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INTRODUCTION
Compared to the conventional flattening-filter photon 
beam (FF), a flattening filter-free photon beam (FFF) allows 
for an approximately two- to fourfold increase in the dose 
rate.1–3 The high dose rate afforded by FFF photon beams 
is an advantage in that it shortens the beam-on time by 
approx. 10–30%.2,3 The use of an FFF also helps minimize 
the intrafraction motion of tumors,4 which is especially 
relevant for cases in which a large dose per fraction is used, 
such as in stereotactic body radiation therapy (SBRT)5–7 
since the dose rate of an FFF is higher than the dose rate 
that can be provided by an FF. Moreover, FFFs have been 
used for intensity-modulated radiation therapy (IMRT) 
and volumetric-modulated arc therapy (VMAT).5 Several 

research groups have reported a physical evaluation and 
dose distribution of FFF8–10; however, these studies were 
conducted with a focus other than the dose rate when the 
differences between FF and FFF were evaluated. The in-field 
and out-of-field dose profiles of the FFF were differed 
from those of the FF when the actual measurements and a 
Monte-Carlo simulation were used to evaluate.11,12

An FFF was irradiated with a high-dose rate photon beam,2,3 
but there have been few radiobiological evaluations to 
determine the effects of dose rate variations on tumor cells. 
The radiobiological effects of using a cell survival fraction 
and an FFF were reported13,14; no significant difference was 
observed in the cell survival fraction after irradiation with a 
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Objectives: We evaluated the radiobiological effective-
ness based on the yields of DNA double-strand breaks 
(DSBs) of field induction with flattening filter (FF) and 
FF-free (FFF) photon beams.
Methods: We used the particle and heavy ion transport 
system (PHITS) and a water equivalent phantom (30 × 
30 × 30 cm3) to calculate the physical qualities of the 
dose-mean lineal energy (yD) with 6 MV FF and FFF. The 
relative biological effectiveness based on the yields of 
DNA-DSBs (RBEDSB) was calculated for standard radi-
ation such as 220 kVp X-rays by using the estimating 
yields of SSBs and DSBs. The measurement points used 
to calculate the in-field yD and RBEDSB were located at a 
depth of 3, 5, and 10 cm in the water equivalent phantom 
on the central axis. Measurement points at 6, 8, and 
10 cm in the lateral direction of each of the three depths 

from the central axis were set to calculate the out-of-
field yD and RBEDSB.
Results: The RBEDSB of FFF in-field was 1.7% higher than 
FF at each measurement depth. The RBEDSB of FFF out-
of-field was 1.9 to 6.4% higher than FF at each depth 
measurement point. As the distance to out-of-field 
increased, the RBEDSB of FFF rose higher than those of 
FF. FFF has a larger RBEDSB than FF based on the yields 
of DNA-DSBs as the distance to out-of-field increased.
Conclusions: The out-of-field radiobiological effect 
of FFF could thus be greater than that of FF since the 
spreading of the radiation dose out-of-field with FFF 
could be a concern compared to the FF.
Advances in knowledge: The RBEDSB of FFF of out-of-
field might be larger than FF.
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photon beam at high dose rates.13,14 Our 2018 study of the radio-
biological effects of FFF beam using A549 (non-small-cell lung 
cancer) cells showed no significant difference in cell motility or 
the cell survival fraction.15 However, these studies evaluated the 
radiobiological effect only on the in-field dose distribution, and 
the effects on tumor cells based on the difference in dose profiles 
with the out-of-field distribution have not been established. The 
dose spreading out-of-field of the FFF also differed from that of 
the FF since an FF and an FFF have different dose profiles. It is 
thus necessary to evaluate the radiobiological effects of FFF in an 
out-of-field condition.

DNA strand breaks such as single- and double-strand breaks 
(SSBs and DSBs) are induced along ionizing radiation tracks in 
cells composed mainly of liquid water.16,17 Monte-Carlo simu-
lations have been very useful to estimate the yields of DNA 
strand break by assessing the track structures for electrons in 
liquid water. Researcher have sought to conduct track structure 
simulations at the nanometer scale of secondary electrons and 
to predict the track structure of electrons for calculations of the 
spatial distribution of DNA hits. However, calculating both the 
energy deposition and the free radical reaction to DNA takes a 
significant amount of time to evaluate. A particle and heavy ion 
transport code system (PHITS) was shown to be able to simulate 
the track structure of electrons in liquid water in the incident 
energy range from 1 meV to 1 MeV,18 and PHITS v.3.20 could 
estimate the evaluation of the impacts by low energy electrons on 
the yields of DNA strand break induction based on the physical 
processes of electrons exhibited.19 Considering the DNA strand 
breaks, not only the physical conditions but also the radiobiolog-
ical effectiveness was evaluated between an FF and an FFF.

In this study, we calculated the yields of DNA strand breaks 
(SSBs, DSBs, and the DSB/SSB ratio) to evaluate the radiobio-
logical effectiveness of an FF and an FFF based on the difference 
between the in-field and out-of-field dose distributions.

METHODS AND MATERIALS
Monte-Carlo simulations are calculated by the PHITS

The PHITS uses Monte-Carlo simulations code and can deal with 
photons, electrons, positrons, neutrons, and heavy ions.18,20–22 
In the present study, we used the PHITS v.3.20 with the default 
setting, and we used the International Atomic Energy Agency 
(IAEA) phase-space file of the Varian TrueBeam linear acceler-
ator (Varian Medical Systems, Palo Alto, CA).

The BEAMnrc code was based on the EGSnrc platform and is 
optimized for modeling the treatment head of radiotherapy 
linear accelerators.23 This code includes several geometry and 
source subroutines, along with the variance reduction tech-
niques to enhance simulation efficiency.24 The below phase-
space files were made using BEAMnrc, which is built on the 
EGSnrc platform. These phase-space files created by BEAMnrc 
were transferred to the PHITS for the calculation of the dose 
distribution. The irradiation geometry for the 6 MV FF and FFF 
was as follows: a 30 × 30 × 30 cm3 water equivalent phantom was 
used; the source to skin distance (SSD) was 90 cm, and the field 

size was 10 × 10 cm2 (Figure 1). The 220 kVp photon beam, which 
was the reference for deriving the relative biological effectiveness 
(RBE), was calculated with the same geometry as that used for 
the 6 MV FF and FFF photon beams. The measurement points 
to calculate the dose-mean lineal energy and the in-field radio-
biological effectiveness were located at a depth of 3, 5, and 10 cm 
in the water equivalent phantom on the central axis. In addition, 
6, 8, and 10 cm in the lateral direction of each depth from the 
central axis were set as measurement points to calculate the out-
of-field radiobiological effectiveness.

Calculation of dose-mean lineal energy yD

We calculated the physical qualities of the dose-mean lineal 
energy yD (keV/µm) of the 6 MV FF and FFF photon beams on 
each measurement point in-field and out-of-field (cut-off energy 
= 1.0 keV). The lineal energy y in keV/μm was given by Equation 
(1):

	﻿‍ y = ε
l ‍� (1)

The dose-mean lineal energy yD
25–27 was calculated as:

	﻿‍
yD =

´
y2f(y)dy´
yf(y)dy

=
´
yd(y)dy´
d(y)dy ‍�

(2)

where ε is the energy deposited in a domain, l is the mean chord 
length, y is the lineal energy, f(y) is the probability density of 
the lineal energy, and d(y) is the dose distribution of the lineal 

Figure 1. The geometries of the Monte-Carlo calculation with 
220 kVp X-rays and 6 MV (FF and FFF) photon beams. The 
measurement points of in-field were 3-, 5-, and 10-cm depth 
from the surface; those of out-of-field were 6, 8, and 10 cm in 
the lateral direction of each depth from the center axis.
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energy. The dose-mean lineal energy yD was calculated according 
to ICRU report 36.28

Estimation of SSB, DSB, and the DSB/SSB ratio by 6 MV FF and 
FFF irradiation using PHITS.

PHITS v.3.20 has been shown to effectively consider the track 
structure code to calculate the precise electron features on a scale 
from a single track to DNA.19 The yields of strand breaks (SSBs 
and DSBs) using the PHITS calculation have been compared 
and verified with other published data including ICRU reports, 
the results of other simulation codes, and experimental data,19 
and good agreement of the DSB yield calculated by PHITS with 
experimental DSB data has been shown for both electron and 
photon irradiations. By analyzing the spatial coordinates of 
ionization and excitation, it was possible to calculate the genera-
tion rate of DNA damage induced on charged particle tracks. The 
number of events per track and the number of a pair composed of 
two events within 3.4 nm (10 base pairs, bp) were stochastically 
sampled for calculating the yields of SSBs, DSBs, and the DSB/
SSB ratio since the DNA strand breaks were induced by ioniza-
tion and electronic excitation.29,30 PHITS calculates the number 
of SSB and then calculates the fraction of them that lie within 
10 bp on opposite strands to obtain the numbers of initial DSB.

The number of events per keV Nevent/Ein and the number of 
linkages per keV Nlink/Ein were calculated to obtain the induc-
tion yield of SSBs and DSBs, respectively [19]. PHITS defined 
kSSB and kDSB as proportion coefficients for SSB and DSB 

inductions (keV/Gy/Da), respectively, that is, the coefficients 
kSSB = 5.66 × 10−12 (keV/Gy/Da) and kDSB = 1.61 × 10−13 (keV/
Gy/Da).19 The numbers of SSB YSSB and DSB YDSB (/Gy/Da) as a 
function of electron incident energy are defined as:

	﻿‍ ySSB(Ein) = kSSB Nevent
Ein ‍� (3)

	﻿‍ yDSB(Ein) = kDSB Nlink
Ein ‍� (4)

We calculated the DSB/SSB ratio by using the yield ratio of DSBs 
and SSBs (YDSB/YSSB). The energy spectra of electrons by FF and 
FFF on each measurement point were used to calculate the yields 
of SSBs and DSBs and the DSB/SSB ratio.

The RBE based on the yields of DNA-DSBs

The yield of DNA-DSBs is considered an endpoint for evalu-
ations of radiobiological effectiveness.31,32 The RBE obtained 
using the ratio of DNA-DSBs (RBEDSB) has been calculated for 
standard radiation such as 220 kVp X-rays, since the absorbed 
dose is related to the number of DNA-DSBs per nucleus.33 In 
the present study, the RBEDSB was calculated by the ratio of 
the number of DNA-DSBs per nucleus with a 1.0 Gy absorbed 
dose when FF and FFF photon beams were irradiated on each 
measurement point to the number of DNA-DSBs of 220 kVp 
X-rays as follows:

	﻿‍
RBEDSB = DSBFForFFF

DSB220kVp X−rays ‍� (5)

Figure 2. The calculations of the dose-mean lineal energy in the water equivalent phantom for the 6 MV FF and FFF at each meas-
urement point at the depths of 3 cm (a), 5 cm (b), and 10 cm (c).
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RESULTS
The dose-mean lineal energy yD of FF and FFF

Our calculations of the dose-mean lineal energy yD in the water 
equivalent phantom for the 6 MV FF and FFF are illustrated in 
Figure 2. The yD values of the FF were 2.24, 2.54, 3.06, and 3.22 
and the yD values of the FFF were 2.30, 2.62, 3.24, and 3.51 (keV/
µm) at each measurement point at the depth of 3 cm with 6, 8, 
and 10 cm in the lateral direction from the central axis, respec-
tively (Figure  2a). At each measurement point at the depth of 
5 cm, the yD values of the FF were 2.24, 2.66, 3.08, and 3.27, and 
the yD values of the FFF were 2.30, 2.84, 3.35, and 3.58 (keV/µm), 
respectively (Figure 2b). At each measurement point at the depth 
of 10 cm, the yD values of the FF were 2.24, 2.68, 3.19, and 3.31 
and the yD values of the FFF were 2.30, 2.88, 3.47, and 3.64 (keV/
µm), respectively (Figure 2c).

The FFF thus had larger yD values. The difference in the water 
depth on the central axis (in-field) had little effect on the yD 
values. In contrast, greater yD values were observed with the 
greater depths and with greater lateral distances from the central 
axis (out-of-field).

Calculation of the DSB yield and the DSB/SSB ratios for FF and 
FFF by PHITS

We calculated the yield of DSBs with 6 MV FF and FFF by using 
the PHITS. The yields of DSBs with the FF photon beam were 

1.23, 1.27, 1.41, and 1.46 and those of the FFF were 1.23, 1.29, 
1.47, and 1.57 (10−11/Gy/Da) at each measurement point at the 
depth of 3 cm with 6, 8, and 10 cm in the lateral direction from 
the central axis, respectively (Figure 3a). At the 5 cm depth, the 
yields of DSBs with the FF were 1.23, 1.30, 1.42, and 1.48 and 
those of the FFF were 1.23, 1.35, 1.51, and 1.59 (10−11/Gy/Da) 
(Figure 3b). At the 10 cm depth, the yields of DSBs with the FF 
were 1.23, 1.30, 1.45, and 1.49 and those with FFF were 1.23, 
1.36, 1.55, and 1.62 (10−11/Gy/Da), respectively (Figure 3c).

We calculated the ratios of DSB/SSB with 6 MV FF and FFF. At 
the 3 cm depth, the ratios of DSB/SSB with the FF were 0.056, 
0.057, 0.058, and 0.059, and those with the FFF were 0.056, 
0.057, 0.059, and 0.060 at the three measurement points 6, 8, and 
10 cm in the lateral direction from the central axis, respectively 
(Figure 4a). At the 5 cm depth, the ratios of DSB/SSB with the FF 
were 0.056, 0.057, 0.058, and 0.059, and those with the FFF were 
0.056, 0.057, 0.059, and 0.060 (Figure 4b). At the 10 cm depth, 
the ratios of DSB/SSB with the FF were 0.056, 0.057 0.059, and 
0.060, and those obtained with the FFF were 0.056, 0.058, 0.060, 
and 0.061 (Figure 4c). There was little effect on the yield of DSBs 
or the DSB/SSB ratio by changing the measured depth on the 
central axis in the comparison of FF and FFF (in-field), but the 
values were the larger with greater distance and the longer lateral 
distance from the central axis (out-of-field).

Relative biological effectiveness with FF and FFF based on the 
yields of DSBs

Figure 3. The yield of DSBs (10−11/Gy/Da) with 6 MV FF and FFF at each measurement point at the depth of 3 cm (a), 5 cm (b), 
and 10 cm (c).



5 of 8 birpublications.org/bjro BJR Open;2:20200072

BJR|OpenOriginal research: Radiobiological effects on flattening filter-free photon beams

The RBE values based on the yield of DSBs (RBEDSB) with 
6 MV FF and FFF were calculated. At the depth of 3 cm with 
the measurement points at 6, 8, and 10 cm in the lateral direc-
tion from the central axis, the RBEDSB values for 6 MV FF were 
0.74, 0.79, 0.90, and 0.93 and those for FFF were 0.75, 0.81, 0.93, 
and 0.99, respectively (Figure 5a). At the 5 cm depth, the corre-
sponding values for FF were 0.74, 0.82, 0.90, and 0.94, and those 
for FFF were 0.75, 0.86, 0.95, and 1.00 (Figure 5b). At 10 cm deep, 
the corresponding values for FF were 0.74, 0.88, 0.98, and 1.00, 
and those for FFF were 0.75, 0.92, 1.04, and 1.07 (Figure 5c). The 
RBEDSB values were larger in FFF at all measurement points, and 
therefore FFF has a greater RBE than FF; the RBE of out-of-field 
was also greater.

DISCUSSION
After the FF was removed, the spectrum of the FFF photon 
beams with the Varian TrueBeam linear accelerator was softened 
and the proportion of low-energy components was increased 
compared to FF.34 In addition, a characteristic of the beam profile 
of FFF was the lower out-of-field dose distribution compared to 
FF.35 The physical qualities of the dose-mean lineal energy yD 
values on the central axis of FF and FFF were almost the same 
(Figure  2). Regarding the out-of-field, the yD values for FFF 
were larger than those for FF because FFF has more low-energy 
components (Figure 2).

We used the DNA-DSB yield to calculate the RBEDSB values 
in the present study. To the best of our knowledge, this was 
the first study to calculate the yield of DNA-DSBs of FFF by a 

Monte-Carlo simulation. The RBEDSB values were almost the 
same in-field, even when the depth changed (Figure  5). The 
result of in-field observation was equal to A549 cell survival 
comparing FF with FFF.15 On the other hand, the RBEDSB out-
of-field values increased as the depth and the distance from the 
central axis increased (Figure 5). We observed that compared to 
an FF photon beam, FFF has larger RBEDSB values. We speculate 
that (1) the energy of the photon beam shifts to a lower energy 
value as the depth becomes deeper and the distance from the 
central axis becomes larger; and (2) the tendency is larger in FFF.

Yachi et al calculated the relationship between the calculated 
yD values for various types of X-rays, measured the RBEDSB 
values, and derived an approximate formula.30 Our present find-
ings regarding RBEDSB values are valid in comparison with the 
approximate formula. On the central axis (in-field), the difference 
of RBEDSB values between FF and FFF was within 2% regard-
less of the depth and thus almost the same values. On the other 
hand, the RBEDSB values of FFF were greater than those of FF as 
the distance to out-of-field increased. The RBEDSB values of FFF 
were higher than those of FF by 1.7%, 4.6%, 5.6%, and 6.4% at 
each measurement points with a depth of 10 cm with 6 cm, 8 cm 
and 10 cm in the lateral direction from the central axis, respec-
tively. The result that the RBEDSB values of FFF was larger than 
FF was increased as the depth and the distance from the central 
axis increased (Figure 5). It was considered because the propor-
tion of low dose for FFF was increased than FF with deeper and 
out-of-field. The increasing the proportion of low dose for FFF 
could also be confirmed from the results of yD (Figure 2). As a 

Figure 4. The DSB/SSB ratio for the 6 MV FF and FFF at each measurement point at the depth of 3 cm (a), 5 cm (b), and 10 cm (c).
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result, the RBE at out-of-field of FFF might be greater than that 
of FF.

The advantages provided by the characteristics of FFF have 
enabled its use in IMRT and VMAT in clinical settings.5 The irra-
diation technique of spreading the absorbed dose out-of-field has 
been reported in several radiotherapy studies.36–39 There is also 
concern about a secondary cancer risk due to the spreading of 
the dose out-of-field.40 Furthermore, although IMRT and VMAT 
use the multi-leaf collimator (MLC) to perform intensity modu-
lation of the dose distribution, the irradiation field was formed 
by only the jaw without MLC to evaluate the RBEDSB value of 
FF and FFF in this study. The shape of the dose profile of MLC 
combined with jaw was different from the field by only the jaw.41 
Therefore, it is necessary to evaluate the RBEDSB value of out-of-
field using the MLC. It may thus be advisable to pay attention to 
the spreading of the dose out-of-field when FFF is used for IMRT 
and VMAT.

There is a study limitation to address; we obtained the result 
showing that the RBEDSB value of FFF was higher by approxi-
mately 6% compared to FF at the out-of-field. The clinical impact 
of the difference in RBEDSB values between FF and FFF is not yet 
known. Further studies are necessary to determine the precise 
effects of radiobiology.

CONCLUSIONS
FFF has greater RBEDSB values than FF based on the yield of 
DNA-DSBs. The RBEDSB values of FFF were higher than those 
of FF as the distance to out-of-field increased. The out-of-field 
radiobiological effectiveness of FFF could thus be greater than 
that of FF since the spreading of the radiation dose out-of-field 
with FFF could be a concern compared to the FF.
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