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Abstract: The elderly have an elevated risk of clinical depression because of isolation from family
and friends and a reticence to report their emotional states. The present study explored whether
data from a commercial neuroscience platform could predict low mood and low energy in members
of a retirement community. Neurophysiologic data were collected continuously for three weeks at
1Hz and averaged into hourly and daily measures, while mood and energy were captured with
self-reports. Two neurophysiologic measures averaged over a day predicted low mood and low
energy with 68% and 75% accuracy. Principal components analysis showed that neurologic variables
were statistically associated with mood and energy two days in advance. Applying machine learning
to hourly data classified low mood and low energy with 99% and 98% accuracy. Two-day lagged
hourly neurophysiologic data predicted low mood and low energy with 98% and 96% accuracy.
This study demonstrates that continuous measurement of neurophysiologic variables may be an
effective way to reduce the incidence of mood disorders in vulnerable people by identifying when
interventions are needed.
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1. Introduction

Depression is a primary public health concern globally. The elderly are particularly
vulnerable to depression due to age-related neural atrophy, hypertension, and social isola-
tion [1–3]. There are a variety of ways to inhibit the onset of depression, including social
support, psychological counseling and pharmacotherapy [4–7]. Such interventions are
more effective if a decline in mood can be identified before a major depressive episode
occurs [8]. The ability to passively assess mood states using technology would be an
important public health advance [9]. Several approaches to predicting low moods are now
being investigated. For example, using smartwatches and machine learning to analyze
sleep as depressive episodes are associated with disordered sleep patterns [10].

Chronic low mood increases morbidity and mortality, especially in older adults [11,12].
When people experience low moods that last for two weeks or more, they are diagnosed
as clinically depressed [13]. The lifetime incidence of depression is 14.6% for adults in
developed countries [14], and women are approximately twice as likely as men to have
an episode of depression [15]. In the U.S., those aged 65 and older have a one in four
depression risk [16,17]. Life events can increase the likelihood of depression in seniors,
including declining health, financial straits, losses of loved ones, reduced social interactions,
inadequate healthcare, and the inability to participate in activities [18–22]. Depression in
old age is also a risk factor for dementia [23].

On the other hand, positive affect has a host of favorable impacts on health in the
elderly, including a lower risk of cardiovascular disease [24], a reduction in pain [25,26],
increased exercise [27], improved immune function [24,28], and better social relation-
ships [29]. It is likely that the causal flow connecting positive mood to improved health is
bidirectional [30,31] and depends in part on one’s genetics [32]. The importance of mood
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states on healthspan demands a more fundamental understanding of the causes of mood
variations [33]. As this research advances, data that quantify activities and physiology
using wearable technologies has exploded. These new data may make it possible to predict
mood states in the elderly using physiology in order to create interventions to reduce or
eliminate the degradation of health from persistent negative affect.

Not only is there a great need to predict moods, but the use of neural data obviates
the need to constantly query individuals. Self-reports tend to be inaccurate, especially
in the elderly [34,35]. Colloquially, people may be “worried to death,” and indeed, there
is an extensive literature relating negative mood states and clinical depression to anx-
iety [36,37]. Anxious individuals have elevated activity of the sympathetic autonomic
nervous system [38]. Typical measures of phasic sympathetic tone include heart rate and
electrodermal activity. Most pharmacotherapies for depression reduce sympathetic tone,
along with other effects [39]. While basal sympathetic tone varies substantially across
individuals [40], measures of sympathetic nervous system activity are a reliable prodrome
for depression [41–43].

When individuals, including the elderly, are anxious, their ability to enjoy life is in-
hibited [44]. Indeed, social activities in the elderly reduce anxiety [45–48] as do supportive
relationships [5,49,50]. Seniors can create opportunities for social interactions by volun-
teering [51], investing in friendships [5], and joining group activities [50]. Socially active
seniors are less likely to suffer from anxiety [52].

Depressive symptoms in seniors may arise when individuals no longer enjoy activities
(anhedonia). However, even with observation, it may take weeks or months to correctly
classify an individual as depressed since variations in moods are common. When depressive
symptoms are identified early, the prognosis for patients is substantially improved [8].
The interaction between the quality of social activities and mood has the potential to be
measured neurophysiologically [53,54].

Low mood and depression have been predicted by applying artificial intelligence
techniques to digital traces [55]. A typical approach employs natural language processing
for social media posts and chats [56,57]. Other research has used machine learning to
predict moods using song choices [58], street views [59], pictures of faces [60], and images
from video conferences [61]. These approaches are convenient because they use publicly
available data without the need for direct measurement of participants. However, a
shortcoming of this approach is the use of surveys of nonparticipants to assess the moods of
participants. This induces bias in the dependent variables as people inconsistently identify
others’ moods [62,63]. As a result, the predictive accuracy of these models seldom exceeds
the 70–80% range.

The present exploratory study sought to relate self-reported moods to neurophysio-
logic data collected directly from study participants. This is a difficult task as consciously-
filtered self-report measures are typically unrelated to neural activity [35]. Mood was
assessed using retrospective daily self-reports, while neural measures were obtained at
1Hz for 8–10 h per day. The first step in creating a potential early detection measure for
melancholia is to determine if neurophysiologic measures are associated with mood. The
present study used a sample of healthy seniors, rather than a clinical population, in order to
test the hypothesis that a combination of neural measures derived from a wearable sensor
would predict changes in mood states.

2. Materials and Methods

Participants. Twenty-four participants were recruited from a Texas residential living
facility. A flyer was circulated requesting signups for the study after obtaining permission
from facility management. Those with serious health conditions were excluded from par-
ticipation. Residents were provided with Apple Watch 6s loaded an app called Immersion
Mobile to collect neurophysiologic data. Data were collected for 20 days between 18 Jan-
uary and 24 February 2021 for up to 10 h each day. All participants who started the study
completed it. The initial analysis averaged neurophysiologic data for each day, resulting in
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480 observations. Next, we generated average hourly data producing 2478 observations to
explore whether higher frequency data improved predictive accuracy.

Procedure. Participants were sent an email every day at 6 a.m. and asked to complete
an online survey reporting their mood, health, and energy the day before. If no response
was collected by noon, participants were reminded via email and text to complete the
survey. Missing data from the self-reports was <4%. Retrospective self-reports were used to
capture perceptions of the previous day’s mood because contemporaneous self-reports may
induce a bias towards one’s acute mood state, but can reduce accuracy due to poor recall
and misattribution of arousal [64,65]. This approach decreases the likelihood of significant
associations to physiologic signals associated with retrospective mood reports. In order
to reduce the burden of data collection, which required wearing a smartwatch daily and
charging it overnight, the only additional information obtained from residents was their
biological sex and whether they were ill.

Neurophysiology. A commercial platform (Immersion Neuroscience, Henderson, NV,
USA) was used to measure neurophysiologic responses collected at 1Hz. The independent
variables obtained from the Immersion platform were average Immersion for each day
and average psychological safety. Neurologic Immersion combines signals associated with
attention and emotional resonance and measures the value the brain places on social experi-
ences [66,67] The attentional response is associated with dopamine binding to the prefrontal
cortex, while emotional resonance is related to oxytocin release from the brainstem [67–69].
The Immersion Neuroscience platform infers neural states from the activity of the cranial
nerves using the downstream effects of dopamine and oxytocin on cardiac rhythms [66,70].
The data are sent to the cloud continuously, and the Immersion platform provides an output
file used in the analysis. We chose to measure neurologic Immersion for this study because
of the relationship between the quality of social connections and mood in the elderly [31].

A second neurologic measure from the Immersion platform, psychological safety (PS),
measures parasympathetic tone, which reflects stress levels that impact mood [71]. In
addition, we created a variable called peak Immersion, defined as∫ T

t=0
(vit > Mi)dt/Imi

where vit is the hourly average neurophysiologic Immersion for each participant in day
i at time t to the end of the day at time T, Mi is the median of the average hourly time
series of Immersion for day i plus the standard deviation of the hourly data for day i for
each participant, and this is divided by the sum of total Immersion Imi for each person
for each day i. That is, peak Immersion (PI) cumulates the highest Immersion moments
for an individual during the day capturing high-value social experiences relative to the
Immersion from total social experiences.

Self-Report Measures. Mood was assessed by averaging four questions on a 1–5 scale
(cheerful, stressed, lonely, energy) with stressed and lonely reverse coded using an abbre-
viated version of the Profile of Mood States (POMS) [72,73]. Mood was defined as “Low”
if it was lower than the median value 4 and was labeled “High” for values greater than
or equal to 4. Due to the moderate period of data collection, we did not seek to identify
clinical depression, a state in which people remain for a period of time. Rather, we sought to
identify variations in mood troughs that may be a prodrome for clinical depression. Mood
has only moderate interpersonal and intrapersonal variation (Intrapersonal CV: 10.80%,
Interpersonal CV: 16.26%). Energy was used as a second dependent variable because social
activities are typically energizing. Energy has more variation than Mood (Intrapersonal CV:
23.64%, Interpersonal CV: 31.45%). “Low” energy was defined as a value of the median of
3 or lower and “High” was for values greater than the median. The only demographic data
collected in this exploratory study was biological sex. A binary variable identifying if the
participant was sick (Sick) was collected as a control.

Statistical Analysis. Multiple techniques were used to extract as many insights from the
data as possible and to establish the robustness of our findings. While the data constitute a
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panel, both Mood and Energy show little time-series variation. Statistical tests (Results)
indicate that each observation can be analyzed as an independent observation. The analysis
begins with t-tests and correlations relating Mood and Energy to neurologic variables aver-
aged for each day. We tested mean-corrected differences in neurologic variables for low and
high Mood and Energy. An ordinary least squares (OLS) regression was estimated to predict
participants’ Moods and Energy using Immersion, psychological safety, and peak Immer-
sion as independent variables and including Sick as a control. Logistic (logit) regressions
were also estimated to establish predictive accuracy. In addition, since neural variables are
expected to be moderately correlated, principal components analysis (PCA) was used to
seek to improve predictive accuracy. We used nine input features for the PCA: immersion,
peak immersion, psychological safety with one- and two-day lags. These analyses were
performed using the Stata 17 software package (StataCorp, College Station, TX, USA).

Average hourly Immersion and psychological safety were used to build machine
learning (ML) models to assess predictive accuracy compared to models using daily data.
The ML models included regularized logistic regressions, random forests (RF), and support
vector machines (SVM). Participants missing more than four hourly observations were
dropped from the analyses for that day. In order to avoid further data loss, separate
models were trained using Immersion and psychological safety. The tsfresh package in
Python was used to extract features from the hourly time-series data. The tsfresh package
extracts up to 794 time-series features and tests these for relationships to the dependent
variables [74]. Features that had bivariate correlations with the dependent variables that had
ps > 0.05 were discarded.

The unbalanced panel led us to use the synthetic minority oversampling technique
(SMOTE) to balance the ratio of high and low values for mood and energy [75]. We then
split the SMOTE data into a training (75% of the complete dataset) and testing (25%) set.
The former set was used to tune hyperparameters using a 5-fold cross-validation grid
search (the GridSearchCV function in the sklearn package). Table A1 in Appendix A shows
the parameters tuned for the machine learning models.

We then estimated the models on the test set and the pre-SMOTE data. The area
under the curve (AUC) was assessed for model fit, and true positive and true negative
rates (Precision and Recall, respectively) and their average was used to measure accuracy.
Possible overfitting was tested using 5-fold cross-validation on the entire data set. Accuracy
and fit were examined for contemporaneous data and for a two-day lag prior to the self-
report to determine the consistency of the neural measures.

3. Results

Descriptive Statistics. Mood and Energy had means on the high end of the reporting
range and moderate spreads (Mood: M = 3.84 SD = 0.65, Figure 1; Energy: M = 3.04
SD = 0.97, Figure 2). The neurophysiologic variables fell into expected ranges (Immersion:
M = 36.29, SD = 3.51, Range = [28.85, 48.91]; PI: M = 0.0076, SD = 0.0079, Range = [0, 0.054];
PS: M = 18.14, SD = 5.51, Range = [8.80, 40.70]).

Time Series Aspects. We tested if the time series of the two dependent variables con-
tained information that should be included in our analyses. If participants’ time series were
random walks, then the time series component of the analysis could be ignored. We used a
Fisher-type unit-root examination using augmented Dickey–Fuller tests in which the null
hypothesis is that the time series has a unit root [76]. The estimation indicated that both
the one- and two-day lagged time component of the dependent variables did not affect the
current value of the dependent variables (Table A2). As a result, each observation can be
analyzed independently, ignoring the time dimension.
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Mood. Among the three physiologic variables, only PI was statistically related to
Mood (Immersion: r = 0.091, t (318) = 1.25, p = 0.105; PI: r = 0.16, t (318) = 2.66, p = 0.004;
PS: r = −0.001, t (318) = −2.23, p = 0.990). Participants with high Moods had higher PI
(Mhigh = 0.009, Mlow = 0.007; t (318) = −2.01, p = 0.02) and no difference in the other
physiologic variables (Immersion: Mhigh = 36.14, Mlow = 36.35; t (318) = 0.4812, p = 0.68;
PS: Mhigh = 1.77, Mlow = 1.82; t (318) = 0.721, p = 0.7644). Moods in males averaged 5.5%
higher than that of females (Mmale = 4.0, Mfemale = 3.79; t (318) = −2.384, p = 0.008).

An ordinary least squares regression was used to test if Immersion, PS, and PI were
related to participants’ Moods while controlling for sex and being sick. Thirteen values for
PI exceeded 5 SD above the mean and these observations were removed. Due to the high
variance of PI, it was standardized by subtracting the mean and dividing by the sample
standard deviation using Stata’s standardize function. The regression was statistically
significant (R2 = 0.173, F (5, 298) = 12.54, p =.000) and showed that Immersion and PI
were positively associated with Mood, but PS was not (Immersion: ß = 0.403, p = 0.002;
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PI: ß = 0.155, p = 0.003; PS: ß = −0.091, p = 0.264). Variance inflation factors (VIFs) were
within acceptable limits showing the estimation was well-specified.

A logistic regression was then estimated to examine the predictive accuracy of the
physiologic variables. As above, the logistic regression showed that Immersion and PI
were significant along with moderately large odds ratios (OR) (Immersion: OR = 3.29,
p = 0.014; PI: OR = 1.533, p = 0.026; PS: OR = 1.136, p = 0.671; Table 1) with predictive
accuracy of 67.76%.

Table 1. OLS estimation showed that Immersion and peak Immersion have positive effects on Mood.
When predicting high and low Mood using a logit estimation, only peak Immersion was significant. Sick
and Male are controls. Standard errors are in parenthesis and * = p < 0.05, ** = p < 0.01, *** = p < 0.001.

Variable OLS VIF Logit Odds Ratio

Immersion 0.403 *
(0.126) 1.60 1.19

(0.484) 3.296

PS −0.091
(0.081) 1.58 0.127

(0.301) 1.136

PI 19.63 *
(6.52) 1.03 0.428 *

(0.192) 1.153

Sick −0.922 ***
(0.152) 1.02 −3.889

(1.14) 0.020

Male
Intercept

0.285
(0.087)
3.068 *
(0.900)

1.09

1.687
(0.370)
−0.535
(3.139)

5.403

F-value 12.54 Likelihood ratio χ2 55.42
p-value 0.000 p-value 0.000

R-squared 0.174 Pseudo R-squared 0.134

We used the logistic regression estimates to examine when a participant was likely to
have low Mood. For a woman who is not sick, there is a 75% likelihood she has low Mood
when Immersion is 26.50 or lower, holding PS and PI at their medians. A man has a 75%
chance of having low Mood when his Immersion is 12.36 or below for the median values of
PS and PI. The threshold values of Immersion producing a 75% chance of low Mood are
higher when PI and PS are lower (Table A3).

Principal Components. The first principal component (PC1) was loaded primarily on
contemporaneous values and 1- and 2-day lags of PS and Immersion. The second principal
component (PC2) was loaded on contemporaneous values and 1- and 2- day lags of PI. The
third principal component (PC3) was loaded almost entirely on Immersion with a one-day
lag (Table A4). Regression analysis was used to test the relationship between the first
three principal components and the dependent variables. All three PCs were statistically
significant (PC1: ß = 0.0599, p = 0.002; PC2: ß = 0.142, p = 0.000; PC3: ß = -0.095, p = 0.028).
In addition, all three principal components were significant predictors of high and low
Mood in a logistic regression (PC1: OR = 1.375, p = 0.000; PC2: OR = 1.963, p = 0.000; PC3:
OR = 0.642, p = 0.026). The use of principal components improved the predictive accuracy
of Mood to 74.81% (Table A5).

Energy. The second dependent variable, Energy, was centered on the mean
(M = 3.038, SD = 0.966; Figure 2). Immersion, PI and PS were all related to Energy bi-
laterally (Immersion: r = 0.184, t (318) = 2.63, p = 0.009; PI: r = 0.233, t (318) = 4.84, p = 0.000;
PS: r = 0.151, t (318) = 2.72, p = 0.0068). Immersion was 5.3% higher in those with high
Energy compared to Immersion in low Energy participants (Mhigh = 3.76, Mlow = 3.57;
t (318) = −4.138, p = 0.000). PI and PS were also higher in those with high Energy compared
to low Energy participants (PI: Mhigh = 0.01, Mlow = 0.006; t (318) = −3.925, p = 0.000;
PS: Mhigh = 1.99, Mlow = 1.74; t (318) = −3.7122, p = 0.000). There were no sex differences in
participants’ Energy (Mmale = 3.08, Mfemale = 3.02; t (318) = -0.442, p = 0.659).
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Regression estimates revealed significant associations for Immersion and PI with
Energy (Immersion: ß = 0.498, p =.010; PI: ß = 0.268, p = 0.001; PS: ß = 0.122, p = 0.324).
A logistic regression for high and low Energy found Immersion and PI were significant
predictors (Immersion: OR = 3.11, p = 0.020; PI: OR = 1.655, p = 0.011; PS: OR = 1.66,
p = 0.094; Table 2) and had predictive accuracy of 74.67%.

Table 2. Energy is positively associated with Immersion and peak Immersion in an OLS estimation.
Sick and Male are controls. A logit estimation for high and low Energy confirms that Immersion
and peak Immersion are significant predictors. Standard errors are in parentheses and * = p < 0.05,
** = p < 0.01, *** = p < 0.001.

Variable OLS VIF Logit Odds Ratio

Immersion 0.499 *
(0.192) 1.60 1.134 *

(0.488) 3.11 *

PS 0.122
(0.123) 1.58 0.507

(0.302) 1.66

PI 33.95 **
(9.95) 1.03 0.504 **

(0.199) 1.66

Sick −0.594 **
(0.232) 1.02 −1.733

(1.06) 0.177

Male 0.159
(0.132) 1.09 −0.504

(0.394) 0.604

Intercept 0.764 *
(0.614)

−5.888 **
(1.593)

F-value 7.04 Likelihood ratio χ2 37.88
p-value (0.000) p-value 0.000

R-squared 0.106 Pseudo R-squared 0.107

The logistic regression estimates were used to identify predictors for high and low
Energy. For a woman who is not sick, there is a 75% or greater likelihood she has low Energy
when Immersion is 35.80 or below, setting PI and PS to their medians. The corresponding
threshold for men is an Immersion value of 40.17 (Table A6).

Next, we used ordinary least squares to test if PC1, PC2, and PC3 were related to
participants’ Energy. PC1 and PC2 were both associated with Energy, though PC3 was not
(PC1: ß = 0.143, p = 0.000; PC2: ß = 0.266, p = 0.000; PC3: ß = −0.116, p = 0.076). A logistic
regression for high and low Energy found a significant association for PC1 and PC2 as in
the OLS results (PC1: OR = 1.476, p = 0.000; PC 2: OR = 2.26, p = 0.000; PC3: OR = 0.889,
p = 0.485) and produced a predictive accuracy of 74.81% (Table A7).

Machine Learning Models. We first estimated models using hourly data (2478 observations)
to predict Mood. Extracting significant components produced 18 features from Immersion
and five from PS. Then, we balanced the data with SMOTE and tuned the hyperparame-
ters. The models were estimated on the training set with the following parametric restric-
tions for both Immersion and PS: logit (C = 100, penalty = “l2”), RF (max_features = ‘log2′,
‘min_samples_leaf’ = 2, ‘min_samples_split’ =2), and SVM (C = 100, kernel = ‘rbf’).

The ML estimations classifying Mood fit the data well in the test set (AUCs > 0.90).
The RF algorithm produced the best fit for the test data set (AUC = 1.00), whereas the fit for
logit (AUC = 0.71) and SVM (AUC = 0.82) declined. Using PS as the explanatory variable
for the ML estimations had similarly high goodness-of-fit on the test set for RF (AUC = 0.90)
and SVM (AUC = 0.94), but only moderate fit for regularized logit (AUC = 0.76). AUC
fell for all three ML models when classifying the test observations (Logit: 0.59, RF: 0.78,
SVM: 0.81). To account for possible overfitting, we used 5-fold cross-validation on the full
SMOTE data. All models maintained high scores across the five folds indicating they were
not overfit. Predictive accuracy for the ML models using Immersion was very high for the
observed data; correct classification of Mood ranged from 99 to 100%. Using PS in the ML
estimation was nearly as accurate, ranging from 98 to 100% (Table A8).
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Repeating the ML estimations using Energy as the dependent variable, 27 features
from the Immersion data and 11 from PS were extracted using logit (C = 100, penalty = “l2”),
RF (max_features = ‘sqrt’, ‘min_samples_leaf’ = 2, ‘min_samples_split’ = [2, 5]), and SVM
(C = 10, kernel = ‘rbf’). Immersion explained the Energy data moderately well, with RF
performing the best on the test (AUC = 0.80) and observed set (AUC = 0.93) and SVM and
logit performing adequately (SVM: 0.78; 0.86; Logit: 0.73; 0.78). Cross-validation shows
that all the models perform moderately well but with high variation (SDs > 0.044).

Predictive accuracy for the Immersion ML models of Energy using the observed data
was high, though below the classification accuracy of Mood, with the RF being most
accurate (logit: 82%; RF: 95%; SVM: 90%). The RF and SVM models of Energy using PS
as the independent variable had similar accuracy to the Immersion models, while the
regularized logit was fairly inaccurate (logit: 65%; RF: 94%; SVM: 88%, Table A9).

Two Day Lag Machine Learning Models. We examined the predictive accuracy of Mood
with neural data two days prior to the self-report to extend the principal component
findings (2422 observations). Seventeen features were extracted from Immersion, and
eight features were extracted from PS. Hyperparameters for Immersion were tuned using:
logit (C = 1, penalty = “l2”), RF (max_features = [‘log2′;’sqrt’], ‘min_samples_leaf’ = 2,
‘min_samples_split’ = [5, 2]), and SVM (C = 10, kernel = ‘rbf’).

The two-day lagged goodness of fit mirrored the contemporaneous estimations. Fit
was quite good for Mood using Immersion for the test and observation datasets for RF
(AUC = 1.00; 0.96) and SVM (AUC = 0.99; 0.96). The logit performed well on the test set,
but only moderately on the observed set (AUC = 0.94; 0.74). The fits for the estimations
using PS were also good, though they declined somewhat from the test to observed data
(RF: AUC = 0.91, 0.79; SVM: AUC = 0.96; 0.88). As with the Immersion estimates, the logit
performed poorly (AUC = 0.67; 0.57; Table A10). The cross-validation showed that all
models fit well except for logit (AUC = 0.78, SD = 0.055).

Next, we used Immersion and PS to predict Energy with two-day lagged data. This
procedure extracted 30 features from Immersion and four from PS. Hyperparameters were:
logit (C = [1, 10], penalty = “l2”), RF (max_features = [‘log2′, ’sqrt’], ‘min_samples_leaf’ = 2,
‘min_samples_split’ = 2), and SVM (C = 100, kernel = ‘rbf’). All Immersion and PS models
did moderately well on the test dataset (AUCs ≥ 0.84). Indeed, the RF (AUC = 0.93) and
SVM (AUC = 0.94) Immersion models fit better on the observed data set than on the training
set. The PS models performed moderately well on the test data set, but only RF did so on
the observed dataset (AUC = 0.83).

Predictive accuracy continued to be quite high using hourly data lagged two days.
Immersion, in particular, strongly predicted Mood using the lagged data for all three ML
estimations (logit: 92%, RF: 99%, SVM: 99%). The two-day lagged RF and SVM models
were nearly identical in their accuracy compared to the contemporaneous data estimates.
Predictive accuracy of Mood using two-day lagged PS was lower compared to the use of
Immersion and was similar to the contemporaneous estimates. The RF and SVM models
had high accuracy, while the logit was moderately accurate (logit: 76%; RF: 95%; SVM:
98%). The predictions for individuals’ Energy using Immersion were 95% and 96% accuracy
(RF, SVM) for the observed data, while the logit model performed only moderately (79%).
The two-day lagged predictions for Energy using PS, as with Mood, were less accurate,
with the RF model being the best (logit: 57%, RF: 87%, SVM: 68%; Table A11).

4. Discussion

The key contribution of the present exploratory study is to demonstrate that high-
frequency neurophysiologic measures accurately predict self-reported emotional states.
Passive and continuous data collection, as used here, appears to be an effective way to
monitor emotional wellness. Our analysis shows that declines in emotional states can be
predicted two days in advance with high accuracy. Such data make it possible for family
members or clinicians to check in on the elderly in order to halt a decline before a potential
mental health crisis occurs. More generally, we have shown that neural measures can be
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used to monitor the quality of life in seniors and perhaps other vulnerable populations.
Neural predictors of emotional states can also be used to identify the physiological processes
inhibiting satisfaction with one’s life so that interventions are focused and effective [77].

The results are surprising because 1Hz neurophysiologic data were averaged into
hourly and daily measures that we expected would return to a long-term equilibrium.
However, this was not the case. Daily observations were statistically independent of each
other, yet had predictive value as a group. Estimations using daily data predicted low
Mood and low Energy with 68–75% accuracy using just three neurophysiologic variables
in a standard logistic regression, controlling for illness and sex. The over-2000 hourly
observations led us to estimate ML models for Mood and Energy. These models were
extremely accurate, correctly classifying the dependent variables with 84–100% accuracy
and were not overfit.

The most predictive measure, Immersion, appears to capture the neural value of
social experiences, a key aspect of flourishing [78,79]. Neural measures such as Immersion
are necessary because the ability to self-report the quality of relationships is difficult and
is nearly impossible with the granularity of the neurophysiologic measures used here.
Measurement of social connections is vital because they increase the positive affect [80,81]
and improve life satisfaction [82–84].

Psychological safety on a daily basis did not influence Mood or Energy. However, this
variable accurately predicted both dependent variables when measured hourly. Extensive
research has related psychological safety and the absence of anxiety to improved mood [85].
Psychological safety regulates people’s emotional well-being by motivating a desire for
social support to reduce anxiety [86–88]. When anxiety is reduced, the quality of social
relationships improves, enhancing healthspans [89,90].

As expected, sickness reduces Mood and Energy. The desire and ability to socialize
are reduced with illness, inhibiting the benefits of socializing [91–93]. Sickness negatively
affects the quality of life in the elderly in part by inducing negative moods [94]. Chronic
illness reduces the independence and mobility of senior citizens [95] affecting their ability
to engage with others [91,96]. The physiologic variables in the predictive models of Mood
and Energy were significant even when removing the effect of sickness.

The use of a commercial Neuroscience as a Service (NaaS) platform allowed us to ex-
ploit fully processed neurophysiologic measures that were captured at scale. This approach
makes it easy for other researchers to replicate and extend our findings without having to
buy expensive equipment or process high-frequency data. Nevertheless, this study has
a number of limitations that should be addressed in subsequent research. The number
of participants was small even while the number of observations was high. The sample
population studied was fairly homogenous and came from a single retirement home. While
we focused on predicting troughs in Mood and Energy in psychologically healthy adults,
these states do not necessarily lead to clinical depression [97]. Future research should apply
the methodology here to other vulnerable populations, including those with diagnosed
mental illnesses, to assess its predictive accuracy in these populations. Lastly, we used two
measures from the Immersion platform (Immersion, PS) and derived another measure (PI).
Future research could derive additional measures from these data or, as we have done, rely
on ML approaches to extract as much predictive value from the variables we used.

5. Conclusions

As people age, their moods tend to decline [98,99]. We have shown that troughs
in Mood and Energy can be accurately predicted with off-the-shelf wearables and data
from a commercial software platform. The present study did not seek to identify clinical
depression, which would require longer data collection and more individuals. Rather,
we hope that our findings will motivate researchers to identify the causal factors that
threaten emotional wellness in older adults and other vulnerable populations. Future
research should assess our techniques for those with diagnosed depression who are at risk
of recurrence as well as professionals who face chronically high levels of stress, including
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first responders, clinicians, and members of the military. Accurate measurement is the
first step toward improving emotional health so that people can live happier, healthier,
and longer lives.
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Appendix A

Table A1. Tuned parameters for the machine learning (ML) models.

ML Parameter Values

Logit C
Regularization

1, 10, 100
L1,l2, elasticnet

RF Minimum sample split
Minimum samples per leaf
Maximum features per tree

2, 5, 10
2, 5, 10, 15
Square root, log2

SVM C
Kernal method

1, 10, 100
Linear, polynomial, radial, sigmoid

Table A2. Fisher-type unit-root test based on augmented Dickey–Fuller (ADF) tests for Mood and Energy.

Distribution
Mood Energy

Statistic (p Value) Statistic (p Value)

Inverse Chi2 (36) 92.69 (0.000) 57.19 (0.014)
Inverse Normal −2.14 (0.016) −2.63 (0.004)

Inverse Logit t (89) −4.319 (0.000) −2.70 (0.004)
Mod. Inv. Chi2 6.682 (0.000) 2.49 (0.006)

Table A3. There is a 75% chance of low Mood for the given values of Immersion setting PS and PI to
their medians for participants who are not sick. The PI values are unstandardized.

Mood Immersion PS PI

Male 12.36 1.76 0.005

Female 26.50 1.76 0.005
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Table A4. Principal components loadings.

Variable
Principal Components Analysis (PCA)

PC 1 PC 2 PC 3

Immersion 0.402 0.011 −0.125
Immersion (−1) 0.398 −0.047 0.058
Immersion (−2) 0.385 −0.003 −0.207

Peak 0.071 0.564 −0.346
Peak (−1) 0.059 0.559 0.801
Peak (−2) 0.064 0.591 −0.389

Safety 0.399 −0.063 0.090
Safety (−1) 0.423 −0.069 0.112
Safety (−2) 0.425 −0.097 0.061

% Variance Explained 46.45% 15.70% 9.05%

Table A5. Principal components regression results for Mood with Sick and Male as controls.

Variable OLS VIF Logit Odd Ratio

PC 1 0.0599 **
(0.018) 1.1 0.319

(0.079) 1.375

PC 2 0.142
(0.037) 1.03 0.674

(0.171) 1.963

PC 3 −0.095
(0.043) 1.03 −0.443

(0.199) 0.642

Sick −0.917
(0.172) 1.01 −5.04

(1.58) 0.006

Male
Intercept

0.297
(0.093)
3.84 ***
(0.043)

1.12

2.06
(0.430)
0.285

(0.162)

7.86

F-value 11.59
p-value (0.000)

R-squared 0.182
Note. * p < 0.05, ** p < 0.01, *** p < 0.001.

Table A6. There is a 75% chance of low Energy for the given values of Immersion setting PS and PI to
their medians for participants who are not sick. The PI values are unstandardized.

Energy Immersion PS PI

Male 40.17 1.76 0.005

Female 35.80 1.76 0.005

Table A7. Principal components regression results for Energy with Sick and Male as controls.

Variable OLS VIF Logit Odd Ratio

PC 1 0.143 *
(0.028) 1.1 0.389

(0.081) 1.48

PC 2 0.266
(0.056) 1.03 0.816

(0.161) 2.26

PC 3 −0.116
(0.065) 1.03 −0.117

(0.167) 0.889

Sick −0.918
(0.258) 1.01 −2.09

(1.15) 0.123
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Table A7. Cont.

Variable OLS VIF Logit Odd Ratio

Male
Intercept

0.134
(0.140)

3.078 ***
(0.065)

1.12

−0.775
(0.457)
−0.736
(0.173)

0.461

F-value 2.420
p-value (0.081)

R-squared 0.316
Note. * p < 0.05, ** p < 0.01, *** p < 0.001.

Table A8. ML classification of Mood using Immersion and PS in regularized logit, random forest
(RF), and support vector machine (SVM) estimations. CV is cross-validation.

Immersion AUC Accuracy Precision Recall

Test Logit 0.93 0.93 0.91 0.95
RF 1.00 1.00 1.00 1.00

SVM 0.93 0.91 1.00 0.83
Observed Logit 0.71 0.91 0.99 0.91

RF 1.00 1.00 1.00 1.00
SVM 0.82 0.96 1.00 0.96

CV Logit 0.94 0.88 0.91 0.84
0.032 0.024 0.04 0.014

RF 1.00 0.97 0.99 0.96
0.004 0.018 0.024 0.031

SVM 1.00 0.96 0.99 0.92
0.006 0.023 0.012 0.051

PS
Test Logit 0.76 0.76 0.8 0.68

RF 0.9 0.89 0.94 0.83
SVM 0.94 0.94 0.97 0.9

Observed Logit 0.59 0.75 0.98 0.75
RF 0.78 0.94 1.00 0.94

SVM 0.81 0.95 1.00 0.95
CV Logit 0.85 0.79 0.81 0.75

0.064 0.065 0.072 0.099
RF 0.96 0.91 0.96 0.86

0.033 0.037 0.042 0.095
SVM 0.95 0.92 0.99 0.85

0.018 0.03 0.013 0.065

Table A9. ML classification of Energy using Immersion and PS in regularized logit, random forest
(RF), and support vector machine (SVM) estimations. CV is cross-validation.

Immersion AUC Accuracy Precision Recall

Test Logit 0.73 0.74 0.67 0.74
RF 0.80 0.80 0.73 0.81

SVM 0.78 0.78 0.78 0.67
Observed Logit 0.78 0.82 0.9 0.85

RF 0.93 0.95 0.97 0.96
SVM 0.86 0.90 0.97 0.88

CV Logit 0.81 0.78 0.83 0.7
0.081 0.084 0.095 0.089

RF 0.88 0.8 0.84 0.74
0.088 0.083 0.118 0.101

SVM 0.89 0.8 0.88 0.71
0.076 0.074 0.1 0.083
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Table A9. Cont.

Immersion AUC Accuracy Precision Recall

PS
Test Logit 0.7 0.71 0.65 0.63

RF 0.83 0.83 0.75 0.89
SVM 0.83 0.82 0.86 0.67

Observed Logit 0.63 0.65 0.85 0.63
RF 0.93 0.94 0.96 0.96

SVM 0.84 0.88 0.97 0.86
CV Logit 0.75 0.65 0.68 0.58

0.044 0.049 0.052 0.073
RF 0.87 0.79 0.81 0.81

0.05 0.033 0.095 0.106
SVM 0.87 0.81 0.87 0.75

0.05 0.028 0.06 0.079

Table A10. ML classification of Mood using Immersion and PS with a 2-day lag in regularized logit,
random forest (RF), and support vector machine (SVM) estimations. CV is cross-validation.

Immersion AUC Accuracy Precision Recall

Test Logit 0.94 0.94 0.97 0.89
RF 1.00 1.001 1.00 1.00

SVM 0.99 0.99 1.00 0.97
Observed Logit 0.74 0.92 0.99 0.93

RF 0.96 0.99 1.00 0.99
SVM 0.96 0.99 1.00 0.99

CV Logit 0.96 0.93 0.96 0.89
0.037 0.034 0.028 0.081

RF 0.99 0.98 1.00 0.95
0.002 0.029 0 0.058

SVM 0.99 0.98 1.00 0.95
0.002 0.021 0 0.042

PS
Test Logit 0.67 0.63 0.55 0.83

RF 0.91 0.91 0.89 0.91
SVM 0.96 0.95 1.00 0.89

Observed Logit 0.57 0.76 0.97 0.76
RF 0.79 0.95 0.98 0.96

SVM 0.88 0.98 1.00 0.98
CV Logit 0.78 0.69 0.68 0.68

0.055 0.044 0.03 0.102
RF 0.99 0.95 0.97 0.93

0.016 0.031 0.056 0.023
SVM 0.97 0.96 0.99 0.93

0.02 0.008 0.012 0.016

Table A11. ML classification of Energy using Immersion and PS with a 2 day lag in regularized logit,
random forest (RF), and support vector machine (SVM) estimations. CV is cross-validation.

Immersion AUC Accuracy Precision Recall

Test Logit 0.84 0.84 0.87 0.82
RF 0.85 0.85 0.88 0.85

SVM 0.89 0.89 0.93 0.85
Observed Logit 0.75 0.79 0.90 0.80

RF 0.93 0.95 0.97 0.96
SVM 0.94 0.96 0.98 0.96
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Table A11. Cont.

Immersion AUC Accuracy Precision Recall

CV Logit 0.83 0.78 0.82 0.71
0.07 0.07 0.08 0.08

RF 0.89 0.81 0.87 0.74
0.09 0.09 0.13 0.09

SVM 0.89 0.85 0.91 0.78
0.09 0.081 0.12 0.073

Safety
Test Logit 0.78 0.71 0.94 0.48

RF 0.74 0.74 0.76 0.76
SVM 0.80 0.74 0.95 0.55

Observed Logit 0.62 0.57 0.86 0.48
RF 0.83 0.87 0.95 0.86

SVM 0.70 0.68 0.94 0.59
CV Logit 0.71 0.65 0.72 0.49

0.07 0.06 0.10 0.12
RF 0.75 0.71 0.71 0.71

0.07 0.07 0.08 0.06
SVM 0.71 0.68 0.78 0.50

0.06 0.07 0.08 0.12
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