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Background: Chronic neuropathic pain (NP) is a complex disease that results from

damage or presumed damage to the somatosensory nervous system. Current treatment

regimens are often ineffective. The major impediment in developing effective treatments

is our limited understanding of the underlying mechanisms. Preclinical evidence suggests

that glial changes are crucial for the development of NP and a recent study reported

oscillatory activity differences within the ascending pain pathway at frequencies similar

to that of cyclic gliotransmission in NP. Furthermore, there is evidence that glial

modifying medications may be effective in treating NP. The aim of this Phase I open-

label clinical trial is to determine whether glial modifying medication palmitoylethano-

lamide (PEA) will reduce NP and whether this is associated with reductions in oscillatory

activity within the pain pathway.

Methods: We investigated whether 6 weeks of PEA treatment would reduce pain and infra-

slow oscillatory activity within the ascending trigeminal pathway in 22 individuals (17

females) with chronic orofacial NP.

Results: PEA reduced pain in 16 (73%) of the 22 subjects, 11 subjects showed pain

reduction of over 20%. Whilst both the responders and non-responders showed reductions

in infra-slow oscillatory activity where orofacial nociceptor afferents terminate in the

brainstem, only responders displayed reductions in the thalamus. Furthermore, functional

connections between the brainstem and thalamus were altered only in responders.

Conclusion: PEA is effective at relieving NP. This reduction is coupled to a reduction in

resting oscillations along the ascending pain pathway that are likely driven by rhythmic

astrocytic gliotransmission.
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Significance statement
In this investigation, we have tested this hypothesis by conducting a Phase I

clinical trial to determine the effectiveness of a glial modulator, palmitoy-

lethanolamide (PEA) on ongoing pain intensity and oscillatory brain activity.

We found that after 6 weeks of PEA, ongoing was significantly reduced in 16

of 22 subjects and that this reduction was significantly correlated to changes in

infra-slow oscillatory activity within the ascending pain pathway. These data

provide the first human evidence that a substance that can reduce glial

activation can relieve pain without side effects, and that this is associated

with a reduction in ongoing patterns of neural activity in pain pathways that

are consistent with the idea that glial transmission maintains chronic neuro-

pathic pain.
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Introduction
Chronic neuropathic pain (NP) is a complex disease state that

results from damage or presumed damage to the somatosen-

sory nervous system. Current treatment regimens such as

non-steroidal anti-inflammatory medication, tricyclic antide-

pressants and anticonvulsants are often ineffective and have

significant side effects and consequently, many individuals

suffer with considerable pain for years or even decades. The

major impediment in developing more effective treatment

regimens for NP is our limited understanding of the mechan-

isms responsible for the development andmaintenance of NP

following injury.

Critically, NP is not associated with prolonged activity

increases in the classic “pain pathways” but instead is asso-

ciated with altered brain rhythm. This altered rhythm is

characterized by increased thalamic burst firing, thalamocor-

tical power and infra-slow oscillations (<0.1 Hz) along the

ascending pain pathway.1–3 Whilst it is not known how these

altered rhythms are generated, the infra-slow oscillation

increases occur at approximately the same frequency range

as calciumwaves in astrocytes, ie, 0.03–0.06 Hz.4 Astrocytes

can modulate synaptic activity by the release of gliotransmit-

ters and there is preclinical and postmortem human evidence

of prolonged astrocyte activation in the dorsal horn/spinal

trigeminal nucleus (SpV) in NP.5,6 Furthermore, preclinical

studies have shown that following nerve injury, increased

astrocyte activation is associated with allodynia and

hyperalgesia7,8 and blocking astrocyte activation reverses

this allodynia and hyperalgesia.9–11

PEA is a naturally occurring fatty acid amide that belongs

to the N-acetylethanolamine family. It is thought that PEA

targets alpha peroxisome proliferator-activated receptors

(PPAR-α),12–16 which are expressed on neurons and

astrocytes17,18 and are activated as a response to nerve

damage.6,10 Interestingly, a recent case study found that in

an individual without the ability to breakdown PEA, elevated

serum PEAwas associated with pain insensitivity, implying

that endogenous PEA plays a role in pain processing.19 In

addition, there have been numerous clinical trials exploring

the effects of PEA in various pain states and most show pain

reductions and critically, PEA has reportedly no serious side

effects.20 If PEA can reduce NP without any serious side

effects, this would be a major advance in the way in which

we treat chronic NP and significantly reduce the economic

and social burden of this debilitating condition. The aim of

this investigation is to provide evidence that PEA reduces the

intensity of ongoing pain and reverses the increase in infra-

slow oscillatory activity within the primary afferent synapse

in individuals with chronic NP.

Methods
Subjects
Twenty-two subjects with chronic orofacial NP (17 females;

mean±SEMage, 50.5±3.0 years) were recruited for the study.

NP subjects were diagnosed using the Liverpool criteria as

having posttraumatic neuropathy.21 Subjects were excluded

if they had any psychiatric conditions, any other pain condi-

tions or did not meet standard magnetic resonance imaging

(MRI) inclusion criteria.

Protocol approval and registration
Informed written consent was obtained for all procedures

according to the Declaration of Helsinki, and the Human

Research Ethics Committees of the University of Sydney

approved the study. This trial was registered with the

Australian New Zealand Clinical Trials Registry with the

trial ID: ACTRN12618001637235.

Study design
All subjects completed two MRI sessions, 6 weeks apart.

During the 7 days prior to the start of PEA treatment and

the first MRI session, subjects kept a pain diary in which

they recording the intensity of their ongoing pain, three

times a day. Subjects rated the intensity of their pain using

a 10 cm horizontal VAS, with 0 indicating “no pain” and

10 indicating “the most intense imaginable pain”. These

21 pain intensity scores were then averaged over the 7-day

period to create a mean pain intensity score prior to PEA

treatment. On the day of their first MRI scanning session,

each NP subject outlined the location of their ongoing pain

on a standard drawing of the head and completed a McGill

Pain Questionnaire. Following their first MRI scanning

session, each NP subject began PEA treatment and at 6

weeks, a second MRI session was performed. During the 7

days prior to the second MRI scan, subjects kept another

pain diary recording the intensity of their ongoing pain. On

the day of the second MRI scan, subjects outlined the

location of their ongoing pain on a standard drawing of

the head and completed a McGill Pain Questionnaire.

Interventions
NP subjects obtained the PEA from Visionary Health

Compounding Chemist, Newcastle, Australia in the form
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of 300 mg capsules, with dosage individualized between

600 and 900 mg, three times a day. PEA was provided to

the compounding chemist in a naive form and was ground

with a mortar and pestle until a fluffy consistency was

obtained. Analysis of the final PEA revealed that more

than 75% was in an ultra-micronized state (<10 microns)

with the remaining in a micronized state with particles

between 10 and 50 microns in size. The PEA was then

placed into gelatine capsules for oral consumption.

MRI acquisition
For each MRI scanning session, NP and control subjects

lay supine on the bed of a 3 Tesla MRI scanner (Achieva;

Phillips) with their head immobilized in a tight-fitting head

coil. With each subject relaxed and at rest, a series of 180

gradient echo echo-planar functional MRI (fMRI) image

volumes using blood oxygen level-dependent contrast

were collected. Each image volume contained 35 axial

slices covering the entire brain (field of view 240×240

mm; matrix size 80×78; slice thickness 4 mm; repetition

time 2000 ms; echo time 30 ms; flip angle 90°). Following

this, a series of 108 pseudocontinuous arterial spin label-

ing (pCASL) images containing 50 axial slices covering

the entire brain was collected (54 label/control image

pairs, field of view 240×240 mm; matrix size 100×100;

slice thickness 3 mm; repetition time 5084 ms, echo time

12.7 ms, labelling time 1600 ms, slice time 36.6 ms,

labeling efficiency 0.85, blood T1 relaxation time

1667ms). Finally, in each subject, a high-resolution 3D

T1-weighted anatomical image set covering the entire

brain was also collected (turbo field echo; field of view,

250×250 mm; matrix size 288×288; slice thickness 0.87

mm; repetition time 5600 ms; echo time 2.5 ms; flip

angle 8°).

Pain intensity changes
At the completion of the 6-week treatment period, NP

subjects’ pain intensity changes were assessed. To explore

the association between pain intensity reductions and

changes in brain function, NP subjects were divided into

those that responded to PEA treatment, ie, responders:

>20% reduction in pain intensity, and non-responders:

<20% reduction in pain intensity. To determine the effect

size of changes in pain intensity in responders and non-

responders, Cohen’s d was calculated. This is used to

determine whether the effect size is small (d=0.2), medium

(d=0.5) or large (d=0.8).22 Changes in pain distributions

before and after treatment for each subject in the two

groups separately were determined using a paired t-test

(p<0.05, Bonferroni corrected).

MRI analysis; infra-slow oscillations
Using SPM12,23 all functional magnetic resonance images

were motion corrected, global signal drifts removed24 and

co-registered to each individual’s T1-weighted image set.

Each subject’s T1-weighted anatomical image was then spa-

tially normalized to a template in Montreal Neurological

Institute (MNI) space and the parameters applied to the

fMRI image sets. All images were then spatially smoothed

(6 mm full-width half-maximum [FWHM] Gaussian filter).

In those subjects with pain restricted to the left side of the

face (n=12), resting fMRI scans were reflected across the

midline so that, in all subjects, the right side was ipsilateral to

ongoing pain. To perform a brainstem-specific analysis, the

fMRI images were cropped to include only the brainstem and

cerebellum and amask of these regions created automatically

using the SUIT toolbox.25 These brainstem/cerebellum

masks were then manually adjusted to accurately encompass

the brainstem and cerebellum only. Using this mask, fMRI

brainstem images were spatially normalized to the Spatial

Unbiased Infratentorial Template in MRI space and spatially

smoothed using a 3 mm FWHM Gaussian filter.

To determine regional changes in infra-slow oscillation

power, we used the SPM toolbox REST26 to calculate the

sum of amplitudes of low-frequency fluctuations (ALFF) in

the frequency band 0.03–0.06 Hz for the brainstem only and

wholebrain fMRI image sets. ALFF values were then divided

over the entire frequency range to obtain fractional ALFF

(fALFF) value for each voxel. Using the wholebrain and

brainstem only images, the effects of PEA treatment on

fALFF were determined in all 22 NP subjects using a paired

random effects procedure. In addition, the effects of PEA on

fALFF values were determined in the responder and non-

responder groups separately using paired random effects pro-

cedures. Following an initial threshold of p<0.001, small

volume corrections were used to account for the effects of

multiple comparisons (p<0.05 Bonferonni corrected). For

each analysis, the six movement parameters derived from the

realignment step and signal intensity derived from a 3 mm

sphere located in the fourth ventriclewere included as nuisance

variables. For each significant cluster, fALFF values were

extracted from each subject and the mean (±SEM) plotted.

We also determined the relationships between changes in

fALFF over the treatment period and the associated change

in pain intensity. In each voxel, the change in fALFF during

PEA treatment (pre-post PEA) was calculated and voxel-by-
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voxel correlations between this fALFF change and the per-

cent change in pain intensity were performed for the

responder and non-responder groups separately (movement

and CSF signal included as nuisance variables). Following an

initial threshold of p<0.001, small volume corrections were

used to account for the effects of multiple comparisons

(p<0.05 Bonferonni corrected).

In addition, we also performed a functional connectivity

analysis using a seed placed into the region of the SpV. This

seed was based on the results of the fALFF comparison pre

compared to post-PEA treatment in the responder group.

Signal intensity changes from the SpV were extracted in

each individual subject and correlations between this signal

and every voxel in the brainstem only and wholebrain

image sets determined (movement parameters and CSF

signal included as nuisance variables). Connectivity values

between the SpV and the ventroposterior (VP) thalamus (a

cluster based on the results from the fALFF analysis) were

extracted for each subject and significant differences

between pre- and post-PEA treatment and between respon-

der and non-responder groups determined using paired and

two group t-tests (p<0.05, Bonferroni corrected).

MRI analysis; resting blood flow
All pCASL image sets were realigned, co-registered to

each individual’s T1-weighted image set, the label and

control images averaged and a mean cerebral blood flow

(CBF) image created using the subtraction method using

the ASL toolbox.27 Wholebrain and brainstem-only CBF

maps were then normalized into MNI space and smoothed

in the same manner as the fMRI images sets. For each

significant cluster derived from the fALFF analysis, blood

flow values were extracted for each subject and the mean

values plotted for each subject before and after treatment

and significance differences determined using paired t-

tests (p<0.05, Bonferroni corrected).

Data availability statement
Anonymized data can be shared by request from any

qualified investigator.

Results
Psychophysics
Prior to PEA treatment, NP subjects had ongoing pain of 4.5

±0.4 (mean±SEM) VAS, pain duration of 4.1±1.3 years and

5 NP subjects were taking Serotonin-Noradrenaline

Reuptake Inhibitors. PEA treatment resulted in no reported

side effects and an overall reduction in ongoing pain inten-

sity of 0.7±0.4 VAS or 21.2±11.4% (Table 1). Overall, PEA

treatment reduced pain in 16 (73%) of the 22 NP subjects.

Dividing subjects into responders (>20% pain reduction) and

non-responders (<20% pain reduction) resulted in 11 subjects

as responders and 11 as non-responders (Figure 1A).

Responders had an average pain reduction of 2.1±0.3 VAS

or 61.9±7.2% and non-responders an overall increase of 0.6

±0.5 VAS or 19.6±12.8% (Figure 1B). Cohen’s d showed

that as a whole group, the effect size was small (d=0.3).

However, in the responders, the effect size is large (d=1.8)

and in the non-responders, the effect size is small (d=0.3).

Although there was a significant difference in the magnitude

of pain intensity reduction between groups, there was no

significant change in the area of pain in response to PEA

treatment in either group (mean±SEM pixels: responders

pre-PEA 1143±494, post-PEA 416±187; non-responders

pre-PEA 7935±4325, post-PEA 6890±3841, both p>0.05)

(Figure 1C).

In addition to differences in the responsiveness to PEA

treatment, responders had a significantly lower pain inten-

sity (3.4±0.3 VAS) compared with non-responders (5.6

±0.7 VAS) prior to PEA treatment (p<0.05). There was,

however, no significant difference in pain duration

(responders 3.0±1.5 years, non-responders 5.2±2.1 years,

p>0.05) or the area of perceived pain (responders 1143

±494 pixels, non-responders 7935±4325 pixels, p>0.05)

between groups before PEA treatment.

Infra-slow oscillatory activity and

functional connectivity
PEA treatment had a significant effect on regional resting

infra-slow oscillations in both the responder and non-respon-

der groups. Remarkably, in both the responder and non-

responder groups, PEA treatment significantly reduced

ongoing infra-slow oscillatory activity in the region encom-

passing the ipsilateral (to side of ongoing pain) SpV, ie, the

region where nociceptor afferents from the area of ongoing

pain terminate (fALFF 0.03–0.06 Hz: responders pre-PEA

1.03±0.06 post-PEA 0.79±0.05; non-responders pre-PEA

1.14±0.07 post-PEA 0.92±0.06; Figure 2, Table 2). Whilst

both responders and non-responders displayed reduced oscil-

latory activity in SpV, only the responders also displayed

significant oscillatory activity reductions in the upstream

target of SpV, ie, in the region of the VP thalamus (respon-

ders pre-PEA 0.98±0.10 post-PEA 0.84±0.08; non-respon-

ders pre-PEA 0.99±0.06 post-PEA 0.98±0.05; Figure 3).
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Plots of individual subject oscillatory power pre- and post-

PEA shown in Figure 3 highlight the consistency of these

changes in the SpV in both responder and non-responder

groups and in the thalamus in responders. In addition to

changes in the ascending trigeminal pathway, the non-

responders displayed oscillation decreases in the midbrain

including the region of the periaqueductal gray matter

(PAG), the anterior and posterior cingulate cortices and

increases in the precuneus. Furthermore, in the responders,

PEA treatment also resulted in oscillation decreases in the

dorsolateral pons, hippocampus, lateral prefrontal cortex and

precuneus.

The extraction of fALFF values from the SpV and VP

thalamus confirmed that PEA treatment resulted in signifi-

cant reductions in infra-slow oscillations in the SpV in

both responders and non-responders and reductions in the

VP thalamus in the responder group only (Figure 3).

Furthermore, only responders displayed a significant

change in resting connectivity between the SpV and VP

thalamus in response to PEA treatment. That is, prior to

PEA treatment there was a significant signal covariation

between the SpV and VP thalamus in responders which

was subsequently completely eliminated by PEA treatment

(SpV-VP thalamus connectivity: responders pre-PEA 0.18

±0.07 post- PEA 0.01±0.04, p<0.05). In contrast, PEA

treatment had no effect on SpV-VP thalamus connectivity

in the non-responders (pre-PEA 0.09±0.06 post-PEA 0.04

±0.05, p>0.05).

In addition, the change in infra-slow oscillations within

the ascending trigeminal pathway was not associated with

changes in overall activity levels as evidenced by no

change in resting blood flow in either the SpV (mL/min/

100 g: responders pre-PEA 98.7±7.9 post-PEA 87.4±10.7,

non-responders pre-PEA 79.9±10.5 post-PEA 81.8±9.4,

Responders

Pre-PEA treatment

Responders

Responders
Pre-PEA

Post-PEA Post-PEA

P
re

-P
E

A

P
re

-P
E

A

P
os

t-P
E

A

P
os

t-P
E

A
Pre-PEANon-

responders

Non-
responders

Post-PEA treatment

Non-responders

Pre-PEA treatment Post-PEA treatment

Figure 1 Subject psychophysics. (A) Daily pain intensity ratings in each of the 22 patients pre-palmitoylethanolamide (PEA) treatment and post-PEA treatment separated

into responders (>20% pain reduction) and non-responders (<20% pain reduction). Pain intensity was rated three times daily on a 10 cm VAS; (B) mean (±SEM) pain

intensity ratings pre- and post-PEA in the responder (n=11) and non-responder (n=11) groups; (C) areas of ongoing pain pre- and post-PEA in the responder and non-

responder groups.
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p>0.05) or the VP thalamus (responders pre-PEA 43.9±6.1

post-PEA 54.8±8.5, non-responders pre-PEA 28.9±5.4

post-PEA 45.8±8.6, p<0.05).

Correlations between changes in pain intensity and

changes in infra-slow oscillations revealed significant clus-

ters in the SpV and VP thalamus overlapping those sig-

nificant clusters revealed in the pre- versus post-fALFF

analysis (Figure 4). In responders, the magnitude of the

decrease in infra-slow oscillations was significantly posi-

tively correlated with a decrease in pain intensity during

PEA treatment in both the region of the SpV (r=0.83,

p<0.05) and VP thalamus (r=0.93, p<0.05). In contrast,

no significant correlations occurred in non-responders in

the SpV (r=0.04, p>0.05) or VP thalamus (r=0.28,

p>0.05).

Discussion
This investigation describes the effects of PEA on ongoing

pain and brain function in patients with chronic orofacial NP.

PEA reduced pain intensity in almost 75% of patients with

50% of all patients exhibiting an overall decrease of over

20%with no recorded side effects. Additionally, PEA altered

regional brain function by reducing infra-slow oscillatory

activity in the ascending trigeminal pain pathway. More

specifically, our results show that altered activity patterns

and connectivity within the trigeminal pathway are asso-

ciated with an individual’s pain relief responsiveness to

PEA treatment. Whilst three previous investigations have

reported NP relief as a result of PEA treatment,28–30 this is

the first to show that the effectiveness of PEA is associated

with altered activity patterns in the ascending pain pathway.

Critically, like our study, no clinical trial using PEA for pain

or any other condition has reported significant side effects.

We have previously shown that chronic orofacial NP is

associated with an increase in resting infra-slow oscilla-

tions along the ascending trigeminal pain pathway, includ-

ing the SpV, VP thalamus, thalamic reticular nucleus and

primary somatosensory cortex.31,32 Given that there is

preclinical and human postmortem evidence of chronic

astrogliosis in the SpV/dorsal horn in individuals with

NP and that the oscillations were at the same approximate

frequencies in which astrocyte calcium and

Figure 2 Effects of palmitoylethanolamide (PEA) on infra-slow oscillations. (A) Differences in fractional amplitude of low-frequency fluctuations (fALFF) pre-PEA compared

with post-PEA treatment on non-responders. Significant increases (hot color scale) and decreases (cool color scale) in fALFF are overlaid onto a series of axial and sagittal

T1-weighted anatomical slices. Slice locations in Montreal Neurological Institute space are indicated at the top right of each slice. (B) Differences in fALFF pre-PEA compared

with post-PEA treatment in responders. Note that fALFF decreased in the spinal trigeminal nucleus (SpV) in both responders and non-responders and in the ventroposterior

(VP) thalamus only in responders.

Abbreviations: ACC, anterior cingulate cortex; dlPons, dorsolateral pons; PAG, midbrain periaqueductal gray matter; PCC, posterior cingulate cortex.
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gliotransmission release have been recorded, we speculate

that these oscillatory activity increases were the result of

chronic astrogliosis. Astrocyte calcium can propagate to

neighboring astrocytes either directly through connecting

channels or indirectly through the release of gliotransmit-

ters to produce synchronous oscillatory gliotransmitter

release.33,34 This oscillatory astrocyte function can elicit

long-lasting NMDA-mediated currents in surrounding

neurons4 and there is recent evidence that astrocytes can

elicit long-lasting increases in neural firing.35 We have

proposed that following nerve injury, excess activity

within primary afferent neurons results in neural death

and elicits astrocyte activation at the primary afferent

synapse. This results in more regular and increased oscil-

latory gliotransmitter release and increased infra-slow

neural oscillations which are transferred along the ascend-

ing pain pathway. The recurrent nature of thalamocortical

circuits results in self-sustaining thalamocortical dysrhyth-

mia, paroxysmal events and the constant perception of

pain.1,2,36 Interestingly, recent preclinical investigations

have shown a gender divide regarding the main cells

involved in chronic NP. In males, microglia play a large

role in the initiation and maintenance of neuropathic37,38

pain and in our investigation, only one in the four males

enrolled in the study responded to the treatment.

Furthermore, in the previous investigation on infra-slow

oscillatory activity in patients with orofacial NPn, 82% of

the subjects were females. Hence, it is more likely that

astrocytes might be the driving force of infra-slow oscilla-

tory activity in the female population than it is in the male.

Consistent with this hypothesis, the present investigation

found that PEA administration resulted in a reduction in both

pain intensity and oscillatory activity within the ascending

trigeminal pain pathway. PEA is abundant in the central

nervous system and there is preclinical evidence that NP is

associated with reductions in PEA levels in the ipsilateral

spinal cord and that these levels increase following pain

relief.39 PEA is produced by glial cells40 and has been

studied primarily for its anti-inflammatory and neuroprotec-

tive effects.16,20,41 Whilst PEA can exert its effects via multi-

ple mechanisms, it is thought that the main target of PEA is

the peroxisome proliferator-activated receptor alpha (PPAR-

Table 2 Montreal Neurological Institute (MNI) coordinates, cluster size and t-score for regions of significant differences in fractional

amplitude of low-frequency fluctuations between pre- and post-palmitoylethanolamide treatment

Brain region MNI coordinate Cluster size t-score

x y z

Responders

Pre>post-palmitoylethanolamide treatment

Dorsolateral pons 6 −30 −19 15 4.62

Spinal trigeminal nucleus 10 −44 −53 5 5.40

Left ventroposterior thalamus −14 −22 6 10 4.18

Right dorsal thalamus 18 −22 12 17 4.76

Anterior cingulate cortex 4 26 32 10 6.16

Hippocampus −32 −12 −22 19 7.17

Precuneus −10 −44 48 15 5.24

−4 −66 26 9 3.74

Posterior parietal association cortex 52 −54 24 15 3.93

Ventrolateral prefrontal cortex −46 30 −10 16 5.70

Post>pre-palmitoylethanolamide treatment

Caudate nucleus −14 20 0 10 4.32

Cerebellar cortex −4 −74 −16 23 4.25

Correlations with pain

increases

Spinal trigeminal nucleus 8 −46 −55 3 3.89

Ventroposterior thalamus −18 −26 8 18 6.36

Anterior cingulate cortex −8 34 20 17 8.78

Decreases −48 26 14 26 5.95

Dorsolateral prefrontal cortex −44 26 30 12 9.34
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α).12,13,15,16,42 PPAR-α is an isotope of the PPARs that can

affect the transcription of a number of genes and is expressed

by astrocytes and it is possible that astrocytes play a role in

the anti-nociceptive effects of PEA through a PPAR-α
pathway.16 Critically, it has been shown to blunt astrocyte

activation in vitro and improve neuronal survival through

selective PPAR-α activation.43 Indeed, PEA fails to exert its

anti-nociceptive effects in PPAR-α knockout mice.12–14,42,44

We found that in all patients, oral administration of

PEA resulted in significant reductions in infra-slow oscil-

lations specifically at frequencies similar to those of astro-

cyte calcium waves (0.03–0.06 Hz) in the ipsilateral SpV.

However, only in individuals in which PEA evoked a

significant reduction in pain did a similar reduction in

neural oscillations also occur in the VP thalamus.

Furthermore, PEA treatment eliminated the resting neural

covariation between SpV and VP thalamus only in

responders. These results suggest that whilst PEA blunts

the increase in resting neural oscillatory activity at the

region of the primary afferent synapse in all patients,

only when this reduction is then transferred to higher

brain centers such as the thalamus does an analgesia result.

Indeed, only in responders was the reduction in neural

oscillation power significantly correlated to the reduction

in pain, ie, the greater the reduction in oscillations the

greater the reduction in ongoing pain. This is entirely

consistent with the results from an experimental animal

model of NP in which infra-slow oscillatory activity in the

VP thalamus was eliminated by severing the connection

between the primary afferent synapse and the thalamus.45

Furthermore, PEA decreases infra-slow oscillatory activity

in the PAG which makes up part of the descending pain

modulation pathway. In nerve injury models, there is

increase in astrocyte activity in the PAG and other regions

Figure 3 Effects of palmitoylethanolamide (PEA) on ascending pain pathway. To the right are plots of mean (±SEM) fractional amplitude of low-frequency fluctuations (fALFF)

and cerebral blood flow (CBF) in responders (blue) and non-responders (green), pre- and post-PEA treatment. Individual subject values pre- and post-PEA are indicated in

the fALFF plots by the white lines between the colored bars indicating the mean (±SEM). Note that both the responders and non-responders have a significant reduction in

infra-slow oscillations in the spinal trigeminal nucleus, but only the responders have a decrease in the ventroposterior thalamus. In contrast, there are no changes in CBF. The

regions in which fALFF decreases as a consequence of PEA treatment are color coded blue (responders) and green (non-responders) and overlaid onto axial T1-weighted

anatomical slices. To the left of these overlays are plots of mean (±SEM) resting functional connectivity between the spinal trigeminal nucleus and ventroposterior thalamus.

Individual subject values pre- and post-PEA are indicated in the functional connectivity plots by the white lines between the colored bars. Note that functional connectivity

decreases significantly following PEA treatment in the responders only. *p<0.05 derived from voxel-by-voxel analysis; #p<0.05 derived from two-sample t-test.
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of the descending pain modulation pathway such as the

rostroventral medulla.46,47 However, in the results of this

investigation, the non-responders had decreases in infra-

slow oscillatory activity in the PAG only, which may not

be sufficient to modulate the descending pain pathway

enough to produce pain intensity decreases.

Whilst we suggest that in individuals with chronic

NP, PEA produces pain relief via its effects on astrocyte

function, PEA may also exert effects via a number of

other mechanisms. Within the central nervous system,

PPAR-α receptors act via two main mechanisms; a rapid

effect which involves activation of calcium-dependent

potassium channels which has a silencing effect on

neuronal firing15 and a slower effect which is comprised

of neurosteroid de novo synthesis which increases allo-

pregnanolone production.48,49 Allopregnanolone is a

positive allosteric modulator of GABA action and

slows the rate of recovery of GABA receptors.50,51 In

addition to a potential action on neuronal GABA recep-

tors, PEA may influence GABA receptors on astrocytes,

which when activated can increase intracellular calcium

levels.52 Interestingly, astrocyte calcium wave propaga-

tion is dependent upon mechanisms which include the

removal of excess calcium by mitochondria to prevent

IP3 receptor desensitization.53,54 It is possible that PEA

increases calcium concentrations thereby reducing the

propagation of astrocyte calcium waves and associated

gliotransmission. Interestingly, all of the five patients in

this investigation that were also taking selective seroto-

nin reuptake inhibitors (SSRIs) reported pain relief,

although four of these subjects reported reductions that

were small and were categorized as non-responders.

Whilst the precise mechanism of SSRIs is not known,

it has been shown that they can increase the expression

of GABAB receptors and alter astrocyte function

directly, evoking astrocyte calcium transients in an

often oscillatory manner, even when neural activity is

inhibited.55,56 Given this, it is possible that SSRIs par-

tially counteract the mechanism of PEA and thus reduce

its overall analgesic effectiveness.

Figure 4 Relationships between changes in pain intensity and infra-slow oscillations as a result of palmitoylethanolamide (PEA) treatment. Significant positive linear

relationships between changes in ongoing pain and fractional amplitude of low-frequency fluctuations (fALFF) in the thalamus and medulla are shown overlaid onto axial T1-

weighted anatomical slices for the responder group only (yellow shading). Note no such relationship occurred in the non-responders. Slice locations in Montreal

Neurological Institute space are indicated at the top right of each slice. The location of significant decreases in infra-slow oscillations (ISO) pre- versus post-PEA are

also shown (light blue shading); note the overlap within the spinal trigeminal nucleus and ventroposterior thalamus. To the right are plots of change in fALFF versus percent

change in pain for the SpV and VP thalamus cluster in responders and non-responders pre- versus post-PEA treatment. In responders, the greater the reduction in fALFF the

greater the reduction in pain intensity.
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It is also a possibility that PEA may act on other targets

in the nervous system such as cannabinoids in neurons and

astrocytes,57,58 PPAR-γ59 or mast cells60 to reduce pain.

Whilst these and other targets are possible, we suggest

that PEA most likely targets PPAR-α in individuals with

NP. As mentioned above, PEA fails to exert its anti-noci-

ceptive effects in PPAR-α knockout mice. Furthermore, a

recent study in the spared nerve injury model of NP found

that whilst PEA reversed the development of thermal hyper-

algesia, mechanical allodynia and cognitive impairment in

wild-type mice, it had no effect in PPAR-α knockout mice.-
61 Similarly, in the chronic constriction model of NP, PEA

treatment prevented the development of hyperalgesia and

reduced the inflammatory changes in the damaged nerve,

changes that were not seen following PEA treatment in

PPAR-α knockout mice.62 It is possible that the effects of

PEA on PPAR-α may also involve more indirect targets

since it was shown that PEA increases cannabinoid receptor

type 2 mRNA and protein expression via PPAR-α activation

in cultured rat microglia and human macrophages.63 Whilst

a role for PEA effects via microglial actions may exist, it is

likely to occur in only the onset phase of NP since there is

evidence that in chronic NP, microglial activation subsides

following an initial increase whereas astrocyte activation

persists.64,65

Interestingly, the midbrain periaqueductal gray matter

and the anterior cingulate cortex have been shown to mod-

ulate cannabinoid-induced analgesia.66,67 The non-respon-

ders showed reductions in infra-slow oscillations in the

PAG and the anterior cingulate cortex and no such change

was evident in the responders, which may be contributing to

the lack of change in pain intensity in the non-responders.

Furthermore, PEA has been shown to reduce pain and nega-

tive affect through the endocannabinoid and glutamatergic

system in a number of pain states.68–70 It is possible that PEA

acts on multiple receptors in a number of sites to attenuate

inflammation and pain, and reduce negative affect associated

with nerve damage and chronic pain.60 In the non-respon-

ders, although there was no significant decrease in pain

intensity, there was a significant decrease in infra-slow oscil-

latory activity in the anterior cingulate and the insular cortex.

These regions are involved in the affective state71 and while

the affective measures were not collected, it is possible that

PEA modulated negative affect states in the non-responders

without affecting the pain scores.

A limitation of this study is that this was an open-label

clinical trial and we did not control for the potential effects of

placebo. However, it is unlikely that the decrease in pain

intensity in the responders was solely due to the placebo effect.

In fact, a Cochrane meta-analysis showed that over a number

of investigations, the effect size of a placebo response, mea-

sured as Cohen’s d, is 0.27.72 In this investigation, the effect

size as a whole group is 0.3, which may indeed be due to a

placebo effect. However, in the responders only, the effect size

is 1.8, suggesting that the response in the responders is not a

placebo effect. Nonetheless, the decreases in pain intensity

correlate with a change in neural activity in the responders as

a result of PEA. A future larger clinical trial investigating the

effects of PEA on NP and the associated changes in brain

function is needed.
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