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One of the biggest perceived challenges in building megastructures, such as

the space elevator, is the unavailability of materials with sufficient tensile

strength. The presumed necessity of very strong materials stems from a

design paradigm which requires structures to operate at a small fraction of

their maximum tensile strength (usually, 50% or less). This criterion limits

the probability of failure by giving structures sufficient leeway in handling

stochastic components, such as variability in material strength and/or exter-

nal forces. While reasonable for typical engineering structures, low working

stress ratios—defined as operating stress as a fraction of ultimate tensile

strength—in the case of megastructures are both too stringent and unable

to adequately control the failure probability. We draw inspiration from natu-

ral biological structures, such as bones, tendons and ligaments, which are

made up of smaller substructures and exhibit self-repair, and suggest a

design that requires structures to operate at significantly higher stress

ratios, while maintaining reliability through a continuous repair mechanism.

We outline a mathematical framework for analysing the reliability of struc-

tures with components exhibiting probabilistic rupture and repair that

depend on their time-in-use (age). Further, we predict time-to-failure distri-

butions for the overall structure. We then apply this framework to the space

elevator and find that a high degree of reliability is achievable using

currently existing materials, provided it operates at sufficiently high working

stress ratios, sustained through an autonomous repair mechanism,

implemented via, e.g. robots.
1. Introduction
Once an element of science fiction, the space elevator has become in recent years

one of the most ambitious and grandiose engineering projects. Although the con-

cept of a space elevator was introduced by Russian physicist Konstantin

Tsiolkovsky in 1895 [1], the idea goes back to biblical times when the attempt

to create a tower to heaven (later named ‘The Tower of Babel’) ended in ruin.

In the late 1990s, NASA considered the idea rigorously and concluded that

such a massive structure is not only feasible, but is a cost-efficient way to trans-

port payloads into space [2]. A few years later, two NASA Institute of Advanced

Science (NIAC) reports outlined various engineering considerations to building

the megastructure [3,4]. The reports emphasized the necessity of extremely

strong materials, but the dawn of carbon nanotubes dispelled some of the scepti-

cism in the scientific community. Currently, commercial companies planning on

building the elevator are on hold, awaiting advancements in materials science.

In this paper, we argue that a key concept needed for building megastruc-

tures like the space elevator can be borrowed from biology. On a much smaller

scale, living organisms can be viewed as megastructures when compared to

their building blocks (e.g. tendons composed of collagen fibres, bones made of

osteons, etc.). So how does biological design create such stable structures? The

answer is not only to maximize the strength of the materials used, but also to
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Figure 1. Space elevator diagram. (a) The space elevator tether is anchored at the Equator, extends past geostationary orbit and is balanced by a counterweight. The
tether is made up of independent horizontal segments stacked vertically. Each segment is made up of filaments. The number of filaments for each segment varies
exponentially with height. (b) A tether segment experiences four forces: its weight W , the outward centrifugal force FC, and upward/downward forces FU and FD,
owing to the part of the cable above/below the element. At equilibrium, FU þ FC ¼ W þ FD, leading to tension in the bundle. (c) Segment filaments are active if
they carry load. Otherwise, they are inactive. Active segments can become inactive through rupture and inactive cables can become active through repair.
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cheaply repair by recycling material, while operating at

very high loads. Although it is a good rule of thumb in

reliability engineering to have structures with a maximum

safety factor—that is, how much load the part can withstand

versus actual or expected load—of 2, biological systems operate

significantly below this value. For example, in humans,

Achilles’ tendons experience safety factors well below 1.5,

routinely withstanding mechanical stresses very close to their

ultimate tensile strengths (UTSs) [5]. Similarly, lumbar spines

in humans can also sustain tremendous stresses, especially in

athletes [6]. As Taylor et al. [7] point out, the key to sustainability

lies in the repair mechanism inherent in biological systems.

Incidentally, engineering has a long history of borrowing

from biology dating back to classic civilizations’ use of

ballistae, which used twisted tendons to accelerate projectiles

on account of the little weight they would add to the machine

[8]. In the same spirit, we suggest a megastructure design

that not only allows components to fail, but has a self-

repair mechanism to replace the broken components. This

will allow structures to operate at significantly higher loads,

without compromising their integrity, which, in turn, will

make megastructures built from existing materials a reality.

The physics of the space elevator as a balanced tether

extending from the Equator past geosynchronous height

has been previously studied [9–11]. In the rotating frame of

the Earth’s surface, the tether is freestanding—that is, it

exerts no force on the ground—if its weight and outward cen-

trifugal force are in balance, thus maintaining it under

lengthwise tension. Using the notation in [11], figure 1b
shows that each small, horizontal element of the tether

experiences four forces: its weight W , the outward centrifugal

force FC and upward/downward forces FU and FD, owing to

the part of the cable above/below the element (and a poten-

tial counterweight placed above geosynchronous height to

reduce the cable length needed). A balanced tether implies

that, each segment is in equilibrium in the aforementioned

rotating frame of reference, that is, FU. Note that, W ¼ FC

(and FU ¼ FD) at geostationary height, W . FC (and
FU . FD) below and the reverse is true for an element

above this height.

Pearson suggested that a desirable design is to main-

tain a constant stress s throughout the tether [10]. Then,

for an element below geostationary orbit, we have

FU � FD ¼ sdA ¼W � FC, where A is the cross-sectional

area of the cable. This results in an exponential tapering of

A shown schematically in figure 1a: A increases from a small

value at the base to a large one at geostationary height and

back to a small one thereafter. The taper ratio—defined as

area at geostationary height divided by area at the Earth’s

surface—is given by T ¼ exp(K/Lc). Here, K is a constant

that depends on Earth’s radius and geostationary height and

Lc ¼ s/w is the characteristic length of the material, i.e. the

ratio between the constant stress in the tower s and the

specific weight w. It can be seen that, to avoid prohibitively

large cross-sectional areas, one should use light (small w)

materials able to sustain high stresses (large s). For reference,

using a safety factor of 2, a steel cable requires a taper ratio

T ¼ 2.6 � 1066, whereas for carbon nanotubes, assuming

a maximum tensile strength of 130 GPa, the taper ratio is

T ¼ 2.6 (table 1). These extreme requirements make carbon

nanotubes a natural choice. However, with lengths not exceed-

ing several centimetres [12,14], using them in their raw form to

build the space elevator is not feasible. A solution is to use

carbon nanotube composites [4], but this decreases their

tensile properties. Some of the strongest carbon nanotube

composites currently available have maximum tensile

strengths of 25–31 GPa [15,16], highlighting we are fast

approaching the material strength ranges necessary for

stable megastructures with self-repair mechanisms.
2. Filament bundle rupture dynamics with repair
2.1. Space elevator model
Although the finished space elevator may comprise enough

parallel tethers (cables) to meet cargo transport demands



Table 1. Space elevator characteristics for different materials. (We show material specific weight, ultimate tensile strength (UTS), and cable taper ratio, total
mass and number of flights required to transport the material for two different operating stress ratios v. Data for steel, Kevlar and CNT (theoretical) is adapted
from Aravind [11], data for CNT (STR method) from [12], Zylon and M5 data from [13]. The number of flights is estimated based on Pearson [10].)

sp. weight UTS
taper ratio, T mass (tonnes) no. of flights

material (kN m23) (GPa) v ¼ 50% v ¼ 100% v ¼ 50% v ¼ 100% v ¼ 50% v ¼ 100%

steel 77 5.0 3.4 � 1066 1.8 � 1033 5.9 � 1068 2.3 � 1035 2.5 � 1065 9.5 � 1031

Kevlar 14 3.6 7.0 � 1016 2.6 � 108 6.0 � 1018 1.6 � 1010 1.4 � 1016 3.7 � 107

Zylon 15 5.8 2.1 � 1011 4.6 � 105 1.5 � 1013 2.3 � 107 3.2 � 1010 4.9 � 104

M5 17 7.2 8.8 � 109 9.4 � 104 5.8 � 1014 4.3 � 109 1.1 � 109 8.5 � 103

CNT (STR) 16 43.0 36.9 6.1 837.5 81.2 1.7 0.2

CNT (th.) 13 130.2 2.6 1.6 20.8 6.8 5.3 � 1022 1.7 � 1022
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[3,4], we focus here on the first cable. Specifically, we

model each tether as a set of vertically stacked segments

(figure 1); each segment is made up of identical, parallel,

non-interacting filaments. We assume idealized, indestructi-

ble connections between the segments, but one can envision

an extension to the model where the connections are treated

as a second type of segment with their own dynamics. The

total number of segments is determined by the maximum

filament length and the amount of stress variation permitted

in the segment (gravitational forces acting on segments vary

with height). To maintain a tapered shape of the cable, each

segment’s cross-sectional area changes with height by

varying the (target) numbers of filaments in the segment,

effectively obtaining a step-wise discretized version of the

continuous exponential tapering discussed above.

We further restrict the analysis to a single segment shown

schematically in figure 1b. Filaments in the segment are active
if supporting load and inactive if broken and not sustaining

load. Additionally, active filaments can fail and become inac-

tive and, conversely, inactive filaments are repaired by

replacing them with active ones. We assume the processes of

rupture and repair do not significantly change the mass of

the segment. Furthermore, the segment height is considered

small enough to ignore variability in gravity and centrifugal

forces. Therefore, the net force on the segment is constant

and, hence, segment dynamics are independent of the

dynamics of its neighbours. The independence ensures that

the failure probability of the cable is the probability that any

of its segments fail; if the latter is controlled and arbitrarily

small, the former can be too. When filaments are gained or

lost, the resulting load is instantaneously divided among all

active filaments. We ignore the interaction between filaments

(e.g. friction) and changes in the inter-filament platform

angles. However, the model is flexible enough to incorporate

aspects discussed in [4], such as a ribbon pattern to protect

against potential hazards (e.g. by changing segment orien-

tation). We point out that the model also mirrors biological

structures built with smaller subunits. For example, tendons

and parallel collagen fibrils, which, with the help of tendocytes

that actively synthesize matrix components provide a self-

repair mechanism [17]. A similar mechanism is present in

bones, where osteoclasts and osteoblasts form basic multicellu-

lar units that move along the bone and turnover material [7].

The segment-filament model proposed here is a simplified

model for gaining intuition about the structure–substructure
interaction, rather than a suggestion for a specific engineering

design. In the case of no repair, our non-interacting filament

model is known as the equal load sharing fibre bundle model.
This has been studied extensively in the literature, beginning

with Daniels [18], who analysed bundle strength in fast rup-

ture and Coleman [19–21], who worked on fibre bundle

lifetime in time-dependent creep-rupture, with further gener-

alizations by Phoenix [22,23]. Past analytic work is restricted

to the case where fibre rupture times are exponentially dis-

tributed, leading to a memoryless Markov process (see §3.5)

and involves ‘mean-field’ approaches, as well as asymptotics

for large number of fibres, where fluctuations can be ignored.

Newman and Phoenix’s more recent work [24,25] explores

simulation algorithms for large number of fibres in the case

of local load sharing breakage for more general underlying

fibre lifetime distributions. The analytic approach used in our

paper does not impose restrictions on the underlying filament

lifetime distributions, can be solved exactly, and, more impor-

tantly, extends to the case where filaments are repaired, a case

where the age-structure of the ensemble becomes crucial. We

emphasize our analysis combines the deterministic aspect of

ageing with the stochastic rupture/repair of the filaments.
2.2. Dynamics of active filaments
As underlined in the model description, the goal is to

maintain a constant stress throughout the structure, which

translates to maintaining a constant stress for each segment

in the steady state. Assuming a sufficiently large number of

segments, the total force in each is constant. Then, in the tran-

sition phase, one expects changes in the single segment stress

owing solely to variations in its cross-sectional area. This area

is the product between n(t)—the number of active filaments

at time t—and the constant cross-sectional area of a single

filament. Equivalently, the product s(t) � n(t) is constant,

where s is the stress in the segment at time t. The segment

is considered operational if s(t) , smax, with smax a constant

representing the UTS of the material. It is more convenient to

view this inequality in terms of the working stress ratio, which

we define as v(t) :¼ s(t)/smax. Then, the condition for

reliability of the structure becomes v(t) , 100%. Note that,

designing a structure with a specific safety factor corresponds

in our language to targeting a fixed value for v.

When considering the dynamics of v(t), it is more direct

to analyse n(t), the number of active filaments. We assume
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Figure 2. Stochastic bundle model with ageing. At time t, there are n active filaments. The ith active filament has age ai, measured from the time of its loading.
Ages can differ among filaments owing to the repair process, according to which inactive filaments are replaced with active ones. Each filament has a rupture
probability rate kn(ai), which depends on the specific filament’s age ai. The whole system has a probability rate of repair given by rn. During each small increment
of time t, the system ages deterministically by t, shifting the overall age distribution (ai! ai þ t) and also jumps stochastically to one of three states: (i) n 2 1
filaments (rupture, red) with probability

Pn
i¼1

Ð t
0 kn(ai þ t0) dt0, (ii) n þ 1 (repair, blue) with probability rnt, or (iii) n filaments (grey) with probability

1� (rntþ
Pn

i¼1

Ð t
0 kn(ai þ t0) dt0)).
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there are two stochastic effects which govern the kinetics of

n(t): filament rupture and repair. Filament rupture times are,

therefore, random variables drawn from a lifetime distri-

bution, which depends on the stress (load history) s(t) (or,

equivalently, on n(t)). A typical choice for this distribution

is Weibull [26–29]. Since new filaments are introduced in

the system through the repair process at various times, we

denote by ai the ith active filament’s age—the time elapsed

from the moment it begins bearing load. Each filament

therefore has a rupture rate of kn(ai). On the other hand,

we assume that filaments are autonomously repaired by

robots with a piecewise-constant probability per unit time

rn (see §2.3 for a detailed discussion on the transition

probability rates).

The dynamics of n(t) are represented schematically in

figure 2. During any small increment of time t, either an

active filament ruptures (n! n 2 1) according to kn(a), or

an inactive one is repaired according to rn (n! n þ 1), or

neither. In either case, all loaded filaments will age determi-

nistically, shifting the age-structure of active filaments. We

can describe this process mathematically in the formalism

of Chou & Greenman [30,31]. If we randomly label the fila-

ments 1, 2, . . . , n, we let pn(an; t) dan be the probability that

the ith one has age in the interval [ai, ai þ dai], where

an ¼ (a1, a2, . . . , an) is the vector of ages. We can then write

the hierarchy of coupled integro-differential equations as:

@pn(an; t)
@t|fflfflfflfflfflffl{zfflfflfflfflfflffl}

change due to time

þ
Xn

i¼1

@pn(an; t)
@ai|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

change due to ageing

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{total change in probability

¼ �pn(an; t)
Xn

i¼1

kn(ai)

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{probability outflux due to rupture

þ (nþ 1)

ð1

0

knþ1(a)pnþ1(an, a; t)da|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
probability influx due to rupture

,

ð2:1Þ
with the associated boundary condition npn(an�1, 0; t) ¼
rnpn�1(an�1; t), which embeds the effect of repair. In addition

to the boundary conditions, one needs to also provide an

initial condition pn(an; t ¼ 0) to fully specify the system. Inte-

grating over all ages an, one gets the probability of having n(t)
active filaments at time t, that is, p(n, t) ¼

Ð
pn(an; t) dan.

This hierarchy leads to an exact analytic solution for the

probability density, albeit an unwieldy one [31].

2.3. Derivation of the transition probabilities
2.3.1. Rupture
There are various modes in which mechanical structures can

fail (e.g. ductile fracture, brittle fracture, fatigue, etc.) [32]. In

this manuscript, we focus exclusively on creep-rupture—the

time-dependent deformation process under moderate to

high stresses. Our decision is justified given the tapered

design of the space elevator cable, which implies a high con-

stant stress throughout the structure. It is interesting to note

that creep-rupture data turns out to be far from abundant

for low temperatures. This is somewhat expected given that

the stresses involved in obtaining reasonable times to rupture

in relevant materials are typically significantly above 50% of

their UTSs. Since most engineering structures are designed

to operate below these stress ratios, research in this area is

somewhat scarce.

To obtain the probability of failure owing to creep-rup-

ture, it is reasonable to assume that filament rupture time is

distributed according to a Weibull distribution [26–29]. We

highlight that the inferences drawn regarding the trade-off

between repair rates and sustaining higher stresses do not

change meaningfully depending on the choice of distri-

butions; we are limiting the analysis to Weibull for the sake

of definiteness. We seek the conditional probability that a

filament ruptures in an interval of time t, given that it has

been in use a time of ai, i.e. has age ai. We let FW(ai) be the

Weibull probability of rupture in the interval [0, ai] in
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equation (4.1) and fW(ai) ¼ F0W(ai) its associated probability

density function. If t is small, the probability of rupturing

during [ai, ai þ t] is fW(ai)t. The probability that the filament

reached age ai unruptured is 1 2 FW(ai). The conditional

probability per unit time (transition probability rate) is then

k(ai; l, s) ¼ lim
t!0

1

t

fW (ai)t

1� FW (ai)
¼ s

ls as�1
i : ð2:2Þ

Note that, k(.) is synonymous to the hazard function in survi-

val analysis. We assume the shape parameter s is a constant

and that a linear relationship of the form ln(l) ¼ aln(s) þ b

exists between the scale parameter l and the stress s (see

§4 for details). Recalling that the total segment force is

assumed constant and, hence, s(t) � n(t) is constant, we can

express the rupture rate as

kn(ai) ¼ c1
n
c2

� �as

as�1
i , ð2:3Þ

where c1 is a constant that depends solely on material prop-

erties (see §4) and c2 ¼ s0 N0 is a segment-specific constant,

where s0 and N0 are the initial stress and number of active

filaments for the segment, respectively. For a detailed

discussion on the choice of N0, see §3.3.

2.3.2. Repair
The repair mechanism in this manuscript is independent of

the filament age distribution:

rn ¼
r (n , N0)
0 (n � N0):

�
ð2:4Þ

Here, r is a constant and N0 is the initial number of active fila-

ments. Provided the number of active filaments n , N0,

during every small time increment t, there is a probability

rt for the entire segment to be repaired. The repair amounts

to adding an active filament and removing an inactive one,

thus leaving mass unchanged. Therefore, in this simplified

case, the probability rate per unit time is a constant r. Alter-

natively, r filaments will be added on average per unit time.

To continue the biological analogy, we can envision a mech-

anism that performs repairs automatically (e.g. autonomous

robots). Given robots’ arbitrary positions along the cable,

each segment has a certain probability of getting repaired.

The trade-off in adding more repairing robots comes from

the added mass associated with them. However, we can

also consider the control problem associated with picking

more complex functional forms for the repair rate to poten-

tially minimize material flux and total robot mass. It turns

out that, despite being overly-conservative and choosing r

as constant, the repair rate value is reasonable and structures

can operate reliably at higher stresses.

2.4. Age-dependent stochastic simulation
In the case in which the rupture rates kn(ai) depend on the

number of active filaments n, the hierarchy in (2.1) leads to

a somewhat unwieldy analytic solution. We use an age-

dependent stochastic simulation method based on the

time-dependent Gillespie algorithm [33], which takes into

account the age structure of the population. Starting with

N0 filaments (see §3.3 for the choice of N0), the algorithm

generates a transition at every step of the iteration either

until a passage condition is reached (e.g. the number of

filaments drops below a critical value corresponding to
v ¼ 100%) or a maximum number of iterations condition is

reached. Each transition is broken down into two steps: find-

ing the time to the first transition and determining which

transition occurs.

Tackling the first step requires knowing the distribution

of jump times. Let t be the interval of time such that given a

jump occurs at t, then the next jump will occur at t þ t.

Assume there are n filaments after the jump at t with ages

an. We are interested in the cumulative distribution of t

denoted Fn!n+1(t j an; t). First, focus on the probability

that in the interval [t, t þ t] there occur no jumps. To

derive this, we break up the interval t into q small sub-

intervals of size Dt. Using the definition of transition

probabilities, we can write the probability that no transitions

occur in [t þ lDt, t þ (l þ 1)Dt] for l ¼ 0, . . . , q21 as

1� [rþ
Pn

i¼1 kn(ai þ lDt)]Dt. Since Dt is chosen suffi-

ciently small, we can write the probability as

exp {�
Ð (lþ1)Dt

lDt [rþ
Pn

i¼1 kn(ai þ t0)] dt0}. Taking the product

over all l ¼ 0, . . . , q, we get the probability that no transition

occurs on any of the sub-intervals. Then,

Fn!n+1(t j an; t)

¼ 1� exp � rtþ
Xn

i¼1

ðt
0

kn(ai þ t0) dt0

" #( )
: ð2:5Þ

We draw R, a uniform random number on [0, 1] and find

the jump time t* as the solution to the equation

Fn!n+1(t� j an; t) ¼ R via the Newton–Raphson method.

The second step of the transition is to determine whether

one of the n filaments ruptures or the segment is repaired. To

accomplish this, we sample the categorical (multinomial with

one trial) distribution, where each category has (unscaled)

probability r, kn(a1 þ t*), kn(a2 þ t*),. . ., kn(an þ t*) (only

include a category for repair if n , N0).

Once a transition occurs, the vector of ages an is incremen-

ted by t* component-wise. If the filament is broken, it leaves

the pool and is no longer tracked. If the segment is repaired, a

new filament with age amin enters the pool. If no stopping

conditions are met (e.g. barriers, maximum time), the

algorithm continues to generate transitions.
3. Results
For the sake of concreteness, we focused on a space elevator

segment built out of aramid filaments (see data analysis

in §4). We first apply the classical reliability engineering

paradigm of no autonomous repair to the space elevator

and analyse the reliability of a segment. Without repair, a

typical way of ensuring structure integrity is by designing

it to operate at low working stress ratios v (or, conversely,

at high safety factors). This is a good rule of thumb when

the distributions of material properties are well studied

and stresses in the structure are low enough to allow

for high safety factors. In the space elevator, however,

high safety factors are unrealistic, as these would lead to

exponential increases in the taper ratio [3]. Furthermore,

while ductile materials, such as steel, have well-understood

tensile properties, carbon nanotubes (most realistic mate-

rial to be used for the space elevator) were shown to have

considerably variable strengths [34]. Their brittle nature

[35], coupled with the practical limits imposed on the

safety factor, led us to suggest a paradigm shift from low
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Figure 3. Dynamics without filament repair. (a) A sample of 100 paths
(grey) are shown for the number of filaments n(t) (right) and corresponding
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working stress ratios to higher ones and continuous repairs.

From a practical standpoint, this could be done by

enhancing the climbers in [3,4] through robots capable of

autonomous repair.
3.1. The case without repair
Starting with a fixed number of active filaments, correspond-

ing to a targeted working stress ratio v0, we use the stochastic

simulation scheme for age-structured dynamics described in

§2.4 to predict the probability that the system is reliable

over time. Without a repair mechanism in the system, not

only is failure inevitable, but the distribution of times to fail-

ure has a large spread (figure 3). The only way one can

improve reliability without repair in this framework is to

decrease the operating ratio to a low enough value to delay

the inevitable. This is not tenable in the space elevator,

since this would require lowering the operating stress either

by increasing the taper ratio to extreme values or by using

materials much stronger than those currently available.
3.2. The effects of an autonomous repair mechanism
As previously mentioned, operating the space elevator seg-

ment in the absence of a repair mechanism will lead to

eventual segment failures in time. We now introduce an

autonomous repair mechanism, which amounts to repairing

inactive filaments with a probability per unit time r (inciden-

tally, an interesting optimal control problem is how to

modulate r with the number of active filaments n most effi-

ciently from a cost perspective). We consider the simple

case of piecewise-constant repair rates with the understand-

ing that this is not optimal. As shown in figure 4, the

segment dynamics in figure 3 improve dramatically with

modest repair rates (1–4 filaments every 104 h) by creating

a bifurcation in behaviour: either filaments rupture quickly

and the system fails or they last long enough for the repair

rate to take over and stabilize the system. Note that, to

ensure the segment mass does not increase, we do not

allow the number of filaments to go above the initial value,

i.e. we have a reflective barrier. This guarantees that the

system is stabilized at a number of filaments corresponding

to the initially targeted working stress ratio. We see that

with higher repair rates, not only do we eliminate trajectories

ending in failure, but we also speed up the time to reach the

stable regime.

With the introduction of a repair mechanism, figure 5a–d
shows that the system can be stabilized at significantly higher

working stress ratios (the insets show histograms for the

times to stabilization). This is crucial, because it implies that

one can use materials with a lower UTS. The trade-off

comes in the form of higher repair rates, but the scaling of

repair with working stress ratio is encouraging (figure 5e).

An additional benefit to operating at higher working stress

ratios is that the system stabilizes much faster, at which

point repair could be modulated down. For example, we

see that, for Kevlar, operating the segment at v ¼ 90%

requires a repair rate r ¼ 30 filaments per hour. Although

this number may seem high, it is worth pointing out that

the material flux is 3% of the segment mass every hour and

that the system stabilizes in just 20 h.

We have thus found that, by adding an autonomous

repair mechanism, one can ensure reliability at higher work-

ing stress ratios, which, in turn, allows for reasonable taper

ratios and construction using weaker materials. In his

report, Edwards [3] considers a working stress ratio of 50%

and claims carbon nanotubes with smax¼130 GPa would be

sufficient for the cable specifications he suggests. Using

recent measurements of carbon nanotube strength [14,36] of

greater than 100 GPa and operating at the stress Edwards

suggests implies a working stress ratio of v ¼ 65%. At

v ¼ 65%, the repair rate needed for a reliable Kevlar segment

would be less than r ¼ 1 filament per hour.
3.3. Choosing minimum filament age and initial
number of filaments

It is worthwhile mentioning a subtle, but consequential point

regarding filament ageing. We have established that Weibull-

distributed times to rupture lead to age-dependent transition

probabilities per unit time of the form (2.2). If s , 1 in this

expression (which is the case throughout this analysis), fila-

ments will have infinite probability rates at a ¼ 0. In

deriving the analytic result, we assumed that newly added
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filaments start off with age exactly amin ¼ 0 h. Figure 6a
shows that the statistics obtained from the simulation are sen-

sitive to the minimum age at small ages, but the dependency

is much weaker after a few hours. Since filaments can already

be stretched by the time they are installed in the segment

(either as part of quality assurance, or through process of

installation itself ), it is reasonable to assume they will have

a non-zero initial age. In simulations, we assumed amin ¼

12 h unless otherwise specified.

Another constant in the simulation is the initial number of

active filaments N0. Although the taper ratio dictates how the

number of filaments in the steady state should vary along

the tether, there has been no discussion so far regarding the

actual number of filaments that, e.g. the base segment will

have. The cross-sectional area at the base, and therefore the

number of filaments, has to be sufficiently high such that,

when considering the UTS of the material, the force gener-

ated compensates any additional weight on the tether, such

as that of a climber or repairing robots. Consequently, the

choice of N0 has a lower bound, but is arbitrary beyond

that. With N0 ¼ 1000, a material with strength 1 GPa and fila-

ment cross-sectional area 1029 m2 could support 1 tonne of

additional weight. Beyond this, our reliability results are

not overly sensitive to the numerical value of N0 as evidenced

by figure 6b. This is not surprising, as one can see in equation

(2.3) that it is the ratio of active filaments that impacts

rupture, not their nominal amount.
3.4. Comparison to analytic result
As shown in appendix A, if transition probabilities of rupture

and repair do not depend on the number of active filaments

n, we can obtain analytic results for first and second moments

of the distribution of active filaments with ages in a given

interval. We can then use the results in equation (A 5) to

ensure that the stochastic simulation scheme agrees with

the analytic results. In our analysis, the repair rate is a con-

stant, but the rupture probability rate depends on stress

and, therefore, analytic solutions are not straightforward.

For the sake of comparing the simulation results with the

analytic solutions, we will assume in this section only that

the stress stays constant as filaments rupture. Physically,

this would be equivalent to losing the filament when it rup-

tures, thus decreasing the mass and force on the segment in a

manner commensurate to the loss of cross-sectional area.

We examine the dynamics of a segment starting with

N0 ¼ 100 Kevlar filaments subjected to a constant stress

of 3.2 GPa, leading to a working stress ratio v � 90%.

Here, we assume that new filaments start off with an age

amin ¼ 10214 h. Figure 6b shows the comparison between

the analytic expected value/standard deviation of the

number of active filaments in equation (A 5) and what was

obtained based on the stochastic simulation. The repair prob-

ability rate constant is taken as r ¼ 10 filaments h21. We

show 30 sample trajectories out of the 104 generated and

used in obtaining statistics. Each trajectory was assigned a
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maximum number of transitions (here, 400) as stopping

conditions. The maximum time plotted was chosen as a pre-

defined constant. One can see that the analytic result and the

simulations are in perfect agreement.
3.5. Segment dynamics sensitivity to filament lifetime
distribution

The model used in this manuscript to characterize an individ-

ual segment of the space elevator can be generalized in a few

different ways. The main question the model addresses is

how the stochastic lifetime of individual components trans-

lates into that of the structure built by the substructures. An

important feature of the model is that the rupture probability

rates of the substructures is age-dependent; that is, we

combine the stochasticity of rupture times with the determi-

nistic aspect of ageing. It turns out that this is a reasonable

model for a wide-range of applications (e.g. cell division

times). For the space elevator, we assume Weibull-distributed

rupture times for the substructures. Additionally, we assume

that the filaments building up the segment do not interact

directly, i.e. they are statistically independent.

In this section, we relax the assumptions made about the

lifetime distribution of the sub-components and explore the

response in the lifetime distribution of the entire structure.

The intention here is not to exhaust the possible distributions,

but to highlight the wide applicability of the model. Alwis &

Burgoyne [26] provide a comprehensive comparison of var-

ious Kevlar fibre lifetime distributions. They consider

lognormal versus Weibull, as well as different functional

forms for the shape and scale parameter dependency on

applied stress. It was found that out of the 120 models
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considered, the difference between best and worst was

only 1%. Therefore, we will only focus here on varying the

Kevlar-specific constants, rather than changing functional

forms. That is, we start with the shape and scale parameters

estimated based on [29] and seek to understand how results

change when these parameters are ‘shocked’.

For this analysis, we will continue to assume that each

filament has an age-dependent probability of rupture given

by a Weibull distribution with shape and scale parameters s
and l. We consider s a constant and l a function of stress

applied, given by ln(l) ¼ aln(s) þ b, where a and b are

material constants (see §4). We varied the three parameters

s, a and b from �10% to 10% of the original fitted value

and analysed the response in failure time of the segment.

Figure 7a shows the cumulative Weibull distribution for

individual filaments rupture times under different parameter

shocks and values. To see how these changes impact the fail-

ure time distribution of the entire segment, one can look at

figure 7b. We point out that changes in the shape parameter

of the distribution have a significantly smaller influence

than changes to the scale parameter. Since it is the latter we

would expect to be different for a stronger material (being

the only parameter in the model which depends on stress),

this further highlights the importance of lifetime data for

carbon nanotubes.
A case of particular interest is that in which the shape

parameter of a Weibull distribution is equal to 1 and the dis-

tribution becomes exponential. This is particularly important

when considering the filament rupture probability rate given

in (2.2), which takes the form

k(n) ¼ 1

l(s(n))
, ð3:1Þ

and is, therefore, independent of the filament age. In other

words, we are dealing with exponentially distributed

‘jump’ times and one can write a master equation for the

number of active filaments. Letting P(n, t) be the probability

that at time t the segment has n active filaments, one can

write the familiar

@P(n, t)
@t

¼ rP(n� 1, t)þ (nþ 1)k(n)P(nþ 1, t)

� [rþ nk(n)]P(n, t),

where r is the constant repair rate. The complicated depen-

dency of k on n does not allow for straightforward analytic

solutions, but one can easily perform simulations using

essentially the same method described in this manuscript.
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Table 2. Shape and scale parameter estimates. (Maximum-likelihood
estimators for Weibull scale l̂ and shape ŝ parameters for filament
lifetime.)

stress, s
(GPa)

scale parameter,
l̂(h)

shape parameter,
ŝ

2.6122 2902 0.157

2.7887 518.3 0.183

2.9652 11.46 0.146

3.1417 1.156 0.212
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4. Creep-rupture lifetime data
Presently, much of the focus in carbon nanotube technology

research revolves around enhancing their strength, with little

emphasis on exploring their creep-rupture time distributions.

Data are much more readily available for a similarly brittle

fibre, namely aramid (Kevlar, manufactured by DuPont).

Although the comparison is warranted in light of [35], one

should be aware that defects specific to carbon nanotube struc-

tures, such as, for example, the Stone–Wales effect [37], could

make their lifetime and strength distributions sufficiently differ-

ent from aramid. We are not suggesting that the space elevator

ought to be built using Kevlar; rather, we are aiming to draw

concrete inferences on the effects of repair on the dynamics of

the tether using real-world data. Encouraging results for

Kevlar, a material 10 times weaker than the currently available

carbon nanotubes [34], suggest that one should opt for a design

which incorporates an autonomous repair mechanism.

Our choice to focus on aramid fibres is justified by the

material’s brittle nature and the extensive study of creep-

rupture lifetime data [26–29]. It was found in Wagner et al.
[29] that the lifetime distribution of aramid fibres under

various constant stress levels is best described by a Weibull

distribution with cumulative function:

FW (a; l, s) ¼ 1� exp
a
l

� �sh i
, ð4:1Þ

where a is the age of the fibre and l, s are the scale and shape

parameters. In one of the datasets analysed, they measure

rupture times of 46–48 aramid fibres subjected to stresses

ranging from 2.6 to 3.1 GPa (reproduced in part in figure 8a)

and perform a maximum-likelihood estimation of the Weibull

parameters, which is summarized in table 2.

Backed by a model grounded in the theory of

absolute reaction rates, the authors in [29] assume that,

while s is constant, the scale parameter ln(l) is linear in

ln(s). This is consistent with the recent analysis in [26]. We

take s as constant, given by the average of the estimated

shape parameters in table 2. We find an explicit dependence

by fitting a line of the form ln (l) ¼ â ln(s)þ b̂ to the data

in table 2 and find â ¼ �44:283 [ln (hours)=ln (GPa)] and
b̂ ¼ �50:893 [ln (hours)] (figure 8b). This fully determines

c1 ¼ s exp(2bs) in equation (2.3).
5. Discussion
In this manuscript, we contrasted the biological and engin-

eering paradigms of designing complex structures. While

the latter design is based on operating structures at very con-

servative loads compared to the strength of the materials

used, thus ensuring reliability, the former allows for loads

significantly closer to the maximum, but uses an autonomous

and continuous repair mechanism to make up the potential

loss of reliability. In megastructures, traditional engineering

approaches are hampered by the necessity of prohibitively

strong materials. We argue that one approach to circumvent

this problem is to draw inspiration from biological structures

and introduce self-repair mechanisms. In essence, this shifts

the focus from requiring very strong—possibly unavailable—

materials to repairing with weaker materials at the necessary

rate to maintain the structure’s integrity. We analysed the

space elevator as an example of a megastructure and used

an age-dependent stochastic model for its underlying com-

ponents, which allowed us to quantitatively describe its

reliability by looking at probabilities of segment failure.

Results show that with sufficient repair, the space elevator is

stable when operating at near 100% of the material tensile
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strength. From data shown in table 1, a space elevator made of

M5 is potentially feasible.

The model in this manuscript focuses primarily on the

dynamics of the non-interacting sub-components (in this case,

filaments) and describes how fluctuations in their number,

owing to rupture and repair, translate into the reliability

probability of the larger structure. Once the failure probability

of a segment is understood, one can scale up the analysis in a

hierarchical fashion first to the cable consisting of M segments,

and then to the entire space elevator, viewed as a collection of

parallel cables. Assuming segments fail independently, the

survival probability of the entire cable as a function of time,

S(t), given the failure time distributions of segments, Wj(t), is

S(t) ¼
YM
j¼1

1�
ðt

0

Wj(t) dt
� �

: ð5:1Þ

For a tapered cable, which implies N0 varies along the cable, the

segment failure time distribution does not vary very much

(figure 6a). However, if other potential stochastic effects (e.g.

meteors, winds and erosion) affect failure of different segments,

then additional considerations may be needed to optimize N0

and Wj(t). We have avoided suggesting specific designs for the

cable, as this was not in the scope of the manuscript. Additionally,

although Kevlar was found to be strong enough to maintain

reliability, its density remains prohibitively large to make it

practical, given the massive volume of material which would

need to be transported. On the other hand, carbon nanotubes

already have the necessary strength, provided a repair mechan-

ism can be incorporated to operate at higher working stress ratios.

Estimating the repair rates for carbon nanotubes remains an

open question, contingent on the availability of data regarding

their creep-rupture lifetime distribution, which has not yet been

thoroughly studied to our knowledge. More research in this

direction is necessary to quantify the exact requirements, but

it is very encouraging to see that Kevlar, a material weaker

by an order of magnitude compared with the theoretically

predicted strength of carbon nanotubes, can operate reliably

without much material turnover. Incidentally, the inferences

drawn from our model have biological applications: while heal-

ing, tendons remain under tension owing to cells exerting

active forces to stretch the collagen, similar to how repairing

robots would stretch the filaments in the space elevator. This

allows for a better understanding of the dynamics of biological

repair, with possible applications to many different structures

(e.g. bones, tendons and muscle). Furthermore, our analysis

provides the necessary framework to consider more complex

models in which filaments can interact, material strengths are

stochastic and external noise on the cable is present. We also

emphasize that piecewise-constant repair probability rates

are overly-conservative. More complicated control theory

approaches can significantly increase feasibility by lowering

the amount of repair needed as structures stabilize.
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Appendix A. Moment equations for the number
of filaments
In the special case in which the repair and rupture rates do

not depend on the number of active filaments n, a hierarchy

for the moments can be written explicitly and solved

analytically starting with (2.1). For example, this occurs

when n � N0, the initial number of active filaments, given

that the total segment force and, hence, s(t) � n(t) are

approximated as constant. While these approximations

depend on various material-specific factors, we include the

analysis with the understanding that it is relevant in special

cases, particularly when the segment is close to its targeted

working stress ratio, v0. Moreover, it serves as good

validation of the simulation scheme. Let kn(ai) ; k(ai), rn ; r,

and define the marginal j-dimensional distribution function

as in [31]:

p(j)
n (aj; t) ;

ð1

0

da jþ1 . . .

ð1

0

danpn(an; t), (A 1)

and the factorial moments as

X(j)(aj; t) ;
X1
n¼j

n!

(n� j)!
p(j)

n (aj; t), (A 2)

for j � 1 and we set X(0) ; 1. Successively integrating equation

(2.1) and its conditions over n 2 j (non-zero) age variables and

summing over all n � j, we can now write and solve the

moment equations:

@X(j)(aj; t)
@t

þ
Xj

i¼1

@X(j)(aj; t)
@ai

þ X(j)(aj; t)
Xj

i¼1

k(ai) ¼ 0 (A 3a)

X(j)(a j�1, 0; t) ¼ rX(j�1)(a j�1; t) (A 3b)

and X(j)(a j; t ¼ 0) ¼ g(j)(a j): (A 3c)

To make the problem concrete, we derive explicit forms for the

initial conditions g(j)(a j). Assume the cable segment starts off

with N0 initial number of filaments, all with age 0. Then,

pn(an; t ¼ 0) ¼ dn,N0

Qn
l¼1 d(al), where di,j is the Kronecker delta

and d(.) is the Dirac delta function. From (A 1) and (A 2), we find

g(j)(a j) ¼
N0!

(N0 � j)!

Yj

l¼1

d(al): (A 4)

We note that, for j ¼ 1, equation (A 3a) reduces to the classic

McKendrick–von Foerster equation [38,39], which can easily

be solved via the method of characteristics [31]. We find for

the first two moments:

X(1)(a1; t) ¼
N0d(a1� t)U(a1� t, a1) (a1� t)
rU(0, a1), (a1 , t)

�

X(2)(a1, a2; t) ¼
N0(N0�1)

Q2
l¼1d(al� t)U(al� t, al) (t ,a1 ,a2)

N0rd(a2� t)U(0,a1)U(a2� t, a2) (a1 , t ,a2)

r2U(0,a1)U(0, a2) (a1 ,a2 , t),

8><
>:

where the propagator is U(a, b) ;exp[�
Ð b

a k(a)da] and only

the cases a1 , a2 were considered, given that the moments

are invariant in the ordering of the age arguments.

As shown in [40], if we let n[a1,a2](t) be the random variable

representing the number of filaments with ages in the

interval [a1, a2], we have hn[a1,a2](t)i¼
Ð a2

a1
X(1)(u; t)du and

hn2
[a1,a2](t)i¼

Ð a2

a1
X(1)(u; t)duþ

Ð a2

a1

Ð a2

a1
X(2)(u, v; t)dudv, and for
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a1 , t , a2, we get for the expectation and variance:

En[a1,a2](t)¼N0U(0, t)þrW(a1, t)

and Var n[a1,a2](t)¼N0U(0, t)[1�U(0, t)]þrW(a1, t),

9=
; (A5)
where the integral of the propagator is W(a, b)¼
Ð b

a U(0,a)da. If

we now let a1! 0 and a2! 1, we get the total expected

number of filaments and their fluctuations.
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