpixel displacements
corresponding to all 576 points were extracted using the traditional gradient-based (GB)
method. The mean error and standard variance of subpixel displacement calculated using
576 points at each deformed image were plotted in Figure 4. The dots represent the mean
error, and the upper and lower bars represent the 90% deviation lines. It was shown that
mean error would increase significantly when the distance between the actual subpixel
displacement and the interpolation center exceeded 0.5 pixel. This trend is directly related
to the first-order derivatives used in Equation (4), which are accurate only in the vicinity
of the interpolation center. Meanwhile, the standard deviation error has the same trend,
which will increase from 0.003 to 0.007 when the distance between the actual subpixel
position and interpolation center is near or beyond 0.5 pixel.
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Furthermore, images may be contaminated by a variety of noise sources, such as pho-
ton noise, thermal noise, readout noise, and shot noise [28]. A high noise level will lead to
unacceptable errors using the gradient-based method. To practically simulate random noise
occurring in real situations, Gaussian noises with zero mean and five different standard
deviations (varying from 1 to 5) [26] were added into the first image set (noiseless image)
to generate five other image sets. The image with standard deviation (SD) 5 is depicted
in Figure 3b. For all five sets of images with various noise levels, the same operation
procedure in the noise-free case was implemented and results are shown in Figure 5.
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As can be seen from Figure 5, mean errors and standard deviations increased with the
augment of noise variance levels. It can be concluded that the noise in the image must be
considered to improve the subpixel matching accuracy.

3.2. Double Precision Gradient-Based (DPG) Method

To calculate the subpixel displacement, the GB method uses the nearest integral pixel
as the center for the five-point bicubic spline interpolation, and reasonable accuracy will
be acquired when the appropriate integer pixel is chosen. Unfortunately, it is impossible
to take the appropriate integral pixel as the center every time. Therefore, these two near
neighborhood integer pixels along one direction are used to calculate subpixel displacement
associated with white noise, and then the identified displacement is linearly combined
via a weight coefficient to obtain the final identification results. Only the details in the x
direction are described in the following part since the subpixel matching is recognized in x
and y directions under 2D measurement conditions.

Firstly, the subpixel displacements ∆x0 and ∆x1 were extracted with the traditional
GB method using the left and right pixel as an interpolation center, respectively. Then, the
final subpixel displacement ∆x was obtained by

∆x = (1− aSD,d)∆x0 + aSD,d∆x1 (5)

where aSD,d represents the weight coefficient, subscript d denotes the subpixel position and
SD corresponds to the noise variance.

From Figure 4a, the mean error is very small when the true subpixel displacement
is closer to the interpolation center, that is, ∆x should be equal to ∆x0 if the true subpixel
displacement is 0 and the left pixel is used as interpolation center. Correspondingly, ∆x
should be equal to ∆x1 when the true subpixel displacement is 1 and the right pixel is
utilized as interpolation center. At the same time, the mean errors calculated from either
interpolation center were almost equal when the true subpixel displacement is round
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0.5 pixel, so the weight for ∆x0 and ∆x1 should be equal. Therefore, it is easy to draw the
conclusion that aSD,0 = 0, aSD,1 = 1 and aSD,0.5 = 0.5.

Then, the discrete point aSD,d was obtained by substituting the data in Figure 5 into
Equation (5), and results from the first two images, where the true subpixel displacement
is 0.1 and 0.2 pixel respectively, are plotted in Figure 6. According to the distribution rule
of discrete points a:,d (denotes the aSD,d under different variance of noise) in Figure 6, it is
known that the weight coefficient a:,d first increases with the variance and then tends to be
stable. Consequently, a formula in exponential form was adopted to fit the parameter a:,d
for a fixed subpixel displacement:

a:,d = c1e−c2·SD + c3 (6)

where c1, c2, and c3 are fitting parameters and SD represents the variance of noise. It should
be noted that we assumed that the noise level was the same for the reference image and a
series of deformed images. For example, these factors, such as lighting and noise, remained
unchanged during the measurement procedure. Furthermore, parameters in Equation (6)
for other a:,d were obtained and are listed in Table 1 using the same operation.
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Table 1. Coefficient for a:,d.

d 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c1 0.000 −0.143 −0.287 −0.403 −0.432 0.000 0.375 0.411 0.282 0.133 0.000
c2 0.000 −0.132 −0.222 −0.271 −0.362 0.500 −0.370 −0.307 −0.240 −0.170 0.000
c3 0.000 0.110 0.205 0.298 0.403 0.500 0.608 0.704 0.803 0.901 1.000

Therefore, the parameter aSD,d in Equation (5) was further obtained by fitting using
the spline curve as,

aSD,d = spline[a:,d] (7)

Figure 7 shows the curved surface of the weight coefficient aSD,d under different SD
and the pre-assigned displacement at decile points between 0 and 1. Extracting parameter
aSD,d from this surface, the subpixel displacement ∆x could then be calculated using
Equation (5).

The detailed procedure of the proposed DPG method is as follows:
Step 1: Calculate the noise variance SD. Before the test, two consecutive images under

the test condition are taken and the noise variance SD is obtained by calculating the mean
square error of the gray-scale intensity of these two consecutive images.

Step 2: Determine ∆x0 and ∆x1. For the subpixel matching, as a point P’ in the de-
formed image is selected, the subpixel displacement ∆xt is computed using the traditional
GB method. If ∆xt is less than 0.5 pixels, replace ∆xt with ∆x0. Then, taking the integral
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pixel at the right of the point P’ as the interpolation center, the subpixel displacement ∆x1
is further extracted using the GB method; if ∆xt is greater than 0.5 pixels, replace ∆xt with
∆x1. Taking the integral pixel at the left of the point P′ as the interpolation center, the
subpixel displacement ∆x0 is then computed using the GB method.

Step 3: Determine the d. Calculate d using d = min(|∆x0|, |1 − ∆x1|).
Step 4: Calculate the weight coefficient aSD,d. The a:,d was obtained by Equation (6)

according to the SD and parameters cj (j =1,2,3) in Table 1. Substitute the a:,d into Equation
(7) and determine the weight coefficient aSD,d using the subscript SD and d.

Step 5: Calculate the subpixel displacement ∆x. Substitute aSD,d, ∆x0, and ∆x1 into
Equation (5) to get the identification subpixel displacement ∆x.

Subpixel displacement in the y direction can be calculated using the same procedure,
so it will not be described in detail here.
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4. Experimental Verification
4.1. Numerical Simulation Using Speckle Pattern

To verify the proposed DPG method, a speckle pattern with size 256 × 256 pixels and
256 gray levels was simulated with the iterative spatial gradient-based algorithm, as shown
in Figure 8a. The speckle granule was set as 2000, and the radius of each speckle granule
was 3 pixels with 0.7 peak intensity. A unified coordinate system x-y was established
for the speckle pattern and the section inside the red wireframe with 250 × 250 pixels
was set as the region of interest. The simulated speckle pattern was employed as the
reference image. Deformed images were copied from the reference one with random shift
from 0.1 to 1 pixel in the x direction since the purpose was only to verify the subpixel
matching. It should be noted that only in-plane translation was performed for deformed
images in the numerical example, and the maximum translation was 1 pixel, so that the
integral pixel search algorithm dose was not used in the numerical simulation. Moreover,
to simulate the photography noise from camera, additive random Gaussian noise with zero
mean and random variance from 1 to 5 was added to each shifted image. Here, randomly
selected speckle images with different noise variances are expressed using PSNR, as shown
in Figure 8b.
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The proposed DPG, GB, and N–R method were performed on a desk computer (4 cores
of Inter(R) Core (TM) i5 CPU750 with 2.67GHz main frequency) and the computational tool
was MATLAB on the computer. The subset size was set as 41 × 41 pixels, and the mean
errors with random standard deviation for those three algorithms are given in Figure 9.
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As seen in Figure 9, the maximum error of the GB method was close to 0.01 pixel,
while the error of the improved DPG was less than 0.0025 pixel, which is equivalent to that
of the N–R method. This is because the DPG method not only adopts weight coefficient to
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consider the two nearest integral pixels to improve accuracy, but also covers the influence
of noise on the recognition results.

Computation times for the three different algorithms are listed in Table 2. It should be
noted that computation efficiency depends on a number of factors, such as programming
efficiency, usage of program language, the performance of hardware, etc. The relative
performance, however, can be demonstrated.

Table 2. Computation efficiency comparison.

Method GB DPG N–R

Compution time (s) 0.404 0.827 11.287

Table 2 shows that the GB method was the most efficient way where a reliability-
guided displacement scanning strategy was employed to avoid the time-consuming dis-
placement searching. Moreover, a pre-computed global interpolation coefficient look-up
table using bicubic spline interpolations was employed to eliminate repetitive interpolation
calculation. Furthermore, the computational efficiency of the DPG method was approx-
imately twice longer than that of the GB method. This is because the proposed method
uses one more interpolation calculation than the GB method. However, the computation
cost of the N–R method is 13.7 times that of the proposed DPG method, that is to say,
the calculation efficiency of the proposed method was 92.67% higher than that of the
Newton–Raphson method, indicating that the N–R method was prohibited when dynamic
displacement needed to be identified from an ocean of images.

4.2. Painted Beams Experiment
4.2.1. Experiment Setup

To further verify the proposed method, a simply supported beam with Chinese ancient
painting on the flank was implemented, as shown in Figures 10 and 11. The length, height,
and width of the beam were 1400, 100, and 50 mm, respectively. The concentrated load
was applied using a two-point distribution beam under a third-point bending of the tested
beam. Three micrometers were used to measure deflection on quarter positions of the beam
and the acquired data were taken as the reference displacement.
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A DIC measurement system with charge-couple devices (CCD) camera (model GZL-
CL-41C6M-C with 2048 × 2048 pixels resolution) was placed on a tripod about 4 m in
front of the painted beam. Its optical axis was aligned to the shape center of the beam and
perpendicular to the painted pattern surface. It was assumed that the optical axis of the
camera was perpendicular to the plane of the measured object. Images before and after the
loading procedure with a size of 2048 × 2048 pixels at 8-bit gray levels recorded through
the CCD camera. In order to confirm the loading equipment and instrument, preloading
was performed before formally loading, and the noise variance could be obtained using
the CCD camera after setting up the experimental environment.

4.2.2. Experiment Results

To compare with test values obtained by these micrometers, only the area marked
with a red dot line near the micrometers is considered in this subsection, as shown in
Figure 11b. Coordinates of these selected pixel points from top to bottom of the beam
were set as 1–168 pixel, and the corresponding distance measured with the micrometer
was 100 mm. Therefore, the calibration factor was 100/168 = 0.5952 mm/pixel for the
experiment system. It should be noted that the coarse-fine search method was adopted in
the integer pixel search step both for the GB and DPG methods. When using the algorithmic
process, directly using the captured images for processing may be affected by uncertainty
and/or inaccuracy. At this time, you can choose to use techniques based on fuzzy logic
methods [29,30]. These methods are very suitable for the preprocessing of images affected
by performance and/or imprecision. Although this technology was not used in this study,
these technologies can be considered in any future development. Taking the mid-span
displacement of the beams as a reference, 5 loading cases were implemented, as shown
in Table 3.

Table 3. Beam deflection under different cases (units: mm).

Loading Case 1 2 3 4 5

Deflection at
mid-span 2.4 4.8 7.2 9.6 12

Taking the displacement from the micrometer as true displacement, the GB and
DPG method were used to identify the displacement under different test conditions. The
identification results are shown in Tables 4–6. The mean error of the deflection identification
results of the DPG method was generally less than 0.1 mm, and the maximum absolute
error was 0.083 mm, while the mean error of the deflection identification results of the
GB method was generally above 0.1mm, and the maximum absolute error was 0.554 mm.
It can be concluded that the accuracy of the DPG method was superior to that of the GB
method. Moreover, the standard deviation obtained from the GB method was generally
larger than the DPG method, which shows that the DPG method has better noise stability.
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Table 4. Deflection identification at the micrometer 1 (units: mm).

Case Micro-Meter

GB DPG

Identification Mean Error Standard
Deviation Identification Mean Error Standard

Deviation

1 1.979 1.916 −0.063 1.050 1.971 −0.008 0.010
2 3.735 3.691 −0.044 1.984 3.724 −0.011 0.015
3 5.467 5.302 −0.165 2.508 5.457 −0.010 0.024
4 7.181 6.962 −0.219 0.894 7.178 −0.003 0.028
5 8.936 8.719 −0.217 0.384 8.930 −0.006 0.040

Table 5. Deflection identification at the micrometer 2 (units: mm).

Case Micro-Meter
GB DPG

Identification Mean Error Standard
Deviation Identification Mean Error Standard

Deviation

1 2.414 2.573 0.159 0.016 2.475 0.061 0.012
2 4.828 4.717 −0.111 2.038 4.911 0.083 0.015
3 7.214 6.797 −0.417 2.915 7.289 0.075 0.018
4 9.602 9.048 −0.554 3.099 9.626 0.024 0.037
5 12.012 11.465 −0.547 0.116 11.969 −0.043 0.042

Table 6. Deflection identification at the micrometer 3 (units: mm).

Case Micro-Meter
GB DPG

Identification Mean Error Standard
Deviation Identification Mean Error Standard

Deviation

1 1.972 2.047 0.075 0.441 1.922 −0.050 0.021
2 3.702 3.774 0.072 2.418 3.634 −0.068 0.030
3 5.420 5.617 0.197 0.982 5.359 −0.062 0.041
4 7.132 6.871 −0.261 0.447 7.112 −0.020 0.050
5 8.860 8.602 −0.258 0.298 8.825 −0.035 0.059

Identification results along the height of the wooden beam under case 5 are depicted in
Figure 12. It can be clearly seen that displacement identified by GB method differed greatly
from those identified by the other two methods, and the result fluctuates up and down
all the time, indicating that the accuracy of the GB method is not high and the stability is
poor. The DPG method not only achieved high accuracy as that of the N–R method, but
it also has good stability. At the mid-span monitoring position near the top of the beam,
the identified deflection may produce a small error. This is because the image recognition
will be affected by the background image when the boundary of pixel subsets contacts the
edge of the wood beam or exceeds the edge of the wood beam, so recognition results may
fluctuate. Therefore, when the displacement is monitored by the DIC method, some special
algorithms should be utilized to address the boundary registration, which is beyond the
scope of this study.

4.2.3. Light Condition Analysis

Some studies have reported that light variation has a great influence on the accuracy
and stability of identification results for DIC method [31]. In order to exploit the influence
of light condition on the accuracy of the proposed method, the light conditions were set as
light and dark groups, and their grayscale image is shown in Figure 13. The experimental
setup in Section 4.2.1 was also used here. Because the experiment was carried out in a
laboratory environment with lights, the experiment at that time was defined as the light
group and the experiment done with the light in the laboratory turned off was defined as
the dark group.
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Since the trend was similar for all cases, only the results at micrometer 2 under case 5 are
depicted in Figure 14, and Figure 15 shows the mean error of the recognition results under
two groups of light and dark using different algorithm. Combining Figures 14 and 15, it
can be seen that in the “light” group with better lighting conditions, the mean error of the
recognition results using GB, DPG, and N–R methods was almost the same. Meanwhile, in
the “dark” group with poor lighting conditions, the deflection acquired by the DPG and
N–R method fluctuated slightly along the identification area, but still maintained relatively
high precision, while identification results by the GB method fluctuated significantly,
indicating that the accuracy of the GB method is greatly dependent on the light condition.
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5. Conclusions

The DPG algorithm is proposed in this study for fast and accurate displacement
extraction for DIC subpixel matching. The grayscale of the two nearest integral pixels was
taken as the center point for the five-point bicubic spline interpolation. Then, subpixel dis-
placement was obtained from these two integral pixels using the traditional gradient-based
method. In order to improve accuracy and anti-noise capability, a method using linear
combination strategy was presented and the procedure to calculate a weight coefficient
was introduced in detail. Consequently, the final subpixel displacement was achieved
by linear merging these identification results from the traditional GB method. A simu-
lation speckle pattern and a painted beam experiment were implemented to verify the
practicability of the proposed method. Results show that the accuracy of the proposed
method for recognizing subpixel displacement was improved by 4 times compared with
the GB method. Meanwhile, the computational efficiency of the proposed DPG method
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was at least 13.7 times higher than that of the traditional N–R method, which provides
the possibility for real-time dynamic displacement measurement for an ocean of images.
Furthermore, the proposed method had better anti-noise performance and stability than
the GB method under different light conditions. This merit will greatly reduce the impact of
the environment on identification accuracy in the actual experiment. This DPG algorithm
can be considered a complement to target tracking and displacement measurement.

The proposed DPG method also has certain limitations, such as calculation speed
and stability, under certain noise conditions. Further study will be focused on exploiting
other types of noise, such as salt and pepper noise, and large deformation cases where the
non-translation subset should be considered.
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