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TEPAPA: a novel in silico feature 
learning pipeline for mining 
prognostic and associative factors 
from text-based electronic medical 
records
Frank Po-Yen Lin   1,2, Adrian Pokorny1, Christina Teng3 & Richard J. Epstein1,2

Vast amounts of clinically relevant text-based variables lie undiscovered and unexploited in electronic 
medical records (EMR). To exploit this untapped resource, and thus facilitate the discovery of informative 
covariates from unstructured clinical narratives, we have built a novel computational pipeline termed 
Text-based Exploratory Pattern Analyser for Prognosticator and Associator discovery (TEPAPA). This 
pipeline combines semantic-free natural language processing (NLP), regular expression induction, and 
statistical association testing to identify conserved text patterns associated with outcome variables 
of clinical interest. When we applied TEPAPA to a cohort of head and neck squamous cell carcinoma 
patients, plausible concepts known to be correlated with human papilloma virus (HPV) status were 
identified from the EMR text, including site of primary disease, tumour stage, pathologic characteristics, 
and treatment modalities. Similarly, correlates of other variables (including gender, nodal status, 
recurrent disease, smoking and alcohol status) were also reliably recovered. Using highly-associated 
patterns as covariates, a patient’s HPV status was classifiable using a bootstrap analysis with a mean 
area under the ROC curve of 0.861, suggesting its predictive utility in supporting EMR-based phenotyping 
tasks. These data support using this integrative approach to efficiently identify disease-associated 
factors from unstructured EMR narratives, and thus to efficiently generate testable hypotheses.

The widespread digitisation of clinical data through the adoption of electronic medical records (EMR) have spec-
ulated many secondary uses across clinical and research applications1–4. In particular, as data sharing frameworks 
have been developed, healthcare data analytics has emerged as a new field of translational science3. As an illustra-
tive example in oncology, the CancerLinQ framework of American Society of Clinical Oncology provides a “rapid 
learning health system” that connects isolated EMR systems across institutions to expedite collaborative patient 
management5, 6. Developing pragmatic, automated methods to leverage this huge resource would soon impact 
on translational cancer research7, 8. Moreover, from a precision medicine perspective, finding accurate associative 
and prognostic factors should empower clinicians to tailor effective treatments.

Many EMR-based secondary analyses have correlated outcomes data to structured variables (e.g., labora-
tory and medication) or administrative coding (e.g., billing) to unearth knowledge that would otherwise remain 
occult9–13. These abridged data, however, represent only a proverbial tip of the clinical iceberg. For example, 
EMR narratives generate great informatic potency via the rich combination of subjective patient encounters with 
objective and/or measurable clinical events14–16. Methods of simple text search and natural language processing 
(NLP) have been applied to infer patient characteristics (i.e., EMR-based case detection and phenotyping meth-
ods) from clinical narratives to discover new and possibly causal associations13, 17–22. However, although these 
high-throughput analyses may be powerful in quantifying the degree of association, an important limitation is 
that the covariates yet to be recognised by domain experts cannot be reliably assessed.
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Hence, to systematically identify unrecognised covariates at an early phase of discovery, we hypothesise a need 
to mine EMR matrix features in a “deep-data” manner to complement population-based “big-data” inquiries. 
To this end we present here an unbiased feature-learning pipeline, Text-based Exploratory Pattern Analyser for 
Prognosticator and Associator discovery (TEPAPA), which combines semantic-free NLP methods, pattern search, 
and a “pattern-wide association study” (thereafter PatWAS) to capture conserved patterns of EMR text associated 
with clinical outcomes of interest. With translational utility in mind, TEPAPA is designed to deliver “white-box” 
interpretable results to researchers for rapid hypothesis generation, thereby providing an open-source framework 
that drives integration of external NLP and machine learning methods.

To determine how TEPAPA performs in a real-life discovery task, we conduct here a single-centred vali-
dation study to determine whether or not clinicopathologic factors associated with human papilloma virus 
(HPV)-related head and neck squamous cell carcinoma (HNSCC) can be discovered from routine clinical EMR 
data. The epidemic increases of HPV-related cases over the last two decades reflect changes in sexual practice 
among younger adults23; since the clinicopathologic characteristics associated with this cancer have been thor-
oughly studied24–36, testing of these data sets for rediscovery evaluations is attractive. Beyond this knowledge 
discovery task, we also examine whether the highly-correlated text features extracted by TEPAPA can be used to 
classify a patient’s HPV status in combination with supervised machine learning – and if so, to yield a demonstra-
tion of practical utility of this pipeline for supporting EMR-based phenotyping applications.

Methods
The in silico discovery pipeline.  Case identification, EMR retrieval, and data cleaning.  The discovery pro-
cess begins with identification of representative cases and controls providing sufficient data quantity and quality 
to frame a clinical question of interest. Each case is labelled with an outcome variable of interest (either binary 
or numeric) for correlative analyses. The corresponding EMR text narratives, including clinical correspondence, 
consultation notes, radiology and pathology reports, are extracted. Sentence chunking is then performed, fol-
lowed by zero or more annotation methods (see below) prior to transformation into sequences of word-based 
tokens delimited by white spaces and punctuation marks. The flowchart of analysis is shown in Fig. 1.

Text annotation.  Two classes of optional pre-processing methods were used to annotate the EMR text (Fig. 2A):

	 1.	 A token-level annotation method that assigns tags to a token in order to reflect its properties. Annotations 
of this class include labelling of cardinal numbers, word stemming (STEM)37, part-of-speech tagging 
(POSTAG)38 and/or lemmatisation. The overall goal here is to improve sensitivity (i.e., recall) of a pattern.

	 2.	 A sequence-level annotation method that improves specificity through reduction of spurious discoveries 
by grouping consecutive token descriptors of a given concept into a new token. For example, “head of pan-
creas” is treated as a unigram instead of separate words “head”, “of”, and “pancreas” - which have different 
meanings. Two annotation methods of this category were examined: 

	 a.	 Syntactic parsing (SPARSE), which transforms a sentence into the PennTree bank format using the 
Stanford CoreNLP Parser39 and new tokens are generated by traversing through each node of the tree 
structure;

	 b.	 Vocabulary-based concept recognition maps recognised text fragments into a new unigram based on 
United Medical Language System (UMLS) vocabulary (Metathesaurus, version 2016AA) using long-
est-string matching40, 41.

Figure 1.  The TEPAPA discovery pipeline. Abbreviations: EMR: electronic medical record.



www.nature.com/scientificreports/

3SCIeNTIFIC REPorTs | 7: 6918 | DOI:10.1038/s41598-017-07111-0

Feature generation through exhaustive sequence search.  The most basic feature for discovery is defined as a string 
of word-based tokens (n-gram). Unique n-grams are identified through a corpus-wide exhaustive search (Fig. 2B) 
and all n-grams are used as binary features (i.e. either present or absent in a case) in the subsequent association 
analysis. The extent of search is delimited by sentence and document boundaries. If a token-based annotation 
method is used, a combinatorial search method is applied to generate all possible sub-sequences using all tokens 
and tags (Fig. 2B); these patterns are then used in the subsequent association analysis.

The numeric features, which take form of “A 〈NUMBER〉 B” (e.g. “contains 〈NUMBER〉 metastatic nodes”, are 
first identified by extracting all cardinal numbers from the text, followed by identification of a pair of flanking 
n-grams (A and B) using the same exhaustive search methods above. If a flanking pair occurs more than once in 
a case, the pattern is discarded to avoid ambiguity. The numeric value is then extracted for association analysis.

Statistical association analysis (“PatWAS”).  Non-parametric univariate methods are applied to assess the statisti-
cal independence between a feature and the outcome variable of interest. For a binary feature, we first determined 
a vector to indicate its occurrences across all case (i.e. occurrence profile), followed by calculation of the odds 
ratio (OR) and Fisher’s exact test for binary outcome variables, and the area under the receiver operating charac-
teristic curve (AUC) for numeric variables (Mann-Whitley-Wilcoxon test). For a numeric feature, the degree of 
association is determined by AUC (binary outcomes) and Spearman’s ρ (for numeric outcomes).

Feature filtering and reduction.  Features are filtered by an ad hoc significance threshold assigned by the investi-
gator, considering the data characteristics and multiple hypothesis testing. Highly-correlated patterns that do not 
improve interpretability of results are removed: a feature is removed if there exists a longer sequence sharing the 
same occurrence profile (e.g., “extensive liver metastases” has more explanatory power than “liver metastases” and 
“metastases”, if all three n-grams appear in the same occurrence profile).

Figure 2.  Illustrated methods of annotation, sub-sequence search, and regular expression induction. EMR 
narratives are tokenized, annotated, and transformed into text fragments (n-gram) prior to association testing. 
Syntactically similar n-grams are then (optionally) grouped into regular expressions with the aim to aggregate 
conceptually similar features improve overall recall.
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Characteristic Value

HPV/P16 status

Pa

Positive (n = 50) Negative (n = 32)

N (%) N (%)

Demographics

 Age at diagnosis Mean (years) 61.5 (95%CI: 58.9–64.2) 65.5 (95%CI: 60.9–70) 0.14

 Gender
Male 44 (88) 25 (78) 0.38

Female 6 (12) 7 (22)

Tumour characteristics

 Diagnosis
Squamous cell carcinoma 49 (98) 30 (94) 0.28

Other tumour types 1 (2) 2 (6)

 Laterality

Right 20 (61) 4 (40) 0.37

Left 12 (36) 6 (60)

Not specified b 17 22

 Site of origin

Oropharynx 42 (89) 14 (48) <0.01c

Skin 2 (4) 3 (10)

Larynx 0 (0) 9 (31)

Lip 1 (2) 2 (7)

Nasal cavity 1 (2) 0 (0)

Nasopharynx 1 (2) 0 (0)

Salivary gland 0 (0) 1 (3)

Not specified 3 3

 Recurrent disease

Yes 20 (43) 14 (45) 1

No 26 (57) 17 (55)

Not specified 4 1

Anatomical stage

 T category

T1 11 (23) 7 (23) 0.52

T2 14 (29) 5 (16)

T3 14 (29) 10 (32)

T4 3 (6) 5 (16)

Tx 6 (12) 4 (13)

Not specified 2 1

 N category

N0 10 (21) 11 (35) 0.35

N1 9 (19) 6 (19)

N2, nos 3 (6) 1 (3)

N2a 7 (15) 1 (3)

N2b 11 (23) 7 (23)

N2c 7 (15) 2 (6)

N3 0 (0) 1 (3)

Nx 1 (2) 2 (6)

Not specified 2 1

 M category

M0 43 (90) 28 (90) 0.39

M1 0 (0) 1 (3)

Mx 5 (10) 2 (6)

Not specified 2 1

TNM Stage (7th edition)

I 2 (4) 5 (17) 0.17

II 2 (4) 2 (7)

III 13 (27) 7 (23)

IV 31 (65) 16 (53)

Not specified 2 2

Smoking status

 Ever smoked

Yes 22 (56) 20 (74) 0.23

No 17 (44) 7 (26)

Not specified 11 5

 Smoking history
Median (pack-years) 0 (IQR: 0–27.5) 25 (IQR: 0–50) 0.02

Not specified 19 8

 Current smoker

Yes 11 (28) 10 (37) 0.625

No 28 (72) 17 (63)

Not specified 11 5

Continued
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Post-processing of binary features by predictive regular expression induction.  Syntactically-similar but weakly 
predictive text fragments may be grouped together to form a stronger “meta-feature” to improve recall. As 
an example, “extensive bone metastasis” and “extensive liver metastasis” may be combined to form a regular 
expression “extensive (bone|liver) metastasis” to indicate a new composite concept. To generate such regular 
expressions, we first identify all n-grams sharing the same starting and ending tokens. Needleman-Wunsch algo-
rithm is then applied to perform global sequence alignment, followed by a consolidation algorithm to group 
sequences into a linear, non-recursive expression as depicted in Fig. 2C. Previously, regular expressions have 
been shown to improve precision in information extraction from clinical text42. In contrast to the local alignment 
approach42, we used global alignment because a wildcard at the either end of a regular expression would result in 
non-discriminant matching of token and the consequent loss of specificity. The degree of association of induced 
regular expression is then reassessed by the PatWAS step above.

Performance considerations.  Heuristics are applied to reduce the hypothesis space as “curse of dimensionality” 
is unavoidable in any high-dimensional analyses. Techniques used to improve the pipeline efficiency include 
aggressive result caching, token indexing, and search termination if an elongating pattern occurs only once in the 
corpus. In particular, exhaustive traversal through all annotated subclasses (e.g. part of speech and concept hier-
archy) would incur a theoretical time complexity of O(cN) (c > 1, i.e. exponential time), thus needing aggressive 
feature reduction: when a token-based annotation method is used, we first remove annotations that are uniquely 
associated with a token without an occurrence elsewhere in the corpus; up to 90% of annotations may be removed 
by this approach.

The HNSCC validation cohort.  Study population.  Consecutive patients presented to a tertiary referral 
hospital over a twelve-month period (February 2015–February 2016) were screened for inclusion. The cases 
were dichotomised into HPV-related and -unrelated groups by documented in situ hybridisation (ISH) results 
(either mentioned in correspondence or pathology report) or P16 (cyclin-dependent kinase inhibitor 2A protein, 
encoded by CDKN2A gene) immunohistochemistry (at least 2+), which was used as a surrogate marker if an ISH 
assay was not performed.

Data extraction.  The free-text component of clinical documents associated with each case, including multidisci-
plinary team (MDT) meeting reports, clinic letters, radiology and pathology reports, were extracted from EMR to 
form the corpus. The patient identifiers, name and role of clinicians, and practice addresses were removed using 
string matching, followed by a manual verification by the lead investigator. Three investigators independently 
reviewed the HPV status of all cases (FL, AP, and CT). Blood-based assays were not included in this analysis.

Statistical and exploratory analyses.  Clinicopathologic variables were analysed by descriptive statistics using R 
statistical environment version 3.3. Qualitative analyses of pattern discovered by TEPAPA was reviewed by the 
authors and also compared with published literature.

Characteristic Value

HPV/P16 status

Pa

Positive (n = 50) Negative (n = 32)

N (%) N (%)

 Current amount
Median 0 (IQR: 0–0) 10 (IQR: 0–22.5) 0.17

Not specified 28 17

 Last smoked
Median (years ago) 1.12 (IQR: 0.812–3.19) 21 (IQR: 18.5–24) 0.02

Not specified 50 26

Alcohol use

 Ever consumed

Yes 27 (82) 21 (84) 1

No 6 (18) 4 (16)

Not specified 17 7

 Current drinker

Yes 23 (70) 18 (72) 1

No 10 (30) 7 (28)

Not specified 17 7

 Current amount
Median (grams/day) 60 (IQR: 20–80) 40 (IQR: 20–80) 0.70

Not specified 23 11

Table 1.  The characteristics of HNSCC cohort by HPV/P16 status. NB: IQR: Inter-quartile range; (a) Fisher’s 
exact test was used for hypothesis testing on categorical and binary data. Shapiro-Wilk test was used to 
determine the normality for numeric data. One-way Analysis of Variance (ANOVA) and Kruskal-Wallis tests 
were used to determine the difference between means (normally-distributed) and median (non-normally 
distributed) data respectively. (b) Significant between-group difference (p < 0.05) on the number of missing 
values (c) Statistically significant at α = 0.01.
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Predictive analysis.  We further examined whether the highly-associated text patterns can be used in conjunc-
tion with supervised learning to predict case labels. To assess how pipeline variations may affect the accuracy of 
prediction and computational time, we used a factorial design to vary methods of annotation (part-of-speech 
tagging, syntactic parsing, word stemming, UMLS-based token aggregation), post-processing (with or without 
regular expression induction), threshold selection (log10 deviation from best threshold), in conjunction with dif-
ferent machine learning algorithms.

Each pipeline was applied to identify text features associated with the HPV status. To avoid selecting highly 
co-linear features, we applied hierarchical clustering with Unweighted Paired Groups Mean Average (UPGMA) 
algorithm and Euclidean distance to cluster the features into one-tenth of sample size (i.e. N/10) groups. The fea-
tures with the smallest p-value from each group were used for classification. Waikato Environment for Knowledge 
Analysis (WEKA) 3.6.6 was used for classifier training and evaluation43. Both generative (logistic regression, LR) 
and two discriminative classifiers Naive Bayes (NB) and alternating decision tree model (ADTree)44 with ten 
boosting iterations were examined. The predictive accuracy was assessed by AUC averaging over 25 bootstrap 
runs. The relative computational time was also analysed. Multiple linear regressions were used for the statistical 
analysis.

Ethics approval and informed consent.  This study was approved by St. Vincent’s Hospital Human Research 
Ethics Committee (HREC), Sydney, Australia. Data collection and analysis were conducted in accordance to the 
HREC regulations and the National Statement on Ethical Conduct in Human Research (2007), published by the 
Australian National Health and Medical Research Council (NHMRC). The need for informed consent was waived 
by the HREC for this retrospective study.

Figure 3.  Flowchart of data analysis of the validation dataset.
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Ethics.  This study was approved by the Human Research Ethics Committee (HREC) of St. Vincent’s Hospital, 
Sydney, Australia (Reference number: LNR/15/SVH/458).

Results
Characteristics of the study cohort and EMR corpus.  One-hundred-and-eighty-nine consecutive 
patients attended the head and neck multidisciplinary team (MDT) cancer clinic at the study site from February 
2015 to February 2016 were screened (Table 1). A total of 141 patients with documented squamous cell carcinoma 
were further inspected (Fig. 3). Approximately two thirds (N = 50) of 82 patients had documented HPV/P16 
positive diseases (i.e. HPV-related) either in the pathology report or in other clinical correspondence (e.g., per-
formed by external pathology services). Three cases were subsequently found to contain no tumour in subsequent 
surgical or repeated biopsy specimens.

The discovery corpus consisted of five types of clinical text: (1) MDT meeting reports (N = 77), (2) corre-
spondence from medical oncology clinic (N = 14), (3) anatomical pathology reports (N = 75), and (4) radiol-
ogy reports of 18F-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG-PET/CT, 
N = 74), (5) All of the above clinical text (N = 82) including other non-cancer-specific EMR, including corre-
spondence from other specialties, non-oncology radiology reports, administrative records).

Qualitative analyses of text features associated with HPV/P16 status in HNSCC patients.  
Exploratory analysis of MDT meeting reports.  The top binary feature (text fragment) associated with HPV-related 
HNSCC was “base of” (OR: 10.5, p = 4.1 × 10−5, pattern S2a.1) which was part of the phrase “base of tongue”. This 
was followed by “the right tonsil” (OR: 22.9, p = 0.0012, S2a.2), “M0,” (OR: 20.5, p = 0.0023, S2a.3), and “positive” 
(OR: 5.7, p = 0.0029, S2a.4), which were indicative of disease site, stage, and part of phrase “HPV/P16 positive” 
respectively. The full list of patterns is described in Table S2a.

After application of regular expression induction algorithm, the list became more informative. Regular expres-
sions describing the site of disease (e.g. “the (right|left)? base of tongue”, S2c.2 and “SCC of the right (tonsil|base 
of tongue|glossotonsillar sulcus) -”, S2c.9), treatment modality (S2c.7), and HPV/P16 status (S2c.17) were discov-
ered. A phrase describing the most likely disease stage in HPV-related cases (“(T3 N2c|T1 N2b|cT1 N2a) M0”, 
i.e. non-metastatic disease with low T- but high N-stage) was identified at a more liberal filtering threshold (OR: 
11.9, p = 0.038).

Text features associated with HPV-unrelated disease were also extractable from the MDT meeting reports 
(Table S2e–h). At a first glance, the majority of unigrams was not seemingly interpretable. However, a close exam-
ination of the corpus text showed that these words were either part of a conserved expression or words embedded 
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Figure 4.  Volcano plot showing the ranking text features associated with HPV status discovered from the 
HNSCC MDT reports. Note: Labels of patterns with p < 0.002 are shown in this plot. Legend: ◆: regular 
expression. ∙: n-gram text fragments. The pattern of regular expression “(A|B)” indicates either A or B would 
match the string, and “?” indicates an optional element. The size of diamond or circle is proportional to total 
number of cases mentioning the text patterns in the EMR.
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within a group of concepts. For instance, the word “management” (S2e.1) referred to a number of phrases describ-
ing upfront surgery (e.g. “Initial management will require… dissection”, “Initial management … surgical”, 4 of 7 
cases). The word “than” was associated with concept of ever-consumed alcohol (part of “consumed less/more 
than x gram of alcohol”, S2e.2). The fragment “disease with” (S2e.6) was part of phrases “ischaemic heart disease 
with…” (N = 4) and “peripheral vascular disease with…” (N = 2), indicating a composite concept of advanced 
atherosclerotic disease. Again, the induction of regular expression produced more interpretable concepts than 
simple n-gram fragments (Table S2f and g).

The volcano plot is shown in Fig. 4, and a list of informative patterns is summarised in Table 2.

Exploratory analysis on other sub-corpora.  The analysis of pathology reports identified text fragments describing 
the results of HPV/P16 assay as the ranking feature (“: Positive” and “: Negative”, S3a.1 and S3e.1), among other 
relevant factors (Tables 2 and S3). Likewise, the sites of primary tumour (S3a.2–4) and the associated concepts 
(e.g. “for decalcification”, S3e.2, indicating the need to process bony surgical specimen for microscopic examina-
tion, thus less likely to be at an oropharyngeal site) were also identified. In the FDG-PET/CT reports, we found 
conflicting results describing abnormal pulmonary nodules where two phrases describing both the presence and 
absence of associations with lung metastasis were found (e.g. S4c.1 and S4c.7). Further examinations of the EMR 
text showed that the negation qualifiers were not captured due to lexical variations (e.g. “not” or “no evidence 
of ”), and the negative concepts appeared to be more conserved in its expression. An analysis of oncology corre-
spondences did not yield statistically significant entries at α = 0.025.

Qualitative comparison of discovered concepts with epidemiological literature.  A practical 
measure of quality of discovery is to compare the algorithmically discovered concepts against published literature 
(Table 3). In this analysis, our pipeline consistently recovered concepts associated with primary tumour site, 
the commonest anatomical staging at presentation, and the primary treatment modality in association with a 
patient’s HPV status. Indirect associations of cigarette and alcohol exposure, cardiovascular comorbidities were 
also described. From the pathology reports, TEPAPA identified histological grade, non-keratinising epithelium, 
morphology, and lack of epithelial dysplasia as features correlated to HPV-related disease. While patients with 

Log (OR) P N Text feature Type EMR Source Interpretation Crossref.

Informative features associated with HPV-related HNSCC

3.50 3.0 × 10−6 25 “HPV (studies|genotypes|status):? P16 
immunohistochemistry:? Positive” R Pathology HPV status (Self-

referent) (S3c.1)

3.89 6.2 × 10−6 20
“HPV (positive|genotypes: 
Positive|associated squamous cell 
carcinoma|related).”

R Pathology HPV status (Self-
referent) (S3c.2)

3.29 2.0 × 10−5 23 “No FDG avid? pulmonary 
(nodules|nodule) or pleural” R PET (Lack of) metastasis 

to the lung (S4c.1)

3.14 5.6 × 10−5 21 “HPV related” N Pathology HPV status (Self-
referent) (S3b.6)

2.06 0.00094 24 “irradiation (and|with) (or 
without|concurrent) chemotherapy” R MDT Management (S2c.7)

2.76 0.0093 9 “oropharyngectomy:” N Pathology Management, site of 
primary tumor (S3a.22)

3.23 0.0011 13 “SCC of the right (tonsil|base of 
tongue|glossotonsillar sulcus) -” R MDT Site of primary tumor (S2d.4)

2.68 0.0015 16 “SCC of the (right|left)? base of tongue” R MDT Site of primary tumor (S2d.5)

3.02 0.0023 11 “M0” N MDT Stage (S2a.3)

2.89 0.0047 10 “non-keratinising” N Pathology Pathology feature (S3a.16)

2.77 0.0092 9 “p16? positive,? HPV? positive” R MDT HPV status (Self-
referent) (S2c.17)

Informative features associated with HPV-unrelated HNSCC

−3.54 0.00035 8 “for decalcification” N Pathology Pathology feature (S3e.2)

−2.91 0.00089 10 “a (locally|locoregionally)? (p16 
negative|advanced) SCC” R MDT HPV status and 

pathology feature (S2h.3)

−3.17 0.0031 6 “SCC of the supraglottic? (lower 
lip|larynx).” R MDT Site of primary tumor (S2g.7)

−2.96 0.0086 5 “likely to? require adjuvant radiation 
therapy” R MDT Management (S2g.10)

−3.35 0.0011 7 supportive care N MDT Management (S2f.3)

−2.59 0.0058 8 “differentiated, keratinising squamous cell 
carcinoma” N Pathology Pathology feature (S3e.23)

−2.59 0.0058 8 “well differentiated” N Pathology Pathology feature (S3e.26)

Table 2.  Informative features associated with HNSCC by HPV status as discovered by TEPAPA. Note: The type 
field indicates the type of text features (N: n-gram fragments or R: regular expression). N indicates number of 
documents containing the text features. Abbreviations: Log (OR): Log odds ratio. MDT: Multidisciplinary team 
meeting.

http://S2f and g
http://S3
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HPV-related disease are known to have a more favourable prognosis36, survival data was not available for exami-
nation. Sexual and marijuana history were not recorded in the EMR, and comorbidities were also inconsistently 
documented.

We have found that the regular expression induction algorithm can meaningfully group closely related con-
cepts together if they are flanked by a pair of highly specific phrases (e.g. “SCC of … base of tongue”, S2d.5), but 
less so if the flanking texts are made up of common words. For instance, the concepts related to poor oral hygiene 
(“restored dentition” and “edentulous”) were admixed with other unrelated concepts (S2h.7) as a result of overfit-
ting the training data to non-specific text pattern “of …. ”.

Binary and numeric features associated with other clinical variables.  Exploratory analyses of 
other clinicopathologic variables were performed to demonstrate the generalisability of method (Table S5). The 
pipeline found the phrases “He” (p = 1.7 × 10−13, S5.1) and “She is” (p = 1.6 × 10−15, S5.3) being associated with 

Variables

HPV status
Examples of highly-ranked, 
informative features

ReferenceHPV-related HPV-unrelated Log(OR), P-value (Crossref.)

Demographics

Age Younger Older (Not identified) 24

Married Associated NS (Not consistently documented in EMR) 25

Social History

Cigarette and 
alcohol exposure Associated Strongly associated “than” *Log(OR) = −2.75, P = 0.0024 

(S2e.2) 24–26

Marijuana use Associated Associated (Not documented in EMR) 25

Poor oral hygiene 
(incl. tooth loss) Not associated Associated

“is (…|a restored dentition|…
|edentulous|…).” † Log(OR) = −1.43, 
P = 0.0051 (S2h.7)

25, 26

Sexual history

Oral sex partners Associated NS (Not documented in EMR) 24–27, 29

Number of lifetime 
sexual partners Associated NS (Not documented in EMR) 25, 27, 29

Comorbidities

Cardiovascular Risk factors (e.g. 
Hypertension)

Macrovascular 
arthrosclerotic disease

“disease with” Log(OR) = −3.2, 
P = 0.0031 (S2e.6)* 25

Primary tumor site Oropharynx Non-oropharynx

“SCC of the right (tonsil|base of 
tongue|glossotonsillar sulcus)” - 
Log(OR) = 3.23, P = 0.0011(S2d.4) “SCC 
of the (right|left)? base of tongue” 
Log(OR) = 2.68, P = 0.0015 (S2d.5)

24, 26, 28, 
30–32

Anatomical stage

T stage Early T-stage “M0,” Log(OR) = 3.02 p = 0.002 (S2a.3) 
“((T3 N2c)|(T1 N2b)|(cT1 N2a)) 
M0” Log(OR) = 2.48, P = 0.038 “a 
large single lymph node exhibiting 
metastatic cystic? moderately 
differentiated non-keratinising? 
squamous cell carcinoma”. 
Log(OR) = 2.89, P = 0.0047(S3d.53)

33

Nodal status Multilevel, “High N-stage” 
Cystic nodes

24, 30, 33, 
34

Pathology features

Grade Moderately to poorly 
differentiated Moderately differentiated “non-keratinising” Log(OR) = 2.9, 

P = 0.0047 (S3a.16), “(poorly 
differentiated|non-keratinizing|non-
keratinising|focally keratinizing)? 
squamous cell carcinoma” 
Log(OR) = 2.67 P = 0.0015 (S3c.35) 
of (…|basaloid type/Non-
keratinizing|…). †Log(OR) = 2.87, 
P = 0.00062 (S3c.19) “with 
(high|low)? (grade|mild) dysplasia” 
Log(OR) = −3.37, P = 0.001(S3g.11)

26, 30

Keratinisation Absent Present 26

Other features Basaloid morphology Epithelial dysplasia 26, 28, 32

Management

Locally advanced 
disease (T3/4 or 
N2/3)

Surgery + adjuvant 
radiotherapy +/− 
concurrent chemotherapy

“irradiation (and|with) (or 
without|concurrent) chemotherapy” 
Log(OR) = 2.06, P = 0.00094 (S2c.7)

35

Treatment outcome

Overall survival Better prognosis Poorer prognosis (Not assessable by this dataset) 36

Table 3.  Literature-based comparison of features associated with HNSCC by HPV status. Abbreviations: 
NS: Not significant. Log(OR): Log odds ratio; Note: *Refers to part of “consumed (greater|less) than”, which 
was a phrase used to describe “ever-consumption of alcohol”. †The index concept was revealed only through 
“overfitting” the concept to a regular expression pattern flanked by two tokens. See main text for detailed 
discussions.
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patient’s gender. The age of patient was associated with mentions of “chronic” (AUC: 0.75, p = 0.00011, S5.7) and 
“retired” (AUC: 0.76, p = 0.00025, S5.8). Elderly patients were more likely to have a chest X-ray performed with 
an anterior-posterior projection (AUC: 0.85, p = 7.6 × 10−6, S5.6), suggesting a more complicated post-operative 
course in this population. Descriptors of recurrent cases were recovered (S5.18–21). Regular expressions describ-
ing nodal status, which were explainable by phrases summarizing the extra-nodal spread (S5.13 and S5.15), nodal 
stage (S5.14), and the phrase “there is no lymphadenopathy” (S5.17) were identified. A conserved regular expres-
sion associated with smoking status was found (e.g., “a cigarette/heavy/current smoker”, S5.29). Ever-smokers 
were characterised by the regular expression “a (reformed)? cigarette/heavy/current smoker” (the question mark 
denotes an optional word, S5.36). Current users of alcohol were associated with the use of a quantification phrase 
“g of alcohol daily” (S5.38). Phrases associated with patients who have never consumed alcohol have also been 
identified (S5.39).

The age at diagnosis was perfectly correlated to a structured numeric field in the MDT report recording the 
patient’s age (p = 1.4 × 10−37, S6.1). The maximum Standardised Uptake Value (SUVMax) of a lesion on FDG-PET/
CT was negatively associated with advanced age (ρ = −0.69, p = 0.00087, S6.3). The amount of alcohol consumed 
by the patient was also extractable (S6.4). The HPV-related cases were more likely to have higher localised SUVMax 
values (S6.8). Smoking cessation was associated with the phrase “〈number〉 pack” (p = 3.3 × 10−5, S6.6).

Phenotyping of HPV/P16 status using features learned from EMR text.  With all sub-corpora 
included, the HPV/P16 status could be classified with an overall AUC of 0.861 using EMR narratives alone. While 
a relationship between the parameters and accuracy was not distinct, the type of text and filtering threshold 
appeared to be important (Table 4 and Figure S8). As expected, pathology reports, the most likely sub-corpus 
containing HPV/P16 status, topped among the four sub-corpora. Multiple regression analysis suggested that 
sequence-level annotation, stemming, and UMLS annotation were more likely to yield an improved performance 
(except for FDG-PET/CT reports). For predictions based on pathology reports, Naive Bayes was numerically 
superior to ADTree, although in general the performance was comparable across classifiers. Regular expres-
sion induction did not improve accuracy in more specialised sub-corpora. The combinatorial search methods 
(POSTAG and SPARSE) were unable to complete at the predefined resource limit for bootstrapping analysis when 
the entire corpus was used for discovery.

An empirical observation was made such that the computational time was linearly correlated to the corpus 
size (in characters, r2 = 0.994, p = 0.0002), conforming to linear time complexity [O(N)]. Annotation with word 
stemming, part-of-speech tagging, and syntactic parsing generally increased training time, whereas UMLS-based 

Pipeline variations

Corpus type

MDT meeting 
reports (N = 77)

Oncology letters 
(N = 14)

Pathology reports 
(N = 75)

FDG-PET/CT 
reports (N = 74)

All inclusive 
(N = 82)

Est. P Est. P Est. P Est. P Est. P

Mean (Intercept) 0.634 0.559 0.835 0.759 0.861

Annotation method

 None (Ref.)

 POSTAG 0.006 0.13 0.031 <0.001 −0.043 <0.001 −0.062 <0.001 NA

 STEM 0.010 0.009 0.011 0.05 0.005 0.08 0.017 <0.001 0.013 0.059

 SPARSE −0.017 <0.001 0.056 <0.001 0.004 0.17 −0.005 0.32 NA

 UMLS 0.013 <0.001 0.030 <0.001 0.004 0.17 −0.190 <0.001 0.014 <0.001

Post-processing

 None (Ref.)

 REGEXI −0.003 0.17 0.003 0.44 −0.003 0.09 −0.002 0.50 0.007 0.018

Machine learning algorithm

 ADTree (Ref.)

 Logistic regression −0.0002 0.94 0.015 <0.001 −0.007 0.006 −0.003 0.38 −0.017 <0.001

 Naive Bayes 0.005 0.10 0.018 <0.001 0.018 <0.001 0.003 0.38 0.006 0.126

Threshold selection

 Optimal threshold (Ref.)

 −log10 deviation from 
the optimal threshold −0.022 <0.001 −0.040 <0.001 −0.013 <0.001 −0.011 <0.001 0.003 0.15

 Adjusted R2 0.40 0.65 0.66 0.85 0.72

Table 4.  Predictive performance by varying methods annotation type, threshold selection, and machine 
learning methods. NB: Abbreviations: ADTree: Alternating decision tree (10-boosting iterations); FDG-PET/
CT:18F-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography; MDT: multidisciplinary 
team; POSTAG: Part-of-speech tagging with word lemmatization; REGEXI: regular expression induction 
algorithm; SPARSE: syntactic parsing; STEM: token-level annotation by word stemming using Snowball 
algorithm; UMLS: sequence-level annotation using Meta-thesaurus from the United Medical Language System 
(UMLS) version 2016 AA.
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token aggregation generally reduced the computational time (Table S7). Variations in the filtering threshold and 
regular expression induction both produced comparable time usage across different text types.

Discussion
The central finding of this research is that clinically relevant associative knowledge is discoverable from EMR 
text by combining semantic-free NLP methods with association analysis. Our method sensitively identifies key 
clinicopathologic factors that differentiate subgroups of HNSCC patients by HPV status. Hence, we expect our 
approach to find useful signals associated with clinical outcomes in other domain. This tool provides an adjunct 
for efficiently generating new hypotheses guiding downstream investigations for as-yet-unsolved biomedical 
problem scenarios.

This work also highlights the possibility of finding plausible associations using only a relatively small cohort of 
routinely-collected EMR patient data. Most factors associated with virally-implicated HNSCC have been found 
through EMR retrieved from a single site. However, the selection of relevant corpus appeared to be important; for 
example, we found no significant association factors from oncologic correspondence. The lack of association was 
not unexpected because of the small corpus size, as well as the fact that chemotherapy is only a subsidiary modal-
ity for managing non-metastatic HNSCC35. Current guidelines also do not yet recommend a different treatment 
regimen for HPV-related disease, despite speculations for de-intensification in this population35, 36.

Several strengths of our feature generation and ranking approach suggest useful applications. First, TEPAPA 
extracts knowledge in the form of clear text and its derivatives, which allows direct transformation of these pat-
terns into searchable formats. The “white-box” approach is advantageous because it allows domain experts to 
rapidly generate hypotheses and to re-identify contextual information about a case when discrepancies arise, as 
shown in our analysis. Second, the PatWAS method addresses the “cognitive gaps” which occur at the time of 
designing an observational study. The unbiased method avoids the problem where a researcher focuses only on a 
set of familiar variables for testing in an ad hoc manner, thereby permitting discovery of novel associations. This 
approach is attractive because most EMR data contain unstructured narratives, and the key concepts may only 
be described by using non-standardised lexicons. Third, the backbone of our method assumes no underlying 
knowledge, and thus is expected to work on other biomedical texts, whether formal (e.g. MEDLINE abstracts) or 
informal (e.g., social network data), to support discovery in distinct settings. Fourth, TEPAPA can find predictive, 
text-based “informarkers” to allow risk stratification, support in silico phenotyping tasks, and extract information 
from EMR. The feasibility of this integrative approach is supported by our predictive analysis.

One capability of TEPAPA is to aggregate syntactically similar text fragments into regular expressions to aid 
data interpretability. In our classification task, however, inclusion of regular expressions did not consistently 
improve accuracy over that obtained using “bag of token” features alone. Consistent with previous studies, regu-
lar expressions provided only a small performance benefit over use of simple word vectors in classification tasks, 
bearing a weak but correlative trend to the training sample size42, 45. Accordingly, methods that aggregate text 
fragments (as in induction of regular expressions) – although generating features with better sensitivity (recall) -  
provide little overall additional information when used in conjunction with a multivariate learner for classifica-
tion and prediction.

Although our method appears to provide useful insights into EMR data, the results still need to be scrutinised 
by domain experts referring back to the original text. To better understand this limitation, we categorised three 
scenarios of misdiscovery, each of which has a unique characteristic with potential solutions (Fig. 5). Both types 
I (false positives) and II misdiscoveries (false negatives) can be affected by inappropriate threshold assignment 
during the feature filtering step. Moreover, type II misdiscovery can result from insufficient information in the 
corpus. For instance, sexual history was not recorded in our dataset, and was therefore unable to be discovered 
computationally. Systematic omissions such as this represent an absolute limitation for all types of EMR-based 
discovery. Type III misdiscovery (wrongly positive) described two related subgroups (incorrect qualifier assign-
ment, IIIA and partial correlated patterns, IIIB). Both problems arise from the algorithm failing to fully examine 
the underlying semantic structure, resulting in only partial observations. Such misdiscovery represents the ceil-
ing of capability for semantic-free NLP methods, but could be amendable to a richer knowledge representation 
by incorporating a comprehensive semantic analysis on platforms such as MedLEE45 and cTAKES46 during the 
pre-processing step. A trend was evident from our analysis which suggested that a more sophisticated representa-
tion (e.g., regular expression) confers better descriptive power (e.g., versus n-grams). Incorporating contextual 

Figure 5.  Scenarios, examples, and potential sources of misdiscovery.
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knowledge is thus expected to improve the quality of machine-generated features by considering the linguistic 
structure more fully.

Several challenges for future research are clear. First, the optimal method for selecting an objective filtering 
threshold remains unsolved, as the exhaustive search algorithms guarantee the generation of patterns that are not 
identically and independently distributed. As such, the conventional methods for adjusting for multiple hypoth-
esis testing, such as Bonferroni47 and Benjamini-Hochberg corrections48, would be unable to identify a suitable 
cut-off. Second, as in all high-dimensional analysis, overfitting may occur if a pattern is over-calibrated to fit 
the training data. Incorporating ensemble selection with early-stopping may avoid building an overly-complex 
model49. Third, the caveats of epidemiological research (e.g. biases and confounders) still apply, and asking a 
relevant clinical question remains paramount. Fourth, downstream of plausible text pattern identification, rigor-
ous confirmatory studies remain necessary before drawing a definitive clinical conclusion; EMR-based analyses 
inherently suffer from bias, noise, missing data, and inconsistency50–53. Fifth, features extracted by TEPAPA are 
presented in conventional statistical quantities that are widely accepted by the clinical community (e.g., odds 
ratio, AUC, and p-value). While this application-oriented approach may help to generate new hypotheses for 
clinical research, alternative feature selection algorithms and regularised variable regression methods (e.g., elastic 
net)54 may be better suited to select patterns for building multivariate models for classification. More research is 
thus needed to identify how to best combine feature generation and selection methods in the context of clinical 
text classification. Last but not least, meticulous removal of patient identifiers is required to avoid inadvertent 
breaches of patient privacy, particularly in a data-sharing environment.

In conclusion, we have developed a novel computational pipeline for systematically identifying 
hitherto-unrecognised covariates from EMR narratives through associative text-mining analyses. Our results 
support the clinical and translational research use of TEPAPA and its future derivatives in efficiently extracting de 
novo knowledge and hypotheses from EMR in the background.

Data Availability.  The source code of TEPAPA can be obtained from http://tepapadiscoverer.org/.
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